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Abstract— Based on our recently established solu-
tion characterization of switched singular descriptor
systems in discrete time, we propose a time-varying
balanced truncation method. For that we consider the
switched system on a finite time interval and define
corresponding time-varying reachability and observ-
ability Gramians. We then show that these capture es-
sential quantitative information about reachable and
observable state directions. Based on these Grami-
ans we formulate a time-varying balanced truncation
method resulting in a fully-time varying linear system
with possible varying state dimensions. We illustrate
this method with a small dynamic Leontief model,
where we can reduce the size to one third without
altering the input-output behavior significantly. We
also show that the method is suitable for a medium
size random descriptor system (100 × 100) resulting in
a time-varying system of less then a tenth of the size
where the outputs of the original and reduced system
are indistinguishable.

I. Introduction

We consider singular switched linear systems in dis-
crete time given by

Eσ(k)x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k)
y(k) = Cσ(k)x(k) + Dσ(k)u(k),

(1)

where x(k) ∈ Rn is the state at time instant k ∈ N
and σ : N → M = {1, 2, · · · , m}, m ∈ N, is the switching
signal defined on a bounded time interval [k0, kf ] :=
{k0, k0 + 1, . . . , kf } of interest, Ei, Ai ∈ Rn×n, Bi ∈
Rn×m, Ci ∈ Rp×n and Di ∈ Rp×m are the system’s
matrices with i ∈ M and Ei in general singular. In the
context of model reduction, we are interested in the
input-output behavior of the system and thus, w.l.o.g.,
we assume in the following that x(0) = 0.

Sytems governed by (1) appear in numerous practical
applications, such as circuit simulation, computational
electromagnetics, fluid dynamics, and mechanical and
chemical engineering; see [10], [18].

Our goal is to reduce the size of the system description
without significantly altering the input-output response
of the overall system, commonly known as Model Order
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Reduction (MOR). It typically addresses systems de-
scribed by large-scale sets of ordinary differential (in con-
tinuous time) or difference equations (in discrete time) as
well as differential or difference-algebraic equations, also
known as singular systems. In this context, the primary
goal of MOR is to develop a compact reduced-order
model with a significantly smaller number of states, while
approximating the true system response according to
well-defined criteria. Here, reduction is needed to replace
the original large-scale system descriptions with accurate
and robust reduced-order models. In other words, given
a full-order model of a dynamic system, the aim of model
reduction is to find a reduced-order model such that the
input-output behavior of both models remains closely
aligned in an appropriate sense.

In parallel to MOR, switched systems have been widely
studied over the last decades for modeling in appli-
cations such as mechanical and aeronautical systems,
power converters, and the automotive industry (see e.g.
[9], [15]). MOR methods for switched ordinary (non-
singular) systems have been developed in [12], [5] for
the continuous-time case and [2], [1], [13], [3] for the
discrete-time case. The existing methods use the concept
of balanced realization (see also [14], [17], [4], [8]). A
balanced truncation method is also recently proposed
in [6] for model reduction of singular linear switched
systems in continuous time. The resulting reduced model
is no longer a switched system but is fully time-varying,
which is less practical for the continuous-time case. How-
ever, in discrete time, such a fully time-varying reduced
model may still be feasible for practical applications,
which motivated us to apply this time-varying balanced
truncation approach to system (1).

In this paper, we propose a method inspired by the
well-known balanced truncation method, wherein suit-
able reachability and observability Gramians are first in-
troduced to quantify how easily or difficultly certain state
directions can be reached or observed. Next, coordinate
transformations are applied to balance these Gramians,
revealing which state directions are simultaneously hard
to reach and observe. Finally, the reduction removes
the state directions that are most difficult to reach and
observe. Here, for system (1), we focus our attention to
the case that the reduction process is tailored to the
specific switching signal, which allows for a more efficient
reduction but requires complete knowledge of the switch-
ing signal. Furthermore, the reduction is considered on
a finite time interval of interest, which on one hand
is in most practical situations more relevant than the



consideration of an infinite time interval and on the other
hand does not require any stability assumptions on the
system.

