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Abstract— Q-filter-based disturbance observer (DOB) has
emerged as a powerful robust control technique renowned for
its effectiveness in mitigating disturbances and addressing plant
uncertainties. Despite its advantage, a key limitation of the
Q-filter-based DOB lies in its requirement for plants to be
of minimum phase. In this paper, we introduce an approach
allowing the utilization of the Q-filter-based DOB as a stabiliz-
ing controller for non-minimum phase linear systems based on
switched output redefinition of the systems. By redefining the
output of systems to be controlled periodically, the approach
stabilizes unstable internal dynamics of the systems as well as
the original output. The proposed method is verified by an
illustrative example.

I. INTRODUCTION

Q-filter-based disturbance observer (DOB) [1], which was
first proposed in [2], is a powerful robust control technique
well-known for its capability to reject disturbances and
compensate plant uncertainties.

The Q-filter-based DOB has been widely applied to var-
ious applications in industry by reason of its outstanding
performance and relatively easy design. For instance, [3]
used Q-filter-based DOB for mitigating tip-tilt vibrations in
astronomical telescope. Authors of [4] proposed a periodic
Q-filter-based DOB to compensate periodic disturbances
induced by repetitive operations and demonstrated practical
performance of the periodic Q-filter-based DOB in experi-
ments on a multi-axis manipulator. More recently, [5] pre-
sented a closed-loop sensitivity shaping method for motion
control systems with Q-filter-based DOB by employing a
general form of Q-filter and verified the approach on a
timing-belt setup of a laser marking machine. Also, a method
to select parameters in Q-filter-based DOB was provided
in [6] to enhance the robustness of the DOB-controlled
servo motor system. Q-filter-based DOB was also applied
to control powered exoskeletons, which are promising appli-
cations of robotic rehabilitation, to guarantee robust tracking
performance in [7].

On the other hand, theoretical research on DOB-based
control systems has also been extensively conducted. Early
works in this area focused on the derivation of robust stability
conditions for DOB-based control systems. For example,
[8] and [9] utilized singular perturbation theory to analyze
DOB-controlled systems with linear and nonlinear plant,
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respectively. Thereafter, [10] presented an almost necessary
and sufficient condition for robust stability of the closed-
loop system with Q-filter-based DOB. Recently, the focus
has moved to making use of Q-filter-based DOB for various
purposes so as to widening the class of systems to which the
(possibly modified) Q-filter-based DOB can be applied for
achieving desired control goal. To name a few, [11], [12],
and [13] proposed design method of Q-filter-based DOB
and corresponding robust stability condition for systems with
unknown relative degree, systems with large sensor noise,
and systems represented by a class of differential algebraic
equations, respectively.

However, there is a significant hurdle for expanding the
scope of applicable systems for the Q-filter-based DOB:
the system is required to be of minimum phase, as pointed
out in [8]–[10]. With this issue widely recognized, several
research works have aimed to enable the application of the Q-
filter-based DOB even in the cases where the target system
exhibits non-minimum phase characteristics. Among them,
[14] modified the configuration of the conventional Q-filter-
based DOB to deal with non-minimum phase linear systems
by adding a new filter, which can be systematically designed
based on H∞ methods under multiplicative system uncer-
tainties. On the other hand, [15] proposed an approximation
of unstable zeros by using non-causal transfer functions to
subsequently design the Q-filter-based DOB. Lastly, [16]
solved the issue by imposing a specific condition on the
design of both outer-loop controller and Q-filter.

In this paper, we propose an output redefinition of non-
minimum phase systems for which the Q-filter-based DOB
can be utilized as a stabilizing controller. The output re-
definition is based on state measurements of the internal
dynamics of the systems to be controlled. Since measuring
the internal state variables may be too costly, we also propose
a switched output redefinition approach for the case where
the internal state variables are assumed to be measured only
periodically. It is shown that the Q-filter-based DOB with the
switched output redefinition carries out robust stabilization
even though the internal state variables are not available the
whole time.

The remainder of this paper is organized as follows.
Section II provides system description and formally states
a stabilization problem of interest. Section III reviews con-
ventional Q-filter-based DOB as a stabilizing controller. The
switched output redefinition is presented in Section IV to use
Q-filter-based DOB for stabilization of non-minimum phase
systems. In Section V, we demonstrate the effectiveness
of the proposed approach through an illustrative example.
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Finally, Section VI concludes this paper with a remark on
future work.

