

bernoulli institute for mathematics, computer science and artificial intelligence

Funnel control

university of groningen

Origin and recent advances

Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Control Lab Guest Lecture, University of Naples Federico II, 20 November 2024

Who am I?

Stephan Trenn

https://stephantrenn.net

Associate Professor for Systems & Control, Bernoulli Institute

Programme Director for master degrees Math., Applied Math., Systems & Control

- > studied Mathematics and Computer Science in Ilmenau, Germany
- > six month Erasmus student in Southampton, UK
- > PhD 2009 in mathematical control theory in Ilmenau
- > Postdoc (9 month) at University of Illinois, Urbana-Champaign, USA
- > Postdoc (17 month) at University of Würzburg, Germany
- > Assistant Professor for Math. Control Theory (2011 2017), Kaiserslautern, Germany

Research:

- Switched systems
- > Differential-algebraic equations (DAEs)
- Funnel control

Systems & Control in Groningen

History

aniversity of

groninger

- Internationally leading in mathematical systems theory since 1970)
- Rapidly growing engineering institute (ENTEG) in the last decades)
- Jan C. Willems Center bundles current research activities (15 staff members + about 50 PhD) students)

Global Ranking of Academic Subjects (GRAS) 2022

- RUG is ranked 15th worldwide in subject Automation and Control)
- Best ranked in the EU!)
- Within RUG, Automation and Control is best ranked subject)

university of groningen	Introduction	High gain for relative degree one systems	Adaptive choice of gain	The funnel controller	Summary

Control Task

Goal: Output tracking $y(t) \approx y_{\text{ref}}(t)$

Applications

- > Flying to the moon
- > Robotics
- > (Adaptive) cruise control in cars
- > Chemical processes

university of groningen	Introduction	High gain for relative degree one systems	Adaptive choice of gain	The funnel controller	Summary

Control Task

Goal: Output tracking $y(t) \approx y_{ref}(t)$

Challenge

- > no exact knowledge of system model
- > no future knowledge or model for reference signal

The scalar linear case with $y_{ref} = 0$

Assumptions

university of groningen

- Known model structure)
- Known sign of high frequency gain $\gamma := cb$, assume $\gamma > 0$)
- $y_{\rm ref} = 0$)

Unknown system parameters α and γ

The scalar linear case with $y_{ref} = 0$

Goal

university of groningen

Design output feedback u such that $y(t) \rightarrow 0$ as $t \rightarrow \infty$

If we would know α, γ , how would we choose u? Goal: $\dot{y} \stackrel{!}{=} -\lambda y \quad \rightsquigarrow \quad \text{achievable with } u = -ky \text{ and } k := \frac{\alpha + \lambda}{\gamma}$

In general, with u = -ky we have $\dot{y} = (\alpha - \gamma k)y$

The funnel controller

The scalar linear case with $y_{ref} = 0$

Hence we have arrived at our first high gain control result:

Theorem

university of groningen

The proportional negative feedback

$$u = -ky$$

achieves convergence for all $k > \frac{\alpha}{\gamma}$.

Introduction

university of groningen

The funnel controller

Summary

What happens for $y_{ref} \neq 0$?

Error dynamics: $\dot{e} = \ldots = (\alpha - \gamma k)e + \alpha y_{\mathsf{ref}} - \dot{y}_{\mathsf{ref}}$

Equilibrium for constant y_{ref} :

$$0 = (\alpha - \gamma k)e + \alpha y_{\mathsf{ref}} \quad \Longleftrightarrow \quad e = \frac{\alpha}{\gamma k - \alpha} y_{\mathsf{ref}}$$

 \rightsquigarrow no convergence to zero anymore

The funnel controller

Summary

What happens for $y_{ref} \neq 0$?