II. Preliminaries
Consider a general time-varying linear system in dis-

crete time given by
x(k + 1) = Akx(k) + Bku(k), x(k0) = 0,

y(k) = Ckx(k) + Dku(k),
(2)

where k ∈ [k0, kf ], x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp and
Ak, Bk, Ck, Dk are matrices of appropriate size.

Definition 1 (Gramians): The (time-varying) reacha-
bility Gramian Pk ∈ Rn×n for (2) is recursively given by
Pk0 := 0 and for k = k0 + 1, k0 + 2, . . . , kf

Pk := Ak−1Pk−1A⊤
k−1 + Bk−1B⊤

k−1.

The (time-varying) observability Gramian Qk ∈ Rn×n is
recursively given by Qkf

:= C⊤
kf

Ckf
and for k = kf −

1, kf − 2, . . . , 1

Qk := A⊤
k Qk+1Ak + C⊤

k Ck.
Lemma 2: Consider the (time-varying) coordinate

transformation zk = Tkxk, then the corresponding trans-
formed system is given by

z(k + 1) = Ākz(k) + B̄ku(k), z(k0) = 0,

y(k) = C̄kz(k) + D̄ku(k),

where Āk := T −1
k+1AkTk, B̄k := T −1

k+1Bk, C̄k = CkTk, and
D̄k = Dk. Furthermore, the corresponding Gramians P̄k

and Q̄k satisfy

P̄k = T −1
k PkT −T

k and Q̄k = T ⊤
k QkTk.

Proof: This follows in a straight-forward way by
plugging in the corresponding definitions.

With the above definition of the Gramians it can be
shown that the Gramians are tightly connected with the
reachability and observability properties of (2).

Theorem 3: Consider (2) with corresponding Grami-
ans Pk and Qk, then

im Pk =
{

xk

∣∣∣∣ ∃u : [k0, k − 1] → Rm and solu-
tion x of (2) s.t. x(k) = xk

}
,

ker Qk =

xk

∣∣∣∣∣∣
0 = y(k) = y(k + 1) = . . . = y(kf )
for solution of (2) on [k, kf ] with
u = 0 and x(k) = xk

 ,

i.e. im Pk equals the reachability space Rk of (2) con-
sidered on the time interval [k0, k] and ker Qk equals the
unobservability space Uk of (2) considered on the time
interval [k, kf ].

Proof: It is easily seen that the reachability space
satisfies Rk+1 = AkRk +im Bk. Since R0 = {0} = im P0,
we just need to show that im Pk+1 = Rk+1 under the
inductive assumption that Pk = Rk. For that consider
any symmetric factorization Pk = LkL⊤

k , then, utilizing
the fact that for any matrix we have im M = im MM⊤,

Rk+1 = Ak im Pk + im Bk = Ak im Lk + im BkB⊤
k

= im AkLk(AkLk)⊤ + im BkB⊤
k = im Pk+1.

We see that the unobservable space satisfies Ukf
=

ker Ckf
and Uk = ker Ck ∩ A−1

k Uk+1. Since for general
matrices M we have that ker M = (im M⊤)⊥, we see that
ker Qkf

= (im C⊤)⊥ = (im Qkf
)⊥ = ker Qkf

and using
the induction assumption ker Qk+1 = Uk+1 together
with the symmetric factorization Qk+1 = R⊤

k+1Rk+1, we
arrive at the following:

ker Qk = (im A⊤
k R⊤

k+1Rk+1Ak + im C⊤
k Ck)⊥

= ker Rk+1Ak ∩ ker Ck = A−1
k ker Rk+1 ∩ ker Ck

= A−1
k ker Uk+1 ∩ ker Ck = Uk.

Furthermore, the Gramians do not only provide qual-
itative information about reachability and observability,
but also quantitative information (which is crucial for the
upcoming model reduction method) as highlighted in the
following Theorem.