Notation: The set of all complex numbers, real numbers,
nonnegative real numbers, nonnegative integers, and positive
integers are denoted by C, R, R≥0, Z≥0 and N, respectively.
For a sequence v1, . . . , vn of vectors or scalars, we define
[v1; · · · ; vn] := [v⊤1 · · · v⊤n ]⊤. For r ≥ 0 and x ∈ C, the open
ball of radius r centered at x is denoted by B(x, r) := {z ∈
C | ∥x − z∥ < r}. The spectrum of a matrix A ∈ Rn×n is
written as σ(A) ⊂ C.

II. PROBLEM FORMULATION

Consider a single-input single-output (SISO) linear time-
invariant (LTI) system in Byrnes-Isidori normal form [17]:

y = x1,

ẋi = xi+1, 1 ≤ i ≤ ν − 1,

ẋν = ψ⊤z + ϕ⊤x+ g(u+ d),

ż = Sz +Gx1 ∈ Rn−ν ,

(1)

where [x; z] = [x1;x2; · · · ;xν ; z] ∈ Rn is the state, u ∈ R
is the input, y ∈ R is the output, and d ∈ R is the unknown
disturbance. The relative degree of system (1) is ν ∈ N which
implies that g is a nonzero scalar. In particular, z ∈ Rn−ν

represents the state of internal dynamics (or zero dynamics).
We assume that system parameters ψ ∈ Rn−ν , ϕ ∈ Rn,
g ∈ R, S ∈ R(n−ν)×(n−ν), and G ∈ Rn−ν are all unknown,
but belong to known compact sets of appropriate dimensions,
respectively. The disturbance d ∈ R and its derivative are
assumed to be bounded.

In this paper, we seek a solution to the following robust
stabilization problem.

Problem 1: For a given ϵ > 0, design an output feedback
controller such that the closed-loop system (1) with the
controller satisfies

lim sup
t→∞

∥[x(t); z(t)]∥ ≤ ϵ. (2)

The explicit answers to Problem 1 based on Q-filter-based
disturbance observer (DOB) can be found in Propositions 1
and 2 and Theorem 1 with different settings and requirements
on system (1). In particular, Proposition 2 and Theorem 1
deal with the case where system (1) is of non-minimum
phase.

III. REVIEW OF Q-FILTER-BASED DISTURBANCE
OBSERVER AS STABILIZING CONTROLLER

In order to solve Problem 1, we first use conventional Q-
filter-based disturbance observer (DOB) as a stabilizing con-
troller of system (1). Q-filter-based DOB is a robust control
technique well-known for its capability to reject disturbances
and convert a given uncertain system into another nominal
system in a closed-loop sense under some conditions. Those
conditions, presented in [8], [9], will be explained in detail
throughout this section.
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Fig. 1. Closed-loop system with Q-filter-based DOB (cyan block).

Suppose that we are given a (disturbance-free) asymptot-
ically stable nominal model as

ȳ = x̄1,

˙̄xi = x̄i+1, 1 ≤ i ≤ ν − 1,

˙̄xν = ψ̄⊤z̄ + ϕ̄⊤x̄+ ḡur,

˙̄z = S̄z̄ + Ḡx̄1 ∈ Rn−ν ,

(3)

where all system parameters are known and ur ∈ R is the
reference input.

A classical configuration of the closed-loop system with
Q-filter-based DOB is depicted in Fig. 1. In the figure, P and
P̄ represent real plant (1) and nominal model (3), respec-
tively, and QA and QB are stable low-pass filters usually
called Q-filter having a parameter τ that determines their
bandwidth. The inverse nominal model P̄−1 is implemented
as

˙̄z = S̄z̄ + Ḡy,

w̄ =
1

ḡ
(−ψ̄⊤z̄ − ϕ̄⊤[y, ẏ, · · · , y(ν−1)]⊤ + y(ν))

(4)

together with realizations of QA and QB represented as

τ q̇ = A1q +B1w̄,

w = C1q
(5)

and
τ ṗ = A1p+B1u,

ū = C1p,
(6)

respectively, where

A1 :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −al−1

 , B1 :=


0
...
0
1

 ,
C1 :=

[
c0 c1 · · · ck 0 · · · 0

]
with system order l ≥ k + ν and c0 = a0 for unity dc gain.
The control input generated by the Q-filter-based DOB is
determined as u = −Φ(w− ū) with a saturation function Φ
satisfying

Φ(s) =


s̄, if s > s̄,

s, if |s| ≤ s̄,

−s̄, if s < −s̄
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for some s̄ ≥ 0. Design of s̄ should be made to have the
saturation function inactive in the steady-state and this re-
quires the knowledge of the compact sets containing system
parameters. One is referred to [9] for more on design of s̄.

