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Systems & Control in Groningen

History
» Internationally leading in mathematical systems theory since 1970
» Rapidly growing engineering institute (ENTEG) in the last decades

» Jan C. Willems Center bundles current research activities (15 staff members + about 50 PhD
students)

Global Ranking of Academic Subjects (GRAS) 2022

» RUG is ranked 15th worldwide in subject Automation and Control
y Best ranked in the EU!
y  Within RUG, Automation and Control is best ranked subject
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Control Task

N

System ?

+
<

Controller —Yref

S

Goal: Output tracking y(t) & yref(t)

Applications

y  Flying to the moon
» Robotics
» (Adaptive) cruise control in cars

» Chemical processes
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Control Task

hd

System

Controller

W

Goal: Output tracking y(t) & yref(t)

Challenge

» no exact knowledge of system model

» no future knowledge or model for reference signal

S

“Yref
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ot Introduction
oD

The scalar linear case with 1, = 0

U T =ax+ bu
» ¢ > Y
Yy =cx
e l
Controller [¢ (D¢« —Yref

Assumptions

»  Known model structure

y Known sign of high frequency gain y := cb, assume y > 0
) Yt =0

Unknown system parameters o and y
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The scalar linear case with 1, = 0

u

y=oay+yu

Controller

~
A~
<
Q—1
A~
v
o <

Goal
Design output feedback u such that y(¢) — 0 as ¢ — oo

If we would know «,y, how would we choose u?

a+A

Goal: gy L —A\y ~» achievable with u = —ky and k := Y

In general, with u = —ky we have § = (o — vk)y
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¢ Introduction
oD

The scalar linear case with 1, = 0

u

y=oay+yu

hd

(j:)(—o

u = —ky

Hence we have arrived at our first high gain control result:

Theorem
The proportional negative feedback

achieves convergence for all k > %
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What happens for g,r £ 07

U .
N Y =ay+yu * > Y
e
u=—ke [ (D¢ ~Yref

Error dynamics: € = ... = (& — Yk)e + QUref — Yref

Equilibrium for constant yyf:

@
0=(a—vk)e+ Qyref <= €= ——Yref
vk — «

~» NO convergence to zero anymore
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What happens for g,r £ 07

y=ay+yu

W

De——-

AN

—Yref

S

u = —ke

In general: Practical tracking with high gain control:

Theorem
If yrer and ,ef are bounded, then

Ve>03K >0Vk > K : limsuple(t) <e

t—00
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Introduction

High gain for relative degree one systems
Linear systems
Relative degree and zero dynamics
High gain stabilization
Nonlinear systems

Adaptive choice of gain
Adaptive stabilization
A-tracking

The funnel controller
The original funnel controller with proof sketch
Relative degree two funnel controller
Bang-bang funnel control
Funnel synchronization

Summary
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High gain for relative degree one systems
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Higher order linear case with g, = 0

uo T = Ax + bu

b
0 2
<

4
y=cx

u = —ky

S
)

A e R™™™, pe R ¢ceRX™™ unknown

Definition (Relative degree)

r €{L1,2,...,n} is relative degree of system (A4,b,c) <=

(i) Vie{0,....,mr—2}: cA'b=0

(i) A" #0

In particular, (A, b, c) has relative degree one <= vy :=cb#0
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High gain for relative degree one systems
=

What is the meaning of the relative degree?

Frequency domain interpretation

Transfer function ¢(sI — A)~'b =: %, then r = deg(q(s)) — deg(p(s))

Interpretation in time-domain:
Theorem (Byrnes-Isidori form)

(A,b,c) has relative degree r € {1,...,n} if and only if there exists a coordinate transformation
T such that(") = Tx such that y =1, =12, ...,y =17,

01

L 0 0
TAT?l = CL110 ' a2 ?Tb = Y aCT?l = [13 0, 30]7
A1 Aa 0

with a1y € Rlxr' als € [Rlx(nfr)' Ao € R(nfr)xr' Ao € [R(nfr)x(nf'r)
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High gain for relative degree one systems
=

What is the meaning of the relative degree?