Theorem 4: For all xk ∈ im Pk we have that1

x⊤
k P †

k xk

= min
{

k−1∑
ℓ=k0

u(ℓ)⊤u(ℓ)

∣∣∣∣∣ u is s.t. solution x
of (2) satisfies x(k) = xk

}
,

i.e. the reachability Gramian provides information about
the minimal control energy required to reach a (reach-
able) state. Furthermore

x⊤
k Qkxk =

kf∑
ℓ=k

y(ℓ)⊤y(ℓ),

where y(k), y(k + 1), . . . , y(kf ) is the output of (2) con-
sidered on [k, kf ] with u = 0 and x(k) = xk, i.e. the
observability Gramian provides information about the
output energy visible from the given initial state.

Proof: For k > ℓ ≥ k0, define the fundamental
matrices Φ(k, ℓ) of (2) as

Φ(k, ℓ) := Ak−1Ak−2 · · · Aℓ+1Aℓ, Φ(ℓ, ℓ) := I.

Then, since x(k0) = 0, we have

x(k) =
k−1∑
ℓ=k0

Φ(k, ℓ + 1)Bℓu(ℓ). (3)

Furthermore, we see easily by induction that

Pk =
k−1∑
ℓ=k0

Φ(k, ℓ + 1)BℓB
⊤
ℓ Φ(k, ℓ + 1)⊤,

Qk =
kf∑

ℓ=k

Φ(ℓ, k)⊤C⊤
ℓ CℓΦ(ℓ, k).

Consider the control û on [k0, k] defined by

û(ℓ) = B⊤
ℓ Φ(k, ℓ + 1)⊤P †

k xk.

1Here P † denotes any symmetric pseudo-inverse of Pk with
PkP †

k
Pk = Pk, for example the well known Moore-Penrose pseudo-

inverse.



Then with this control, system (2) has the solution x
satisfying x(k0) = 0, x(k) = xk. Indeed, plugging this
input into (3) we get

x(k) =
k−1∑
ℓ=k0

Φ(k, ℓ + 1)BℓB
⊤
ℓ Φ(k, ℓ + 1)⊤P †

k xk

= PkP †
k xk.

By assumption, xk ∈ im Pk, i.e. there exists zk ∈ Rn

such that xk = Pkzk and hence PkP †
k xk = PkP †

k Pkzk =
Pkzk = xk.

Now we define a scalar product for controls u, v on
[k0, k]:

⟨u, v⟩ =
k∑

ℓ=k0

u(ℓ)⊤v(ℓ).

Then, for arbitrary u for which the solution of system
(2) satisfies x(k0) = 0, x(k) = xk, we have

⟨u, û⟩ =
k∑

ℓ=k0

u(ℓ)⊤û(ℓ)

=
k∑

ℓ=k0

u(ℓ)⊤B⊤
ℓ Φ(k, ℓ + 1)⊤P †

k xk

=
(

k∑
ℓ=k0

Φ(k, ℓ + 1)Bℓu(ℓ)
)⊤

P †
k xk

(3)= x⊤
k P †

k xk.

(4)

This implies that ⟨u− û, û⟩ = ⟨u, û⟩−⟨û, û⟩ = x⊤
k P †

k xk −
x⊤

k P †
k xk = 0 and

⟨u, u⟩ = ⟨û, û⟩ + 2⟨u − û, û⟩ + ⟨u − û, u − û⟩
= ⟨û, û⟩ + ⟨u − û, u − û⟩
≥ ⟨û, û⟩
= x⊤

k P †
k xk.

This concludes the first part of this theorem.
Now, for x(k) = xk and u = 0, we have x(ℓ) =

Φ(ℓ, k)xk. This implies that y(ℓ) = CℓΦ(ℓ, k)xk. There-
fore,

kf∑
ℓ=k

y(ℓ)⊤y(ℓ) =
kf∑

ℓ=k

x⊤
k Φ(ℓ, k)⊤C⊤

ℓ CℓΦ(ℓ, k)xk

= x⊤
k Qkxk.