As long as |w− ū| ≤ s̄, namely, the saturation function Φ
is inactive, the overall closed-loop system (1), (4), (5), and
(6) can be written, as shown in [8], in the standard form of
singular perturbation [18, Chapter 11] as

y = x1,

ẋi = xi+1, 1 ≤ i ≤ ν − 1,

ẋν = ψ⊤z + ϕ⊤x+ gC1(p− q) + gd,

ż = Sz +Gx1,

˙̄z = S̄z̄ + Ḡx1,

τ q̇ = A1q +
g

ḡ
B1C1(p− q)

+
1

ḡ
B1(−ψ̄⊤z̄ + ψ⊤z + (ϕ− ϕ̄)x) +

g

ḡ
B1d,

τ ṗ = A1p+B1C1(p− q).

(7)

By putting τ = 0, the quasi-steady-state subsystem of (7) is
obtained as

y = xqss
1 ,

ẋqss
i = xqss

i+1, 1 ≤ i ≤ ν − 1,

ẋqss
ν = ψ̄⊤z̄qss + ϕ̄⊤xqss,

˙̄zqss = S̄z̄qss + Ḡxqss
1 ,

żqss = Szqss +Gxqss
1

(8)

which consists of the stable nominal model with the zero
reference input ur ≡ 0 in addition to the internal dynamics of
system (1) standing alone. According to singular perturbation
theory, the slow variables x, z, and z̄ remain close to the
solution of the quasi-steady-state subsystem (8) xqss, zqss,
and z̄qss, respectively, under sufficiently small τ > 0 if the
boundary-layer subsystem of (7), dynamics of the fast vari-
ables p and q during a short transient, is exponentially stable.
In fact, the boundary-layer subsystem of (7) is exponentially
stable if and only if the matrix

Af :=

[
A1 − g

ḡB1C1
g
ḡB1C1

−B1C1 A1 +B1C1

]
is Hurwitz. (See [8], [13] for a formal derivation of the matrix
Af .) Additionally, the fast variables p and q undergo peaking
phenomenon during the transient, but the peaking is not
propagated into slow variables due to the saturation function
Φ [9]. Under these observations, the following proposition,
which is a modified version of [9, Theorem 1], reveals
that the conventional Q-filter-based DOB directly becomes a
solution to Problem 1.

Proposition 1: Suppose that the matrix Af is Hurwitz. If
the matrix S is Hurwitz, then for a given ϵ > 0, there exists a
τ∗ > 0 such that for all 0 < τ < τ∗, the closed-loop system
with the Q-filter-based DOB in Fig 1 solves Problem 1 with∥∥∥∥∥∥

x(t)z̄(t)
z(t)

−

xqss(t)
z̄qss(t)
zqss(t)

∥∥∥∥∥∥ ≤ ϵ

for all t ≥ 0, where [xqss(t); z̄qss(t); zqss(t)] is the solution
to (8) with [xqss(0); z̄qss(0); zqss(0)] = [x(0); z̄(0); z(0)].

It is important to note that we need S to be Hurwitz,
meaning that system (1) should be of minimum phase, to use
the Q-filter-based DOB as a controller that solves Problem 1.

IV. Q-FILTER-BASED DISTURBANCE OBSERVER WITH
SWITCHED OUTPUT REDEFINITION

In this section, we propose a Q-filter-based DOB with
a switched output redefinition technique which becomes a
solution to Problem 1 even for the case where system (1) is
of non-minimum phase. The main idea is to replace unstable
internal dynamics of system (1) with stable ones by using
the switched output redefinition. In order for this, we state
the following assumption on the internal dynamics of system
(1).

Assumption 1: The internal dynamics of system (1) satisfy
the following.

(a) The matrix S has an eigenvalue with a positive real
part, but there exists a known vector α ∈ Rn−ν such
that S −Gα⊤ is Hurwitz.

(b) There exists a set T ⊂ R≥0 such that it is able to
measure α⊤ · z(t) if t ∈ T .