Frequency domain interpretation

Transfer function ¢(sI — A)~'b =: %, then r = deg(q(s)) — deg(p(s))
Interpretation in time-domain:

Theorem (Byrnes-Isidori form)

(A,b,c) has relative degree r € {1,...,n} if and only if there exists a coordinate transformation
T such that(") = Tx such that y =1, =12, ...,y =17,

)
y(") = a1y ( : ) +ag2z +yu
(
Yy

r—1)

Yy
z=An + Agoz
LD
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High gain for relative degree one systems
n |

Zero dynamics

Yy
y(T) =al2 : + a2z + vu
&= Ax + bu

LD
y
2= Ay : + Agz
D)

y=cx

Question

Which input u is needed to keep output y identically zero?

Byrnes-Isidori form for identically zero output:

0=azz+vyu
Z = Ag9z <— zero dynamics
1

Answer: u(t) = —?azzeAQQtz(O) — 00 if Agg has "bad” eigenvalues!
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High gain stabilization for r.d.-one systems

u o T = Ax + bu

y=cx

u=—ky

> Y

Assumptions:
y Relative degree r =1 <

System &

v :=cb#0, in particular:

Y= a1y + a2z +yu

2= agny+ Agz

y positive high frequency gain < v >0

» stable zero-dynamics (minimum phase) < Ags Hurwitz
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High gain for relative degree one systems
u

High gain stabilization for r.d.-one systems

uo T = Ax + bu

L4
y=cx

* >y

u=—ky [ D¢ 0

Theorem (High-gain stabilization)
cb > 0 and stable zero-dynamics

= dK >0Vk> K : Closed loop is asymptotically stable

a1l — vk a2

Key idea of f:  Show that
ey idea of proo ow tha [ . Aoy

} is Hurwitz for sufficiently large k.
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From linear to nonlinear systems

T = Ax + bu

= Ccx
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From linear to nonlinear systems

=a11y + a122 +vyu
a1y + A2z

SRS
|
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From linear to nonlinear systems

z2 = Agzz + azy

w = aizz

0 2
<

u > y=any+w+yu
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From linear to nonlinear systems

w = Tzo{y()}
u A 9= Ffy,w) + gy, w)u

Assumptions:
y T, is causal BIBO operator, i.e. Ix(-) :  |lw| < &(|lyl])

» f and g continuous and g > 0
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High gain stabilization for nonlinear systems

u | *=F(z,u) .y
4 7H(:L.) 4
Y
u=—ky kK P 0

Theorem
Assume there exists (nonlinear) coordinate transformation such that system is equivalent to

y - f(ya w) + g(yvu’)ua w = TZo{y()}
with f,g continuous, T, causal BIBO operator and g > 0, then

Vy(0) Vzp 3K > 0Vk > K : limsup |y(t)| < e
¢

—00
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High gain for relative degree one systems
orm

Summary high gain feedback

System ? > Y

hd

Controlleru = —ke —Yref

Goal: Output tracking
Challenge: Unknown system parameters

Structural assumptions
» Relative degree one with known sign of “high frequency gain”

» Stable zero dynamics
High gain feedback: u = —ke "works" for sufficiently large gain k > 0

Remaining challenge: When is k sufficiently large?
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Introduction

High gain for relative degree one systems

Adaptive choice of gain
Adaptive stabilization
A-tracking

The funnel controller

Summary
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Adaptive choice of gain
= =

Choosing gain adaptively, linear case

U . T = Az + bu

4 4 4 y
Yy =cx
y l
u=—kk(t)y | ©)

< 0

Theorem (High-gain stabilization)
¢b > 0 and stable zero-dynamics = 3K >0Vk> K :y(t) =0
Key idea

Why not make k£ time-varying with k(t) > 0 as long as y(t) > 07
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Adaptive choice of gain
= =

Choosing gain adaptively, linear case

U . T = Az + bu

> * > Y
y=cw
y l
u=—kk(t)y ¢ (D¢ 0

A}

Theorem (Adaptive High-Gain Feedback, BYRNES & WILLEMS 1984)

cb > 0 and stable zero-dynamics =
k(t) = y(t)? makes closed loop asymptotically stable
and k(-) remains bounded