The proof is complete.
Definition 5: The system (2) is called balanced if all

Gramians are diagonal and for all k ∈ [k0, kf ] there exists
diagonal matrices Σk, Σr

k, Σo
k such that

Pk = diag(Σk, Σr
k, 0, 0) and Qk = diag(Σk, 0, Σo

k, 0),

where the corresponding block diagonal matrices in Pk

and Qk have equal sizes (0 × 0 is allowed). Furthermore,
it is assumed that all diagonal entries of Σk, Σr

k, Σo
k are

positive and for Σk are ordered from largest to smallest.

Theorem 6: There always exists a time-dependent co-
ordinate transformation such that (2) becomes balanced.

Proof: In view of Lemma 2 it suffices to consider
the coordinate transformation Tk for each k individually
(although the resulting transformed system matrices will
depend on the coordinate transformation at Tk and
Tk+1, the transformed Gramians will only depend on
Tk). Hence the problem can be reduced to the following
question: Given two symmetric positive definite matrices
P and Q find a coordinate transformation T such that
T −1PT −T and T ⊤QT have the block structured as in
Definition 5. The existence of such a transformation is
well known, see e.g. [19, Thm. 7.5], whose proof is also
constructive and can be used for the implementation of
the reduction algorithm.

III. Model reduction procedure
The model reduction procedure consists of four main

steps:

Step 1: Obtain surrogate system
We assume that the switched singular system (1) is

solvable for all input signals, which can be characterized
via the recently introduced notion of switched index-1
w.r.t the considered switching signal σ for the family
{(Ei, Ai, Bi)}, for details see [16]; therein, an equivalent
surrogate system is given, which takes the form

x(k + 1) = Φσ(k+1),σ(k)x(k)
+ Ψc

σ(k+1),σ(k)u(k) + Ψa
σ(k+1),σ(k)u(k + 1)

y(k) = Cσ(k)x(k) + Dσ(k)u(k).

This can be rewritten as
x(k + 1) = Ãkx(k) + B̃kũ(k),

y(k) = C̃kx(k) + D̃kũ(k),
(5)

where ũ(k) :=
[

u(k)
u(k+1)

]
and

Ãk := Φσ(k+1),σ(k), B̃k := [Ψc
σ(k+1),σ(k), Ψa

σ(k+1),σ(k)],
C̃k := Cσ(k), D̃k := [Dσ(k), 0],

Step 2: Calculate Gramians for surrogate system
With Pk0 = 0, define Pk recursively for k = k0 +1, k0 +

2, . . . , kf as follows

Pk := Ãk−1Pk−1Ã⊤
k−1 + B̃k−1B̃⊤

k−1,

and with Qkf +1 := 0, defined Qk recursively for k =
kf , kf − 1, . . . , k0

Qk := Ã⊤
k Qk+1Ãk + C̃⊤

k C̃k.

Remark 7: It should be noted that the calculated
reachability Gramians for the surrogate systems are not
necessarily exactly related to the reachability properties
of the original singular switched system. This is because
for the surrogate system it is assumed that the inputs
ũk and ũk+1 are independent of each other, however,
from the definition it is clear that they are in fact not



fully independent because the last components of ũk are
always equal to the first components of ũk+1. This means
in particular, that the actual reachability spaces of the
original singular switched system are in general smaller
than the reachability spaces of the surrogate system.
However, in the context of model reduction this means
that we overestimate the reachability properties of the
original systems and may not reduce as much as possible.

Step 3: Calculate time-varying balancing transformation
For k ∈ [k0, kf ] find a balancing coordinate transfor-

mation Tk, i.e. it holds for all k ∈ [k0, kf ] that

T −1
k PkT −⊤

k = diag(Σk, Σr
k, 0, 0),

T ⊤
k QkTk = diag(Σk, 0, Σo

k, 0).
(6)

These balancing transformations can be calculated using
the constructive proof of [19, Thm. 7.5].