In general: Practical tracking with high gain control:

Theorem

Introduction

university of groningen

If y_{ref} and \dot{y}_{ref} are bounded, then

$$\forall \varepsilon > 0 \; \exists K > 0 \; \forall k > K : \quad \limsup_{t \to \infty} |e(t)| < \varepsilon$$

Stephan Trenn (Jan C. Willems Center, U Groningen)

university of groningen

Example $\alpha = 1$, $\gamma = 1$, $y_{\text{ref}} \equiv 1$

Introduction

High gain for relative degree one systems

Linear systems Relative degree and zero dynamics High gain stabilization Nonlinear systems

Adaptive choice of gain

Adaptive stabilization λ -tracking

The funnel controller

The original funnel controller with proof sketch Relative degree two funnel controller Bang-bang funnel control Funnel synchronization

Summary

0

Higher order linear case with $y_{ref} = 0$

 $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^{1 \times n}$ unknown

Definition (Relative degree)

$$\begin{array}{l} r \in \{1, 2, \dots, n\} \text{ is relative degree of system } (A, b, c) : \Longleftrightarrow \\ (i) \qquad \forall i \in \{0, \dots, r-2\} : \quad cA^ib = 0 \\ (ii) \qquad cA^{r-1}b \neq 0 \\ \text{In particular, } (A, b, c) \text{ has relative degree one} \quad : \Longleftrightarrow \quad \mathbf{\gamma} := cb \neq 0 \end{array}$$

What is the meaning of the relative degree?

Frequency domain interpretation

Transfer function $c(sI - A)^{-1}b =: \frac{p(s)}{q(s)}$, then $r = \deg(q(s)) - \deg(p(s))$

Interpretation in time-domain:

Theorem (Byrnes-Isidori form)

(A, b, c) has relative degree $r \in \{1, ..., n\}$ if and only if there exists a coordinate transformation T such that $\binom{\eta}{z} = Tx$ such that $y = \eta_1, \dot{y} = \eta_2, ..., y^{(r-1)} = \eta_r$

$$TAT^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ a_{11} & a_{12} \\ A_{21} & A_{22} \end{bmatrix}, Tb = \begin{bmatrix} 0 \\ \gamma \\ 0 \end{bmatrix}, CT^{-1} = [1, 0, \dots, 0],$$
$$a_{11} \in \mathbb{R}^{1 \times r}, a_{12} \in \mathbb{R}^{1 \times (n-r)}, A_{21} \in \mathbb{R}^{(n-r) \times r}, A_{22} \in \mathbb{R}^{(n-r) \times (n-r)}$$

Stephan Trenn (Jan C. Willems Center, U Groningen)

with

What is the meaning of the relative degree?

Frequency domain interpretation

Transfer function $c(sI - A)^{-1}b =: \frac{p(s)}{q(s)}$, then $r = \deg(q(s)) - \deg(p(s))$

Interpretation in time-domain:

Theorem (Byrnes-Isidori form)

(A, b, c) has relative degree $r \in \{1, ..., n\}$ if and only if there exists a coordinate transformation T such that $\binom{\eta}{z} = Tx$ such that $y = \eta_1, \dot{y} = \eta_2, ..., y^{(r-1)} = \eta_r$

$$y^{(r)} = a_{12} \begin{pmatrix} y \\ \vdots \\ y^{(r-1)} \end{pmatrix} + a_{22}z + \gamma u$$
$$\dot{z} = A_{21} \begin{pmatrix} y \\ \vdots \\ y^{(r-1)} \end{pmatrix} + A_{22}z$$

Zero dynamics

$$\dot{x} = Ax + bu$$

$$y^{(r)} = a_{12} \begin{pmatrix} y \\ \vdots \\ y^{(r-1)} \end{pmatrix} + a_{22}z + \gamma u$$

$$\dot{y} = cx$$

$$\dot{z} = A_{21} \begin{pmatrix} y \\ \vdots \\ y^{(r-1)} \end{pmatrix} + A_{22}z$$

Question

Which input u is needed to keep output y identically zero?

