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Who am I?
Stephan Trenn https://stephantrenn.net
Associate Professor for Systems & Control, Bernoulli Institute
Programme Director for master degrees Math., Applied Math., Systems & Control
› studied Mathematics and Computer Science in Ilmenau, Germany
› six month Erasmus student in Southampton, UK
› PhD 2009 in mathematical control theory in Ilmenau
› Postdoc (9 month) at University of Illinois, Urbana-Champaign, USA
› Postdoc (17 month) at University of Würzburg, Germany
› Assistant Professor for Math. Control Theory (2011 - 2017), Kaiserslautern, Germany

Research:
› Switched systems
› Differential-algebraic equations (DAEs)
› Funnel control
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Systems & Control in Groningen

History
› Internationally leading in mathematical systems theory since 1970
› Rapidly growing engineering institute (ENTEG) in the last decades
› Jan C. Willems Center bundles current research activities (15 staff members + about 50 PhD

students)

Global Ranking of Academic Subjects (GRAS) 2022
› RUG is ranked 15th worldwide in subject Automation and Control
› Best ranked in the EU!
› Within RUG, Automation and Control is best ranked subject
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Control Task

System y

Controller + −yref
e

u

Goal: Output tracking y(t) ≈ yref(t)

Applications
› Flying to the moon
› Robotics
› (Adaptive) cruise control in cars
› Chemical processes
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Control Task

System y

Controller + −yref
e

u

Goal: Output tracking y(t) ≈ yref(t)

Challenge
› no exact knowledge of system model
› no future knowledge or model for reference signal
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The scalar linear case with yref = 0
ẋ = ax+ bu

y = cx
y

Controller + −yref
e

u

Assumptions
› Known model structure
› Known sign of high frequency gain γ := cb, assume γ > 0
› yref = 0

Unknown system parameters α and γ
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The scalar linear case with yref = 0

ẏ = αy + γu y

Controller + 0
y

u

Goal
Design output feedback u such that y(t)→ 0 as t→∞

If we would know α,γ, how would we choose u?
Goal: ẏ != −λy ; achievable with u = −ky and k := α+λ

γ

In general, with u = −ky we have ẏ = (α− γk)y
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The scalar linear case with yref = 0

ẏ = αy + γu y

u = −ky +

u

Hence we have arrived at our first high gain control result:

Theorem
The proportional negative feedback

u = −ky

achieves convergence for all k > α
γ .
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What happens for yref ̸= 0?

ẏ = αy + γu y

u = −ke + −yref
e

u

Error dynamics: ė = . . . = (α− γk)e+ αyref − ẏref

Equilibrium for constant yref:

0 = (α− γk)e+ αyref ⇐⇒ e = α

γk − α
yref

; no convergence to zero anymore
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What happens for yref ̸= 0?

ẏ = αy + γu y

u = −ke + −yref
e

u

In general: Practical tracking with high gain control:

Theorem
If yref and ẏref are bounded, then

∀ε > 0 ∃K > 0 ∀k > K : lim sup
t→∞

|e(t)| < ε
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Example α = 1, γ = 1, yref ≡ 1
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Introduction

High gain for relative degree one systems
Linear systems
Relative degree and zero dynamics
High gain stabilization
Nonlinear systems

Adaptive choice of gain
Adaptive stabilization
λ-tracking

The funnel controller
The original funnel controller with proof sketch
Relative degree two funnel controller
Bang-bang funnel control
Funnel synchronization

Summary

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (7 / 41)



Introduction High gain for relative degree one systems Adaptive choice of gain The funnel controller Summary

Higher order linear case with yref = 0

ẋ = Ax+ bu

y = cx
y

u = −ky + 0
y

u

A ∈ Rn×n, b ∈ Rn, c ∈ R1×n unknown

Definition (Relative degree)
r ∈ {1, 2, . . . , n} is relative degree of system (A, b, c) :⇐⇒
(i) ∀i ∈ {0, . . . , r − 2} : cAib = 0
(ii) cAr−1b ̸= 0
In particular, (A, b, c) has relative degree one :⇐⇒ γ := cb ̸= 0
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What is the meaning of the relative degree?
Frequency domain interpretation
Transfer function c(sI −A)−1b =: p(s)

q(s) , then r = deg(q(s))− deg(p(s))

Interpretation in time-domain:

Theorem (Byrnes-Isidori form)
(A, b, c) has relative degree r ∈ {1, . . . , n} if and only if there exists a coordinate transformation
T such that( ηz ) = Tx such that y = η1, ẏ = η2, . . ., y(r−1) = ηr

TAT−1 =


0 1. . . . . .