Boundedness of k(t) = fgy(s)2 ds follows from final exponential decay of y.
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Adaptive choice of gain
o

Simulations
y=y+u, u(t) = *k(t)(y(t) - yref(t))v k = (y - yref)2

output and gain for y,er = 1

output and gain for 4. = 0 y(®) ~N
2.5 / \
y(?) P
’ I\
05 / N 15 / AN
0 1-+
0 2 3 45 6 7 8 9 10t 01 2 3 4 7 8 10 ¢
k(t) —
k() 3 //’
2 -~ 2 /
1 1
0 ~ 0
01 2 3 45 6 7 8 9 10t 01 2 3 4 5 6 7 8 9 10t
Funnel control (17 / 41)
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High gain adaptive control and tracking?

hd

System v > Y

u=—k(t)e & (D« ~Yref

Unbounded gain

For yef # 0 the adaptation rule k = e? leads to unbounded gain.

Recall: Constant gain for y,ef # 0 only leads to practical tracking, i.e. e(t) 4 0
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High gain adaptive control and tracking?

N

System v > Y

u=—k(t)e & (D« ~Yref

How to prevent unbounded growth?

Stop increasing gain when error is sufficiently small, e.g. via

o le(t)] < A
R = {|e<t>|(e<t>| SN Je()] > A
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High gain adaptive control and tracking?

N

System v > Y

u=—k(t)e & (D« ~Yref

Theorem (A-tracking, ILCHMANN & RYAN 1994)

Assume r.d.-one with “y > 0", stable zero-dynamics and y,ef, et bounded. For A > 0 consider

) = le(®)] < A,
H0= {|e(t)|(|€(t)| - ), le(t)] > A

Then the closed loop is practically stable, i.e. limsup,_, |e(t)| < A.
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Remaining problems of A-tracker

Problems:
» No guarantees when |e(t)| < A

»  No bounds on transient behaviour

» Monotonically growing k() = Measurement noise unnecessarily amplified
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The funnel controller
The original funnel controller with proof sketch
Relative degree two funnel controller
Bang-bang funnel control
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The funnel as time-varying error bound

N

F=F@):=A{(te) [lel <v(t)}
Idea:  k(t) large = Distance of e(t) to funnel boundary small

~> Funnel gain: k(t) =
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The funnel controller
T

Funnel controller works

w = T{y()} Y System class

Equivalent to structure left:
w] y T is causal and BIBO

y f, g continuous

u N = f(y,w) + g(y, w)u > Y

y g>0

Theorem (ILCHMANN, RYAN, SANGWIN 2002)

ASSUME Yyef, Uref, U, Y0 bounded, lim infy_so0 ¥(t) > 0 and |e(0)| < 1(0) where € := Yy — Yye-
Then

I

P(t) — le(t)]

ensures that e(t) remains within funnel F (1) while k(t) remains bounded.

u(t) = —k(t)e(t) with k(t) =

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (22 / 41)
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Proof

Step 1: Existence of solution
» Standard ODE theory: solution of closed loop exists on [0,w) for w € (0, 0]

y Choose w > 0 maximal
y If w < oo then “le(w)| = ¢Y(w)”

Step 2: We show that w < oo implies |e(t)| — 1 (t) > € for some € > 0
Error dynamics are given by

é= f(y,w) — Yres + g(y, w)u
Step 2a: Boundedness of e, y, and w

e(t) within funnel for ¢t € [0,w) (domain of ODE)
= e bounded on [0,w) (because v is bounded)
= y bounded on [0,w) (because yef is bounded)
= w bounded on [0,w) (because T is BIBO)
= f(y,w) bounded and g(y,w) bounded away from zero on [0, w) (continuity)

= e(t) < M +yu(t) if u(t) <0 and é(t) > —M +vyu(t) if u(t) >0

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (23 / 41)
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Step 2b: Funnel invariant (case e(t) > 0)

Assumptions: ¢ < 1(0) — ¢(0) e < A2 P(t) > A
1 1
e(te) =9Y(te) —e = k(t:) = P Foy v e