Byrnes-Isidori form for identically zero output:

 $0 = a_{22}z + \gamma u$ $\dot{z} = A_{22}z \quad \longleftarrow \text{ zero dynamics}$

Answer: $u(t) = -\frac{1}{\gamma}a_{22}e^{A_{22}t}z(0) \rightarrow \infty$ if A_{22} has "bad" eigenvalues!

university of groningen

The funnel controller

Summary

High gain stabilization for r.d.-one systems

Assumptions:

> Relative degree $r=1 ~~\Leftrightarrow~~ \gamma:=cb
eq 0$, in particular:

System
$$\Leftrightarrow \begin{array}{c} \dot{y} = a_{11}y + a_{12}z + \gamma u \\ \dot{z} = a_{21}y + A_{22}z \end{array}$$

-) positive high frequency gain $~~\Leftrightarrow~~\gamma>0$
- > stable zero-dynamics (minimum phase) \Leftrightarrow A_{22} Hurwitz

The funnel controller

Summary

High gain stabilization for r.d.-one systems

Theorem (High-gain stabilization)

cb>0 and stable zero-dynamics

 $\Rightarrow \quad \exists K > 0 \ \forall k \geq K : \ \textit{Closed loop is asymptotically stable}$

Key idea of proof: Show that
$$\begin{bmatrix} a_{11} - \gamma k & a_{12} \\ a_{21} & A_{22} \end{bmatrix}$$
 is Hurwitz for sufficiently large k .

Stephan Trenn (Jan C. Willems Center, U Groningen)

Adaptive choice of gain

The funnel controller

Summary

From linear to nonlinear systems

Adaptive choice of gain

The funnel controller

Summary

From linear to nonlinear systems

Adaptive choice of gain

The funnel controller

Summary

From linear to nonlinear systems

Adaptive choice of gain

The funnel controller

Summary

From linear to nonlinear systems

Assumptions:

-) T_{z_0} is causal BIBO operator, i.e. $\exists \kappa(\cdot) : \|w\| \leq \kappa(\|y\|)$
-) f and g continuous and g > 0

The funnel controller

Summary

High gain stabilization for nonlinear systems

Theorem

Assume there exists (nonlinear) coordinate transformation such that system is equivalent to

$$\dot{y} = f(y, w) + g(y, w)u, \quad w = T_{z_0}\{y(\cdot)\}$$

with f, g continuous, T_{z_0} causal BIBO operator and g > 0, then

$$\forall y(0) \; \forall z_0 \; \exists K > 0 \; \forall k \geq K : \quad \limsup_{t \to \infty} |y(t)| < \varepsilon$$

Stephan Trenn (Jan C. Willems Center, U Groningen)

The funnel controller

Summary high gain feedback

Goal: Output tracking

university of

groningen

Challenge: Unknown system parameters

Structural assumptions

- > Relative degree one with known sign of "high frequency gain"
- > Stable zero dynamics

High gain feedback: u = -ke "works" for sufficiently large gain k > 0

Remaining challenge: When is k sufficiently large?

Introduction

High gain for relative degree one systems

Linear systems Relative degree and zero dynamics High gain stabilization Nonlinear systems

Adaptive choice of gain

Adaptive stabilization λ -tracking

The funnel controller

The original funnel controller with proof sketch Relative degree two funnel controller Bang-bang funnel control Funnel synchronization

Summary

The funnel controller

Summary

Choosing gain adaptively, linear case

Theorem (High-gain stabilization)

cb > 0 and stable zero-dynamics $\Rightarrow \exists K > 0 \ \forall \mathbf{k} \geq \mathbf{K} : y(t) \rightarrow 0$

Key idea

Why not make k time-varying with $\dot{k}(t) > 0$ as long as y(t) > 0?