0 1
0

a11 a12
A21 A22

 , T b =

0
γ
0

 , CT−1 = [1, 0, . . . , 0],

with a11 ∈ R1×r, a12 ∈ R1×(n−r), A21 ∈ R(n−r)×r, A22 ∈ R(n−r)×(n−r)
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What is the meaning of the relative degree?
Frequency domain interpretation
Transfer function c(sI −A)−1b =: p(s)

q(s) , then r = deg(q(s))− deg(p(s))

Interpretation in time-domain:

Theorem (Byrnes-Isidori form)
(A, b, c) has relative degree r ∈ {1, . . . , n} if and only if there exists a coordinate transformation
T such that( ηz ) = Tx such that y = η1, ẏ = η2, . . ., y(r−1) = ηr

y(r) = a12

( y

...
y(r−1)

)
+ a22z + γu

ż = A21

( y

...
y(r−1)

)
+A22z
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Zero dynamics

ẋ = Ax+ bu

y = cx

y(r) = a12

( y

...
y(r−1)

)
+ a22z + γu

ż = A21

( y

...
y(r−1)

)
+A22z

Question
Which input u is needed to keep output y identically zero?

Byrnes-Isidori form for identically zero output:

0 = a22z + γu

ż = A22z ←− zero dynamics

Answer: u(t) = − 1
γa22eA22tz(0)→∞ if A22 has “bad” eigenvalues!
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High gain stabilization for r.d.-one systems
ẋ = Ax+ bu

y = cx
y

u = −ky + 0
y

u

Assumptions:
› Relative degree r = 1 ⇔ γ := cb ̸= 0 , in particular:

System ⇔
ẏ = a11y + a12z + γu

ż = a21y +A22z

› positive high frequency gain ⇔ γ > 0
› stable zero-dynamics (minimum phase) ⇔ A22 Hurwitz
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High gain stabilization for r.d.-one systems
ẋ = Ax+ bu

y = cx
y

u = −ky + 0
y

u

Theorem (High-gain stabilization)
cb > 0 and stable zero-dynamics

⇒ ∃K > 0 ∀ k ≥ K : Closed loop is asymptotically stable

Key idea of proof: Show that
[
a11 − γk a12
a21 A22

]
is Hurwitz for sufficiently large k.
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From linear to nonlinear systems

ẋ = Ax+ bu

y = cx
yu

w
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From linear to nonlinear systems

ẏ = a11y + a12z + γu

ż = a21y +A22z
yu

w
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From linear to nonlinear systems

ẏ = a11y + w + γu yu

ż = A22z + a21y

w = a12z

w
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From linear to nonlinear systems

ẏ = f(y, w) + g(y, w)u yu

w = Tz0{y(·)}

w

Assumptions:
› Tz0 is causal BIBO operator, i.e. ∃κ(·) : ∥w∥ ≤ κ(∥y∥)
› f and g continuous and g > 0
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High gain stabilization for nonlinear systems
ẋ = F (x, u)
y = H(x)

y

u = −ky + 0
y

u

Theorem
Assume there exists (nonlinear) coordinate transformation such that system is equivalent to

ẏ = f(y, w) + g(y, w)u, w = Tz0{y(·)}

with f, g continuous, Tz0 causal BIBO operator and g > 0, then

∀y(0) ∀z0 ∃K > 0 ∀k ≥ K : lim sup
t→∞

|y(t)| < ε
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Summary high gain feedback

System y

Controlleru = −ke + −yref
e

u

Goal: Output tracking
Challenge: Unknown system parameters
Structural assumptions
› Relative degree one with known sign of “high frequency gain”
› Stable zero dynamics
High gain feedback: u = −ke “works” for sufficiently large gain k > 0
Remaining challenge: When is k sufficiently large?
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Introduction

High gain for relative degree one systems
Linear systems
Relative degree and zero dynamics
High gain stabilization
Nonlinear systems

Adaptive choice of gain
Adaptive stabilization
λ-tracking

The funnel controller
The original funnel controller with proof sketch
Relative degree two funnel controller
Bang-bang funnel control
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Choosing gain adaptively, linear case
ẋ = Ax+ bu

y = cx
y

u = −kk(t)y + 0
y

u

Theorem (High-gain stabilization)
cb > 0 and stable zero-dynamics ⇒ ∃K > 0 ∀ k ≥ K : y(t)→ 0

Key idea
Why not make k time-varying with k̇(t) > 0 as long as y(t) > 0?
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Choosing gain adaptively, linear case
ẋ = Ax+ bu

y = cx
y

u = −kk(t)y + 0
y

u

Theorem (Adaptive High-Gain Feedback, Byrnes & Willems 1984)
cb > 0 and stable zero-dynamics ⇒

k̇(t) = y(t)2 makes closed loop asymptotically stable

and k(·) remains bounded

Boundedness of k(t) =
∫ t

0 y(s)2 ds follows from final exponential decay of y.
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Simulations
ẏ = y + u, u(t) = −k(t)(y(t)− yref(t)), k̇ = (y − yref)2

output and gain for yref = 0

0

0.5

0 1 2 3 4 5 6 7 8 9 10 t

y(t)

t

k(t)

0
1
2

0 1 2 3 4 5 6 7 8 9 10

output and gain for yref = 1
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High gain adaptive control and tracking?