—ults) = —k(t)elts) < -2

A
—  t)<M-12

2e
Stephan Trenn (Jan C. Willems Center, U Groningen)
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Step 2b: Funnel invariant (case e(t) > 0)

(1)
£
________________ Ly
t
Assume t)(t) > —¥ and & < YA we have
! = 2(¥ + M)
. YA j
ol < M-~ 2 < —w < 1)
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Step 2b: Funnel invariant (case e(t) > 0)

()

Consequence: For sufficiently small € > 0,
Fei={(t,e) |[e(t)] <(t) — e}
is positively invariant, i.e.
(0,e(0)) e Fo = (tye(t)) € FeVt>0

and w < oo impossible!
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Extensions of funnel controller

» Asymptotic tracking (LEE & TRENN 2019)

»  Multi-Input Multi-Output (MIMO) (already in ILCHMANN ET AL. 2002)
» Higher relative degree (ILCHMANN ET AL. 2007, BERGER ET AL. 2018)
» Input saturation (ILCHMANN ET AL. 2004, HOPFE ET AL. 2010)

» Bang-Bang funnel control (LIBERZON & TRENN 2013)

»  Funnel synchronization for multi-agent systems (SHIM & TRENN 2015)

» For DAE-systems (BERGER 2016)
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Relative degree two via backstepping

For rel. deg. two systems, Funnel Controller is given by (ILCHMANN ET AL. 2007):
ult) = —k(t)e(t) = (le@)I” + k(&))k) (1 + [E@)IP)(E() + E()e(t))
k() = 1/(1 = o(t)|le(®)]?)

§(t) = —&(t) +u(t)

1 5
k()
0 6
u()
0 e —
'zq; 6-0

Taken from: ILCHMANN, RYAN, TOWNSEND 2007, SICON

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (25 / 41)
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Alternative Approach for relative degree two

Use two funnels, one for error and one for derivative of error

Simple Control Law

System class: §(t) = f(ps(t), T{y, y}(t)) + 9(pg (1), Ty{y, 9} (1))u(t)
Theorem (HACKL ET AL. 2012)

The above Funnel Controller for relative-degree-two-systems works (under mild assumptions on

1/10 and ¢1)

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (26 / 41)



The funnel controller

Experimental verification

"Mﬁrive Load

x1: angle of rotating machine, x2 = &1: angular velocity
uy: unknown (bounded) load
T:C(R>p — R) — L5 (R>o — R) friction operator

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (27 / 41)
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Tracking control in experiment

35

30

25

20

15

10

! ! ! ! ! ! !

0 5 10 15 20 25 30 35 40
time ¢ [s]

—— Measured angle y(t) in rad, --- reference angle y(t) in rad
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Experiment: Error, gains, input

8

30

6 4
N, 25

A 1
P i 20
or e e e e s 15

—2r - 4
a 10|

—at / 4
! 5]

-6y d

~% 2 4 8 10

6
[=]

e(t) inrad, --- 1/¢o(t)

. 4

Lo 4

8
6
alb \\ 4
o

-2t Bt
—ar . q
—6l ¢ 4
_gl 4
—10 -
o 2 a 6 8 10 o 1 2 3 4 5 6 7 8 9 10

time  [s] o ts]

é(t) inrad/s, --- 1/p1(t) —— (i) in N';“ln, --- ur(t) in Nm
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The funnel controller

U &= F(z,u) y
H(z)
q switching €€ B
logic Yref

T
Funnels
[ e
—

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (30 / 41)



The funnel controller

Bang-Bang Funnel Control

8- AN
7

q e e
— 00

T

|U*| |U0| |U+| Funnels

N Yo
—
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Funnel synchronization - setup

Given
» N agents with individual n-dimensional dynamics: @

&; = fi(t, ) + ug @
» undirected connected coupling-graph G = (V, E) @ @

v local feedback u; = v;(zs, 2 )

= v1(21, 22, 73)
Desired Ya(w2, 21, 23)
Control design for practical synchronization u3 = Y3(£C3,£C1,£C2,£C4)
Ug = V4(334’ .133)