Remark 1: Since S and G are assumed to be unknown,
it is hard to check if Assumption 1 (a) is met. However, let
us suppose that there exist (known) matrices S0, . . . , Sr ∈
R(n−ν)×(n−ν) and G0, . . . , Gr′ ∈ Rn−ν such that

S = S(δ) = S0 + δ1S1 + · · ·+ δrSr,

G = G(δ′) = G0 + δ′1G1 + · · ·+ δ′r′Gr′ ,

where δ := [δ1, · · · , δr]⊤ ∈ ∆ ⊂ Rr and δ′ :=
[δ′1, · · · , δ′r′ ]⊤ ∈ ∆′ ⊂ Rr′ represent uncertainties for
polytopic sets ∆ and ∆′, respectively. In this case, one might
use the linear matrix inequality (LMI) test presented in [19,
Example 5.5] based on the notion of quadratic stability to
determine α ∈ Rn−ν that satisfies Assumption 1 (a).

A. Q-filter-based DOB with output redefinition
Let us first consider the case where T = R≥0 in Assump-

tion 1 (b). A configuration of the closed-loop system with
the Q-filter-based DOB and (plant’s) output redefinition is
depicted in Fig. 2. In the figure, the auxiliary output of the
real plant is defined as

yaux := y + α⊤z, (9)

where α ∈ Rn−ν is the known vector that satisfies As-
sumption 1 (a). Defining xaux

1 := yaux and xaux
i+1 := ẋaux

i for
i = 1, . . . , ν − 1 yields

xaux := [xaux
1 , · · · , xaux

ν ]⊤ = Txx+ Tzz, (10)

where

Tx :=


1 0 · · · 0 0

α⊤G 1 · · · 0 0
...

...
. . .

...
...

α⊤Sν−3G α⊤Sν−4G · · · 1 0
α⊤Sν−2G α⊤Sν−3G · · · α⊤G 1

 ,
Tz :=

[
α⊤;α⊤S; · · · ;α⊤Sν−1

]
.
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It is obvious that Tx is nonsingular so that we have

x = T−1
x (xaux − Tzz). (11)

Then, it follows from system (1) that

ẋaux
ν = ẋν +

(
ν−2∑
k=0

α⊤SkGẋν−1−k

)
+ α⊤Sν−1ż

= ψ⊤z + ϕ⊤x+ g(u+ d)

+

(
ν−2∑
k=0

α⊤SkGxν−k

)
+ α⊤Sν−1(Sz +Gx1)

= ψ⊤z + ϕ⊤T−1
x (xaux − Tzz) + g(u+ d) + α⊤Sνz

+

(
ν−1∑
k=0

α⊤SkGxν−k

)
= ψaux⊤z + ϕaux⊤xaux + g(u+ d),

where

ψaux⊤ := ψ⊤ + α⊤Sν

−
(
ϕ⊤ +

[
α⊤Sν−1G · · · α⊤G

])
T−1
x Tz,

ϕaux⊤ :=
(
ϕ⊤ +

[
α⊤Sν−1G · · · α⊤G

])
T−1
x .

It is observed that output redefinition (9) does not change the
relative degree of system (1), but does reshape the internal
dynamics to be

ż = Sz +Gx1 = Sz +Gy

= (S −Gα⊤)z +Gyaux.

As a result, the closed-loop system with the Q-filter-based
DOB and output redefinition (9), if |w − ū| ≤ s̄, is written
as

yaux = xaux
1 ,

ẋaux
i = xaux

i+1, 1 ≤ i ≤ ν − 1,

ẋaux
ν = ψaux⊤z + ϕaux⊤xaux + gC1(p− q) + gd,

ż = (S −Gα⊤)z +Gxaux
1 ,

˙̄z = S̄z̄ + Ḡxaux
1 ,

τ q̇ = A1q +
g

ḡ
B1C1(p− q)

+
1

ḡ
B1(−ψ̄⊤z̄ + ψ⊤z + (ϕ− ϕ̄)xaux) +

g

ḡ
B1d,

τ ṗ = A1p+B1C1(p− q)
(12)

which is also in the standard form of singular perturbation.
As we have conducted in Section III, we again obtain the
quasi-steady-state subsystem of closed-loop system (12) by
setting τ = 0 as

yaux = xaux, qss
1 ,

ẋaux, qss
i = xaux, qss

i+1 , 1 ≤ i ≤ ν − 1,

ẋaux, qss
ν = ψ̄⊤z̄aux, qss + ϕ̄⊤xaux, qss,

˙̄zaux, qss = S̄z̄aux, qss + Ḡxaux, qss
1 ,

żaux, qss = (S −Gα⊤)zaux, qss +Gxaux, qss
1 .