Step 4: Decide on reduction size and obtain reduced model
Denoting the diagonal entries of Σk as s1, s2, . . . , snk

and given a desired threshold εk > 0 for k = k0, k0 +
1, . . . , kf choose the minimal value rk ∈ N such that
srk+1 < εk (where snk+1 := 0). Alternatively, a desired
reduction size rk can be chosen directly. Now define the
left- and right-projection matrices Πl

k and Πr
k as the

first rk rows of T −1
k and the first rk columns of Tk,

respectively. The reduced switched system is then given
by

x̂(k + 1) = Âkx(k) + B̂k

[
u(k)

u(k+1)

]
,

ŷ = Ĉkx(k) + Dku(k),
where

Âk := Πl
k+1ÃkΠr

k, B̂k := Πl
k+1B̃k, Ĉk := C̃kΠr

k.

Remark 8 (Error bounds): It is well known that the
classical (non-time-varying) balanced truncation method
can provide a-priori error bounds. In the continuous time
case some error bounds can also be obtained for time-
varying balanced truncation, see [11], however, we are
not aware of any error bounds available for the discrete-
time case with possibly singular Gramians. Nevertheless,
in view of the clear energy-interpretation of the Gramians
as established in Theorem 4 it is our strong believe that
error bounds in terms of the neglected singular values
sk, k > rk, can be established, however this is ongoing
research.

IV. Simulations
A. Dynamic Leontief model example

Consider the switched dynamic Leontief model

x(k) = Lσ(k)x(k) + Cσ(k)
(
x(k + 1) − x(k)

)
+ d(k), (7)

where x(k) is the vector of output levels at the time k =
k0, k1, . . . , kf , d(k) is the vector of final demands (the
input in this model), σ : N → M is the switching signal, Li

is the Leontief input–output matrix, and Ci is the capital
coefficient matrix, i ∈ M. After rearranging terms, (7)

takes the form (1) with Ei = Ci, Ai = I−Li+Ci and Bi =
I. For illustration we consider (7) with data from [7] for
mode 1 and for the second mode, we assume a complete
one-sided decoupling of the third sector from the other
two sectors (e.g. by suddenly stopping supplying goods
to the other sectors in response to politically imposed
export restrictions):

L1 =
[

0.30 0.30 0.30
0.40 0.10 0.50
0.30 0.50 0.20

]
, L2 =

[
0.30 0.30 0.30
0.40 0.10 0.50

0 0 0

]
,

C1 =
[

0.30 0.40 0.45
0 0 0

0.60 0.80 0.90

]
, C2 = C1.

As an output we choose the total production, i.e. y(k) =
Cσ(k)x(k) with C1 = C2 = [1, 1, 1].

The family of matrix triplets {(Ei, Ai, Bi)}i∈{0,1} is
jointly index-1 [16] with the corresponding surrogate
system (5) given by:

Φ1,1 ≈ Φ1,2 ≈ Φ2,2 ≈[
0.26 0.11 0.57
0.28 0.12 0.62
0.29 0.13 0.65

] [
0.35 0.27 0.64
0.38 0.29 0.68
0.40 0.31 0.72

] [
0.50 0.39 0.91
0.39 0.30 0.70
0.30 0.23 0.53

]
Ψc

1,1 ≈ Ψc
1,2 ≈ Ψc

2,2 ≈[
0.16 0 0.32
0.17 0 0.35
0.18 0 0.37

] [
0.16 0 0.32
0.17 0 0.35
0.18 0 0.37

] [
0.23 0 0.46
0.18 0 0.35
0.13 0 0.27

]
Ψa

1,1 ≈ Ψa
1,2 ≈ Ψa

2,2 ≈[
-0.74 0.32 0.37
-0.04 -0.73 0.02
0.53 0.44 -0.26

] [
-0.74 0.32 0.37
-0.04 -0.73 0.02
0.53 0.44 -0.26

] [
-0.80 0.24 0.40
-0.04 -0.73 0.02
0.57 0.49 -0.28

]
With the switching signal σ(k) = 1 for k ∈ [0, 4]
and σ(k) = 2 for k ∈ [5, 9], we arrive at the time-
varying linear system (2) where Ak = Φσ(k+1),σ(k), Bk =
[Ψc