System y

u = −k(t)e + −yref
e

u

Unbounded gain
For yref ̸= 0 the adaptation rule k̇ = e2 leads to unbounded gain.

Recall: Constant gain for yref ̸= 0 only leads to practical tracking, i.e. e(t) ̸→ 0
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High gain adaptive control and tracking?

System y

u = −k(t)e + −yref
e

u

How to prevent unbounded growth?
Stop increasing gain when error is sufficiently small, e.g. via

k̇(t) =
{

0 |e(t)| ≤ λ
|e(t)|(|e(t)| − λ) |e(t)| > λ

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (18 / 41)
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High gain adaptive control and tracking?

System y

u = −k(t)e + −yref
e

u

Theorem (λ-tracking, Ilchmann & Ryan 1994)
Assume r.d.-one with “γ > 0”, stable zero-dynamics and yref, ẏref bounded. For λ > 0 consider

k̇(t) =
{

0, |e(t)| ≤ λ,
|e(t)|

(
|e(t)| − λ), |e(t)| > λ.

Then the closed loop is practically stable, i.e. lim supt→∞ |e(t)| ≤ λ.
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Remaining problems of λ-tracker

t

λ

−λ

e(t)

Problems:
› No guarantees when |e(t)| ≤ λ
› No bounds on transient behaviour
› Monotonically growing k(·) ⇒ Measurement noise unnecessarily amplified
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The funnel as time-varying error bound

F = F(ψ) := {(t, e) | |e| < ψ(t)}

t

ψ(t)

−ψ(t)
F

e(t)

Idea: k(t) large ⇐⇒ Distance of e(t) to funnel boundary small
; Funnel gain: k(t) = 1

ψ(t)− |e(t)|
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Funnel controller works

ẏ = f(y, w) + g(y, w)u

w = T{y(·)}

yu

y

w

System class
Equivalent to structure left:
› T is causal and BIBO
› f , g continuous
› g > 0

Theorem (Ilchmann, Ryan, Sangwin 2002)
Assume yref, ẏref, ψ, ψ̇ bounded, lim inft→∞ ψ(t) > 0 and |e(0)| < ψ(0) where e := y − yref.
Then

u(t) = −k(t)e(t) with k(t) = 1
ψ(t)− |e(t)|

ensures that e(t) remains within funnel F(ψ) while k(t) remains bounded.
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Proof
Step 1: Existence of solution
› Standard ODE theory: solution of closed loop exists on [0, ω) for ω ∈ (0,∞]
› Choose ω > 0 maximal
› If ω <∞ then “|e(ω)| = ψ(ω)”

Step 2: We show that ω <∞ implies |e(t)| − ψ(t) > ε for some ε > 0
Error dynamics are given by

ė = f(y, w)− ẏref + g(y, w)u
Step 2a: Boundedness of e, y, and w
e(t) within funnel for t ∈ [0, ω) (domain of ODE)
⇒ e bounded on [0, ω) (because ψ is bounded)
⇒ y bounded on [0, ω) (because yref is bounded)
⇒ w bounded on [0, ω) (because T is BIBO)
⇒ f(y, w) bounded and g(y, w) bounded away from zero on [0, ω) (continuity)
⇒ ė(t) ≤M + γu(t) if u(t) < 0 and ė(t) ≥ −M + γu(t) if u(t) > 0

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (23 / 41)
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Step 2b: Funnel invariant (case e(t) > 0)

t

ψ(t)
ε

λ

tε

e(t)

System class =⇒ ė(t) ≤M + γu(t)

ψ̇(tε)

ė(tε)

Assumptions: ε < ψ(0)− e(0) ε < λ/2 ψ(t) ≥ λ

e(tε) = ψ(tε)− ε =⇒ k(tε) = 1
ψ(tε)− |e(tε)|

= 1
ε

=⇒ u(tε) = −k(tε)e(tε) ≤ −
1
ε

λ

2

=⇒ ė(tε) ≤M −
γλ

2ε
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Step 2b: Funnel invariant (case e(t) > 0)

t

ψ(t)
ε

λ

tε

e(t)