Stephan Trenn (Jan C. Willems Center, U Groningen)

university of groningen The funnel controller

Summary

Choosing gain adaptively, linear case

Theorem (Adaptive High-Gain Feedback, BYRNES & WILLEMS 1984) cb > 0 and stable zero-dynamics \Rightarrow

 $\dot{k}(t) = y(t)^2$ makes closed loop asymptotically stable

and $k(\cdot)$ remains bounded

Boundedness of $k(t) = \int_0^t y(s)^2 ds$ follows from final exponential decay of y.

university of groningen	Introduction	High gain for relative degree one systems	Adaptive choice of gain	The funnel controller	Summary

Simulations

$$\dot{y} = y + u, \quad u(t) = -k(t)(y(t) - y_{ref}(t)), \quad \dot{k} = (y - y_{ref})^2$$

output and gain for $y_{\mathsf{ref}} = 1$

ummary

High gain adaptive control and tracking?

Unbounded gain

For $y_{\text{ref}} \neq 0$ the adaptation rule $\dot{k} = e^2$ leads to unbounded gain.

Recall: Constant gain for $y_{\mathrm{ref}}
eq 0$ only leads to practical tracking, i.e. e(t)
eq 0

Stephan Trenn (Jan C. Willems Center, U Groningen)

The funnel controller

Summary

High gain adaptive control and tracking?

How to prevent unbounded growth?

Stop increasing gain when error is sufficiently small, e.g. via

$$\dot{k}(t) = \begin{cases} 0 & |e(t)| \le \lambda \\ |e(t)|(|e(t)| - \lambda) & |e(t)| > \lambda \end{cases}$$

High gain adaptive control and tracking?

Theorem (λ -tracking, ILCHMANN & RYAN 1994)

Assume r.d.-one with " $\gamma > 0$ ", stable zero-dynamics and y_{ref} , \dot{y}_{ref} bounded. For $\lambda > 0$ consider

$$\dot{k}(t) = \begin{cases} 0, & |e(t)| \le \lambda, \\ |e(t)| (|e(t)| - \lambda), & |e(t)| > \lambda. \end{cases}$$

Then the closed loop is practically stable, i.e. $\limsup_{t\to\infty} |e(t)| \leq \lambda$.

Remaining problems of λ -tracker

Problems:

- > No guarantees when $|e(t)| \leq \lambda$
- No bounds on transient behaviour
- > Monotonically growing $k(\cdot)$ \Rightarrow Measurement noise unnecessarily amplified

Introduction

High gain for relative degree one systems

Linear systems Relative degree and zero dynamics High gain stabilization Nonlinear systems

Adaptive choice of gain

Adaptive stabilization λ -tracking

The funnel controller

The original funnel controller with proof sketch Relative degree two funnel controller Bang-bang funnel control Funnel synchronization

Summary

Adaptive choice of gain

The funnel controller

Summary

The funnel as time-varying error bound

 $\rightarrow \dot{y} = f(y, w) + g(y, w)u$

System class

The funnel controller

Equivalent to structure left:

Summarv

- T is causal and BIBO
- \rightarrow f, g continuous

g > 0

Theorem (ILCHMANN, RYAN, SANGWIN 2002)

Assume $y_{\text{ref}}, \dot{y}_{\text{ref}}, \psi, \dot{\psi}$ bounded, $\liminf_{t \to \infty} \psi(t) > 0$ and $|e(0)| < \psi(0)$ where $e := y - y_{\text{ref}}$. Then

$$u(t)=-k(t)e(t)$$
 with $k(t)=rac{1}{\psi(t)-|e(t)|}$

 $\cdot y$

ensures that e(t) remains within funnel $\mathcal{F}(\psi)$ while k(t) remains bounded.

vuniversity of groningen	Introduction	High gain for relative degree one systems	Adaptive choice of gain	The funnel controller	Summary
	Proof				

Step 1: Existence of solution

- > Standard ODE theory: solution of closed loop exists on $[0,\omega)$ for $\omega \in (0,\infty]$
-) Choose $\omega > 0$ maximal
-) If $\omega < \infty$ then $``|e(\omega)| = \psi(\omega)"$

Step 2: We show that $\omega < \infty$ implies $|e(t)| - \psi(t) > \varepsilon$ for some $\varepsilon > 0$ Error dynamics are given by

$$\dot{e} = f(y,w) - \dot{y}_{\mathsf{ref}} + g(y,w)u$$

Step 2b: Funnel invariant (case e(t) > 0)