TR ... Tp
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A, high-gain” result
Let V; :={j € V | (j,4) € E} and d; := |N;| and L be the Laplacian of G.
Diffusive coupling

u; = —k Z (x; —x;) or, equivalently, u=—k Lz
JEN;

Theorem (Practical synchronization, KiM et al. 2013)

Assumptions: G connected, all solutions of average dynamics

1 N
5(6) = 5 D St s(0)
=1

remain bounded. Then Ve > 0 4K > 0 Vk > K: Diffusive coupling results in

limsup [|z;(t) — z;(¢)| <e Vi, jeV

t—o00
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Remarks on high-gain result

Common trajectory

It even holds that
lim sup |z;(¢) — s(t)| < &/2,

t—o00

where s(-) solves Zfz t,s( s(0) = % /L, @i

Independent of coupling structure and amplification k.

Error feedback

With e; :== x; — xT; and T; := d%- ZjeN,- x; diffusive coupling has the form

Uj (t) = —ke;(t)

Attention: e; # x;; — s, in particular, agents do not know ,limit trajectory” s(-)
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Example (taken from KiM et al. 2015)

Simulations in the following for N = 5 agents with dynamics
@ filt, ) = (=1 +6;)x; 4+ 10sin t 4+ 10m} sin(0.1¢ + 6}) + 10m? sin(10t + 67),

@ with randomly chosen parameters &;,m!, m? € R and 0,67 € [0, 27].

1771

Parameters identical in all following simulations, in particular 6o > 1, hence
agent 2 has unstable dynamics (without coupling).
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Example (taken from KIM et al. 2015)

u=—-kLzx

gray curve:

(1) = %Z filt. 5(1))

i=1

Y 2i(0)

P4

s(0) =

ol

k=2
10 T

k=20
T
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Funnel synchronization: Initial idea
Reminder diffusive coupling: u; = —k;e; with e; = z; — T;.
Combine diffusive coupling with Funnel Controller
wilt) = —ks(t) es(t) with kg(t) = ——
' o ' »(t) — lei(®)]
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The funnel controller

First simulations
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Observations from simulations
Funnel synchronization seems to work
» errors remain within funnel
y practical synchronizations is achieved
» limit trajectory does not coincide with solution s(-) of

1 N

i) = 5 > filt, s(0)), 5(0) = & Xily i(0).
i=1

What determines the new limiting trajectory?

y Coupling graph?
y  Funnel shape?

» Gain function?
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Diffusive coupling revisited

Diffusive coupling for weighted graph

N N
ui:—k2a¢j~(xi—xj) — Ui:_zkij'aij'(xi_xj)
i 7

where a;; = aj; € {0, 1} is the weight of edge (3, j)

Conjecture

If k;j = kj; are all sufficiently large, then practical synchronization occurs with desired limit
trajectory s of average dynamics.

Proof technique from Kim et al. 2013 should still work in this setup.
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Edgewise Funnel synchronization

Diffusive coupling — edgewise Funnel synchronization

N
- Zkij ° Qi © (‘7"1 - xj) Zku C Qg xi - 33]‘)
)

Edgewise error feedback

1

P(t) — lesj]

Properties:
y Decentralized, i.e. u; only depends on state of neighbors

»  Symmetry, k;; = kj;
» Laplacian feedback, v = —Lg (t,x)z
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Simulation (from TRENN 2017)

States
T

Properties

~+ Synchronization occurs

+ Predictable limit trajectory (given by average dynamics)

+ Local feedback law
+ Convergence recently proved (LEE et al. 2023)

Edgewise Gains
T
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Summary high gain feedback and funnel control

System * > Y

hd

Controlleru = —ke —Yref

Goal: Output tracking

Challenge: Unknown system parameters

Structural assumptions

» Relative degree one with known sign of “high frequency gain”

» Stable zero dynamics

High gain feedback: u = —ke "works" for sufficiently large gain & > 0
1

-

SO=TeO] achieves tracking with prescribed perfomance

Funnel gain: k(1) =
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