System class =⇒ ė(t) ≤M + γu(t)

ψ̇(tε)
ė(tε)

Assume ψ̇(t) > −Ψ and ε ≤ γλ

2(Ψ +M) we have

ė(tε) ≤M −
γλ

2ε ≤ −Ψ < ψ̇(tε)
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Step 2b: Funnel invariant (case e(t) > 0)

t

ψ(t)
ε

λ

tε

e(t)

System class =⇒ ė(t) ≤M + γu(t)

ψ̇(tε)

ė(tε)

Consequence: For sufficiently small ε > 0,

Fε := {(t, e) | |e(t)| < ψ(t)− ε}

is positively invariant, i.e.

(0, e(0)) ∈ Fε ⇒ (t, e(t)) ∈ Fε ∀t ≥ 0

and ω <∞ impossible!
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Extensions of funnel controller

› Asymptotic tracking (Lee & Trenn 2019)
› Multi-Input Multi-Output (MIMO) (already in Ilchmann et al. 2002)
› Higher relative degree (Ilchmann et al. 2007, Berger et al. 2018)
› Input saturation (Ilchmann et al. 2004, Hopfe et al. 2010)
› Bang-Bang funnel control (Liberzon & Trenn 2013)
› Funnel synchronization for multi-agent systems (Shim & Trenn 2015)
› For DAE-systems (Berger 2016)
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Relative degree two via backstepping
For rel. deg. two systems, Funnel Controller is given by (Ilchmann et al. 2007):

u(t) = −k(t)e(t)− (∥e(t)∥2 + k(t)2)k(t)4(1 + ∥ξ(t)∥2)(ξ(t) + k(t)e(t))
k(t) = 1/(1− φ(t)2∥e(t)∥2)
ξ̇(t) = −ξ(t) + u(t)

Taken from: Ilchmann, Ryan, Townsend 2007, SICON

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (25 / 41)
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Alternative Approach for relative degree two
Use two funnels, one for error and one for derivative of error

Simple Control Law

u(t) = −k0(t)2e(t)− k1(t)ė(t)

ki(t) = 1
ψi(t)− |e(t)|

, i = 0, 1

System class: ÿ(t) = f(pf (t), Tf{y, ẏ}(t)) + g(pg(t), Tg{y, ẏ}(t))u(t)

Theorem (Hackl et al. 2012)
The above Funnel Controller for relative-degree-two-systems works (under mild assumptions on
ψ0 and ψ1).

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (26 / 41)
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Experimental verification

ẋ(t) =
[ 0 1

0 0
]
x(t) +

[ 0
γ

] (
u(t) + uL(t)− (Tx2)(t)

)
,

y(t) =
[
1 0

]
x(t),

x1: angle of rotating machine, x2 = ẋ1: angular velocity
uL: unknown (bounded) load
T : C(R≥0 → R)→ L∞

loc(R≥0 → R) friction operator

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (27 / 41)
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Tracking control in experiment
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Experiment: Error, gains, input
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ė(t) in rad/s, 1/φ1(t)

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

time t [s]

k0(t) in Nm
rad , k1(t) in Nms

rad

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

4

5

6

7

8

time t [s]

u(t) in Nm, uL(t) in Nm

Stephan Trenn (Jan C. Willems Center, U Groningen) Funnel control (29 / 41)



Introduction High gain for relative degree one systems Adaptive choice of gain The funnel controller Summary

Bang-Bang Funnel Control

ẋ = F (x, u)
y = H(x)

y

switching
logic + −yref

Funnels
ψ0 ψ1

U+U−

U+U0U−

e, ėq

u
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Bang-Bang Funnel Control

ẋ = F (x, u)
y = H(x)

y

switching
logic + −yref

Funnels
ψ0 ψ1

U+U−

U+U0U−

e, ėq

u
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Funnel synchronization - setup

Given
› N agents with individual n-dimensional dynamics:

ẋi = fi(t, xi) + ui

› undirected connected coupling-graph G = (V,E)
› local feedback ui = γi(xi, xNi

)

Desired
Control design for practical synchronization

x1 ≈ x2 ≈ . . . ≈ xn

x1

x2

x3 x4

u1 = γ1(x1, x2, x3)
u2 = γ2(x2, x1, x3)
u3 = γ3(x3, x1, x2, x4)
u4 = γ4(x4, x3)
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A „high-gain“ result
Let Ni := {j ∈ V | (j, i) ∈ E} and di := |Ni| and L be the Laplacian of G.