 $\text{Assumptions: } \varepsilon < \psi(0) - e(0) \qquad \quad \varepsilon < \lambda/2 \qquad \quad \psi(t) \geq \lambda$

$$e(t_{\varepsilon}) = \psi(t_{\varepsilon}) - \varepsilon \implies k(t_{\varepsilon}) = \frac{1}{\psi(t_{\varepsilon}) - |e(t_{\varepsilon})|} = \frac{1}{\varepsilon}$$
$$\implies u(t_{\varepsilon}) = -k(t_{\varepsilon})e(t_{\varepsilon}) \le -\frac{1}{\varepsilon}\frac{\lambda}{2}$$
$$\implies \dot{e}(t_{\varepsilon}) \le M - \frac{\gamma\lambda}{2\varepsilon}$$

t

Summary

Step 2b: Funnel invariant (case e(t) > 0)

$$\begin{aligned} & \int \mathbf{System \ class} \implies \dot{e}(t) \leq M + \gamma u(t) \\ & \psi(t) \\ & \psi(t) \\ & \dot{e}(t_{\varepsilon}) \\ & \mathbf{t}_{\varepsilon} \end{aligned}$$
Assume $\dot{\psi}(t) > -\Psi$ and $\varepsilon \leq \frac{\gamma \lambda}{2(\Psi + M)}$ we have
 $\dot{e}(t_{\varepsilon}) \leq M - \frac{\gamma \lambda}{2\varepsilon} \leq -\Psi < \dot{\psi}(t_{\varepsilon}) \end{aligned}$

Summary

Step 2b: Funnel invariant (case e(t) > 0)

Consequence: For sufficiently small $\varepsilon > 0$,

$$\mathcal{F}_{\varepsilon} := \{(t, e) \mid |e(t)| < \psi(t) - \varepsilon\}$$

is positively invariant, i.e.

$$(0, e(0)) \in \mathcal{F}_{\varepsilon} \quad \Rightarrow \quad (t, e(t)) \in \mathcal{F}_{\varepsilon} \ \forall t \ge 0$$

and $\omega < \infty$ impossible!

Stephan Trenn (Jan C. Willems Center, U Groningen)

university of groningen

Extensions of funnel controller

- > Asymptotic tracking (LEE & TRENN 2019)
- > Multi-Input Multi-Output (MIMO) (already in ILCHMANN ET AL. 2002)
- > Higher relative degree (ILCHMANN ET AL. 2007, BERGER ET AL. 2018)
- > Input saturation (ILCHMANN ET AL. 2004, HOPFE ET AL. 2010)
- > Bang-Bang funnel control (LIBERZON & TRENN 2013)
- > Funnel synchronization for multi-agent systems (SHIM & TRENN 2015)
- > For DAE-systems (BERGER 2016)

Summary

Relative degree two via backstepping

For rel. deg. two systems, Funnel Controller is given by (ILCHMANN ET AL. 2007):

$$\begin{split} u(t) &= -k(t)e(t) - (\|e(t)\|^2 + k(t)^2)k(t)^4 (1 + \|\xi(t)\|^2)(\xi(t) + k(t)e(t)) \\ k(t) &= 1/(1 - \varphi(t)^2 \|e(t)\|^2) \\ \dot{\xi}(t) &= -\xi(t) + u(t) \end{split}$$

Taken from: ILCHMANN, RYAN, TOWNSEND 2007, SICON

Summary

Alternative Approach for relative degree two

Use two funnels, one for error and one for derivative of error

Simple Control Law

$$u(t) = -k_0(t)^2 e(t) - k_1(t)\dot{e}(t)$$

$$k_i(t) = \frac{1}{\psi_i(t) - |e(t)|}, \quad i = 0, 1$$

System class: $\ddot{y}(t)=f(p_f(t),T_f\{y,\dot{y}\}(t))+g(p_g(t),T_g\{y,\dot{y}\}(t))u(t)$

Theorem (HACKL ET AL. 2012)

The above Funnel Controller for relative-degree-two-systems works (under mild assumptions on ψ_0 and ψ_1).