σ(k+1),σ(k), Ψa
σ(k+1),σ(k)], Ck = Cσ(k). We apply our

proposed reduction method to reduce this system to a
scalar time-varying system r = 1. Then the reduced
system is given by

k 1 2 3 4 5 6 7 8 9

Âk 0 0.85 -0.91 -0.94 -0.97 -0.97 0.95 -0.89

Ĉk 0 0.31 0.51 -0.62 0.78 -1.10 1.54 2.18 -3.28

and
B̂1 = [ 1.02 0 2.05 0.63 1.51 -0.33 ] ,

B̂2 = [ 0.83 0 1.67 0.51 1.22 -0.25 ] ,

B̂3 = [ -0.73 0 -1.46 −0.44 -1.06 0.22 ] ,

B̂4 = [ 0.67 0 1.34 0.18 0.58 -0.09 ] ,

B̂5 = [ -0.48 0 -0.96 -0.12 -0.40 0.06 ] ,

B̂6 = [ 0.35 0 0.70 0.06 0.23 -0.03 ] ,

B̂7 = [ 0.25 0 0.49 0.01 0.14 -0.00 ] ,

B̂8 = [ -0.16 0 -0.33 0.08 0 -0.04 ] .

The corresponding output comparison for some ran-
domly chosen input is shown in Fig. 1.

B. Large scale academic example
We also illustrate the performance of our proposed

reduction method for a large scale random descriptor
system (1), where n = 100, rank Ei = 50, i ∈ M = {1, 2},
m = p = 1. We consider the time interval [k0, kf ] =
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Fig. 1. Comparison of output of a Leontief model with the output
of the reduced model (top figure) and the output error (middle
figure) for a randomly chosen input (bottom figure).
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Fig. 2. Comparison of the output of a random descriptor system
and the output of the reduced system.

[1, 26] and the switching signal σ with switching se-
quence (1, 2, 1, 2, 1) and switching times (6, 11, 16, 21).
The threshold for the singular values of the balanced
Gramians is chosen to be εk = 0.1 for all k ∈ [k0, kf ]
and the corresponding time-varying balanced truncation
methods results in a reduced model with sizes

(0, 2, 4, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 5, 4, 3, 2, 1).

For some randomly chosen input the corresponding origi-
nal output and the output of the reduced system is shown
in Figure 2.

V. Conclusion and outlook
We have presented a comprehensive model reduction

method for switched singular systems in discrete time.
We consider the (realistic) situation of approximating
the input-output behavior on a finite time interval and
we make the (somewhat restrictive) assumption that the
switching signal is completely known on that interval.
This allows to treat the switched system as an instance
of a time-varying linear system and to introduce time-
varying reachability and observability Gramians (the
former defined forward in time, the latter backwards
in time). These Gramians are defined in terms of the
recently introduced surrogate system of the singular
switched system; they capture the essential quantita-
tive reachability and observability properties which then
form the basis of our time-varying balanced truncation
method.

There are still a couple of remaining issues. The first
one is the dependence of our method on the knowledge
of the switching signal, which in some situations (e.g.
when switching is due to scheduled maintenance) is
not a limitation, but in other situations (e.g. when the
switching is due to faults or is itself considered an input
signal) is significantly restricting the applicability of
our method. However, the reachability and observability
properties strongly depend on the switching signal, hence
any method valid for arbitrary switching signals will
not result in the best possible reduction for individual
switching signals. It is the topic of future research to
investigate this trade-off between an effective reduction
tailored to specific switching signals and a less effective
switching-signal-independent reduction method. Another
open issue is the establishment of an error bound, which
is available for the classical balanced truncation (time-
invariant and consideration of an infinite time interval),
but it is not fully clear whether such an error bound can
be derived for our method as well. Finally, numerical
experiments reveal that for large scale examples (1000
or more states) numerical issues may arise (e.g. the
calculate Gramians are not positive definite anymore due
to numerical inaccuracies); additionally for such large
scale problems a naive implementation of our method
may not be feasible anymore and would require some
taylored code optimization.
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