Diffusive coupling
ui = −k

∑
j∈Ni

(xi − xj) or, equivalently, u = −k L x

Theorem (Practical synchronization, Kim et al. 2013)
Assumptions: G connected, all solutions of average dynamics

ṡ(t) = 1
N

N∑
i=1

fi(t, s(t))

remain bounded. Then ∀ε > 0 ∃K > 0 ∀k ≥ K: Diffusive coupling results in

lim sup
t→∞

∥xi(t)− xj(t)∥ < ε ∀i, j ∈ V
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Remarks on high-gain result
Common trajectory
It even holds that

lim sup
t→∞

|xi(t)− s(t)| < ε/2,

where s(·) solves ṡ(t) = 1
N

N∑
i=1

fi(t, s(t)), s(0) = 1
N

∑N
i=1 xi.

Independent of coupling structure and amplification k.

Error feedback
With ei := xi − xi and xi := 1

di

∑
j∈Ni

xj diffusive coupling has the form

ui(t) = −kei(t)

Attention: ei ̸= xi − s, in particular, agents do not know „limit trajectory“ s(·)
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Example (taken from Kim et al. 2015)

x1

x2
x3

x4
x5

u = −k L x

gray curve:

ṡ(t) = 1
N

N∑
i=1

fi(t, s(t))

s(0) = 1
N

∑N
i=1 xi(0)

Simulations in the following for N = 5 agents with dynamics

fi(t, xi) = (−1 + δi)xi + 10 sin t+ 10m1
i sin(0.1t+ θ1

i ) + 10m2
i sin(10t+ θ2

i ),

with randomly chosen parameters δi,m1
i ,m

2
i ∈ R and θ1

i , θ
2
i ∈ [0, 2π].

Parameters identical in all following simulations, in particular δ2 > 1, hence
agent 2 has unstable dynamics (without coupling).
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Example (taken from Kim et al. 2015)

x1

x2
x3

x4
x5

u = −k L x

gray curve:

ṡ(t) = 1
N

N∑
i=1

fi(t, s(t))

s(0) = 1
N

∑N
i=1 xi(0)
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Funnel synchronization: Initial idea

Reminder diffusive coupling: ui = −kiei with ei = xi − xi.

Combine diffusive coupling with Funnel Controller

ui(t) = −ki(t) ei(t) with ki(t) = 1
ψ(t)− |ei(t)|
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First simulations

x1

x2
x3

x4
x5

ui(t) = −ki(t)ei(t)

ki(t) = 1
ψ(t)− |ei(t)|

ψ(t) = ψ + (ψ − ψ)e−λt

ψ = 20, ψ = 1, λ = 1
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Observations from simulations
Funnel synchronization seems to work
› errors remain within funnel
› practical synchronizations is achieved
› limit trajectory does not coincide with solution s(·) of

ṡ(t) = 1
N

N∑
i=1

fi(t, s(t)), s(0) = 1
N

∑N
i=1 xi(0).

What determines the new limiting trajectory?
› Coupling graph?
› Funnel shape?
› Gain function?
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Diffusive coupling revisited

Diffusive coupling for weighted graph

ui = −k
N∑
i

αij · (xi − xj) −→ ui = −
N∑
i

kij · αij · (xi − xj)

where αij = αji ∈ {0, 1} is the weight of edge (i, j)

Conjecture
If kij = kji are all sufficiently large, then practical synchronization occurs with desired limit
trajectory s of average dynamics.

Proof technique from Kim et al. 2013 should still work in this setup.
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Edgewise Funnel synchronization
Diffusive coupling → edgewise Funnel synchronization

ui = −
N∑
i

kij · αij · (xi − xj) −→ ui = −
N∑
i

kij(t) · αij · (xi − xj)

Edgewise error feedback

kij(t) = 1
ψ(t)− |eij |

, with eij := xi − xj

Properties:
› Decentralized, i.e. ui only depends on state of neighbors
› Symmetry, kij = kji

› Laplacian feedback, u = −LK(t, x)x
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Simulation (from Trenn 2017)
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Edgewise Gains

Properties
+ Synchronization occurs
+ Predictable limit trajectory (given by average dynamics)
+ Local feedback law
+ Convergence recently proved (Lee et al. 2023)
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Summary high gain feedback and funnel control

System y

Controlleru = −ke + −yref
e

u

Goal: Output tracking
Challenge: Unknown system parameters
Structural assumptions
› Relative degree one with known sign of “high frequency gain”
› Stable zero dynamics
High gain feedback: u = −ke “works” for sufficiently large gain k > 0
Funnel gain: k(t) = 1

ψ(t)−|e(t)| achieves tracking with prescribed perfomance
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