Adaptive choice of gain

The funnel controller

Summary

Experimental verification

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ \gamma \end{bmatrix} (u(t) + u_L(t) - (Tx_2)(t)),$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t),$$

 $\begin{array}{ll} x_1: \text{ angle of rotating machine,} & x_2 = \dot{x}_1: \text{ angular velocity} \\ u_L: \text{ unknown (bounded) load} \\ T: \mathbb{C}(\mathbb{R}_{\geq 0} \to \mathbb{R}) \to \mathbb{L}^\infty_{\mathsf{loc}}(\mathbb{R}_{\geq 0} \to \mathbb{R}) \text{ friction operator} \end{array}$

university of

groningen

High gain for relative degree one systems

Adaptive choice of gain

The funnel controller

Summary

Tracking control in experiment

Stephan Trenn (Jan C. Willems Center, U Groningen)

Adaptive choice of gain

The funnel controller

Summary

Experiment: Error, gains, input

Stephan Trenn (Jan C. Willems Center, U Groningen)

university of groningen

The funnel controller

Summary

Bang-Bang Funnel Control

Adaptive choice of gain

The funnel controller

Summary

Bang-Bang Funnel Control

Adaptive choice of gain

The funnel controller

Summary

Funnel synchronization - setup

Given

> N agents with individual n-dimensional dynamics:

 $\dot{x}_i = f_i(t, x_i) + u_i$

- > undirected connected coupling-graph G = (V, E)
- > local feedback $u_i = \gamma_i(x_i, x_{\mathcal{N}_i})$

Desired

Control design for practical synchronization

$$x_1 \approx x_2 \approx \ldots \approx x_n$$

$$u_{1} = \gamma_{1}(x_{1}, x_{2}, x_{3})$$
$$u_{2} = \gamma_{2}(x_{2}, x_{1}, x_{3})$$
$$u_{3} = \gamma_{3}(x_{3}, x_{1}, x_{2}, x_{4})$$
$$u_{4} = \gamma_{4}(x_{4}, x_{3})$$

Stephan Trenn (Jan C. Willems Center, U Groningen)

A "high-gain" result

Let $\mathcal{N}_i := \{j \in V \mid (j,i) \in E\}$ and $d_i := |\mathcal{N}_i|$ and \mathcal{L} be the Laplacian of G.

Diffusive coupling

$$u_i = -k \sum_{j \in \mathcal{N}_i} (x_i - x_j)$$
 or, equivalently, $u = -k \ \mathcal{L} \ x$

Theorem (Practical synchronization, KIM et al. 2013)

Assumptions: G connected, all solutions of average dynamics

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t))$$

remain bounded. Then $\forall \varepsilon > 0 \ \exists K > 0 \ \forall k \ge K$: Diffusive coupling results in

$$\limsup_{t \to \infty} \|x_i(t) - x_j(t)\| < \varepsilon \quad \forall i, j \in V$$

Remarks on high-gain result

Common trajectory

It even holds that

$$\limsup_{t\to\infty}|x_i(t)-s(t)|<\varepsilon/2,$$

where
$$s(\cdot)$$
 solves $\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t)), \quad s(0) = \frac{1}{N} \sum_{i=1}^{N} x_i.$

Independent of coupling structure and amplification k.

Error feedback

With $e_i := x_i - \overline{x}_i$ and $\overline{x}_i := \frac{1}{d_i} \sum_{j \in \mathcal{N}_i} x_j$ diffusive coupling has the form

$$u_i(t) = -ke_i(t)$$

Attention: $e_i \neq x_i - s$, in particular, agents do not know "limit trajectory" $s(\cdot)$

Adaptive choice of gain

The funnel controller

Summary

Example (taken from KIM et al. 2015)

university of groningen

Simulations in the following for N=5 agents with dynamics

 $f_i(t, x_i) = (-1 + \delta_i)x_i + 10\sin t + 10m_i^1\sin(0.1t + \theta_i^1) + 10m_i^2\sin(10t + \theta_i^2),$

with randomly chosen parameters $\delta_i, m_i^1, m_i^2 \in \mathbb{R}$ and $\theta_i^1, \theta_i^2 \in [0, 2\pi]$.

Parameters identical in all following simulations, in particular $\delta_2 > 1$, hence agent 2 has unstable dynamics (without coupling).

Adaptive choice of gain

The funnel controller

Summary

Example (taken from KIM et al. 2015)

$$u = -k \mathcal{L} x$$

gray curve: $\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t))$ $s(0) = \frac{1}{N} \sum_{i=1}^{N} x_i(0)$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Funnel control (34 / 41)

Funnel synchronization: Initial idea

Reminder diffusive coupling: $u_i = -k_i e_i$ with $e_i = x_i - \overline{x}_i$.

Combine diffusive coupling with Funnel Controller

$$u_i(t) = -k_i(t) e_i(t)$$
 with $k_i(t) = \frac{1}{\psi(t) - |e_i(t)|}$

Adaptive choice of gain

The funnel controller

Summary

First simulations

Stephan Trenn (Jan C. Willems Center, U Groningen)

Observations from simulations

Funnel synchronization seems to work

- > errors remain within funnel
- > practical synchronizations is achieved
- $\,\,$ $\,$ limit trajectory does not coincide with solution $s(\cdot)$ of

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t)), \qquad \qquad s(0) = \frac{1}{N} \sum_{i=1}^{N} x_i(0)$$

What determines the new limiting trajectory?

- Coupling graph?
- > Funnel shape?
- Gain function?

Diffusive coupling revisited

Diffusive coupling for weighted graph

$$u_i = -k \sum_{i}^{N} \alpha_{ij} \cdot (x_i - x_j) \quad \longrightarrow \quad u_i = -\sum_{i}^{N} k_{ij} \cdot \alpha_{ij} \cdot (x_i - x_j)$$

where $\alpha_{ij}=\alpha_{ji}\in\{0,1\}$ is the weight of edge (i,j)

Conjecture

If $k_{ij} = k_{ji}$ are all sufficiently large, then practical synchronization occurs with desired limit trajectory s of average dynamics.

Proof technique from $\rm K{\scriptstyle IM}$ et al. 2013 should still work in this setup.

Edgewise Funnel synchronization

 $\mathsf{Diffusive}\ \mathsf{coupling} \to \mathsf{edgewise}\ \mathsf{Funnel}\ \mathsf{synchronization}$

$$u_i = -\sum_{i}^{N} k_{ij} \cdot \alpha_{ij} \cdot (x_i - x_j) \longrightarrow u_i = -\sum_{i}^{N} k_{ij}(t) \cdot \alpha_{ij} \cdot (x_i - x_j)$$

Edgewise error feedback

$$k_{ij}(t) = \frac{1}{\psi(t) - |e_{ij}|}, \quad \text{with} \quad e_{ij} := x_i - x_j$$

Properties:

- > Decentralized, i.e. u_i only depends on state of neighbors
- > Symmetry, $k_{ij} = k_{ji}$
- > Laplacian feedback, $u = -\mathcal{L}_K(t, x)x$

Adaptive choice of gain

The funnel controller

Summary

Simulation (from TRENN 2017)

Properties

- + Synchronization occurs
- + Predictable limit trajectory (given by average dynamics)
- + Local feedback law
- + Convergence recently proved (LEE et al. 2023)

Summary high gain feedback and funnel control

Goal: Output tracking

university of groningen

Challenge: Unknown system parameters

Structural assumptions

- > Relative degree one with known sign of "high frequency gain"
- > Stable zero dynamics

High gain feedback: u = -ke "works" for sufficiently large gain k > 0

Funnel gain: $k(t) = \frac{1}{\psi(t) - |e(t)|}$ achieves tracking with prescribed perfomance