(13)
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Fig. 2. Closed-loop system with Q-filter-based DOB (cyan block) to which
output redefinition (9) is applied.

It should be emphasized that even though S was not Hurwitz
in the first place, the zaux, qss-dynamics standing alone in (13)
are now exponentially stable according to Assumption 1 (a).
Therefore, if the boundary-layer subsystem with respect to
(12) is exponentially stable, it holds that for a given ϵ > 0,

∥xaux(t)− xaux, qss(t)∥ ≤ ϵ,

∥z(t)− zaux, qss(t)∥ ≤ ϵ, ∀t ≥ 0

for sufficiently small τ > 0 thanks to the saturation function
Φ. Furthermore, both xaux, qss(t) and zaux, qss(t) approach to
zero as t→ ∞ owing to the stability of the nominal model
and Hurwitzness of S−Gα⊤. This finally leads us to attain
condition (2) by using (11). In fact, the stability of the
boundary-layer subsystem of (12) is solely determined again
by Af since the system matrix of fast dynamics (dynamics of
p and q) remains unchanged comparing (7) and (12). Putting
this all together, we state the second answer to Problem 1 as
follows.

Proposition 2: Suppose that the matrix Af is Hurwitz and
Assumption 1 is satisfied with some α ∈ Rn−ν and T =
R≥0. Then for a given ϵ > 0, there exists a τ∗ > 0 such
that for all 0 < τ < τ∗, the closed-loop system with the Q-
filter-based DOB and output redefinition (9) in Fig. 2 solves
Problem 1 with∥∥∥∥∥∥

x(t)z̄(t)
z(t)

−

T−1
x (xaux, qss(t)− Tzz

aux, qss(t))
z̄aux, qss(t)
zaux, qss(t)

∥∥∥∥∥∥ ≤ ϵ

for all t ≥ 0, where [xaux, qss(t); z̄aux, qss(t); zaux, qss(t)] is the
solution to (13) with [xaux, qss(0); z̄aux, qss(0); zaux, qss(0)] =
[Txx(0) + Tzz(0); z̄(0); z(0)].

B. Q-filter-based DOB with switched output redefinition

Measuring the internal variable z (or at least α⊤z) as
in Assumption 1 (b) might be expensive and therefore, the
usage of this measurement should be minimized. From this
perspective, let us now consider T in Assumption 1 (b) given
as

T =
{
t ≥ 0

∣∣∃j ∈ Z≥0 such that

jT + T1 ≤ t < (j + 1)T
}
⊂ R≥0

(14)

for some T1 < T with a fixed T > 0. This means that we
are able to measure α⊤z at jT + T1 ≤ t < (j + 1)T for
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all j ∈ Z≥0. In this case, we define the auxiliary output of
system (1) as

yaux(t) :=

{
y(t), if t /∈ T ,
y(t) + α⊤z(t), if t ∈ T

(15)

which is also the input of the Q-filter-based DOB as depicted
in Fig. 3. We present the main theorem which shows that the
Q-filter-based DOB with switched output redefinition (15)
solves Problem 1.

Theorem 1: Suppose that the matrix Af is Hurwitz and
Assumption 1 is satisfied with some α ∈ Rn−ν and T
in (14). Then for a given ϵ > 0, there exist τ∗ > 0 and
T ∗ > 0 such that for all 0 < τ < τ∗ and 0 < T1 < T ∗,
the closed-loop system with the Q-filter-based DOB and
switched output redefinition (15) in Fig. 3 solves Problem 1.

Proof: Let us denote the solution to the closed-loop
system with the Q-filter-based DOB and switched output
redefinition (15) in Fig. 3 as χ(t) := [x(t); z̄(t); z(t)]. We
consider the first mode where the output yaux(t) = y(t) is not
redefined and thus, system (7) is active. Despite the unstable
matrix S, we can apply the same analysis conducted in [9,
Section 3.2] with Tikhonov’s theorem for finite time interval.
Then, given a δ > 0, it follows that there exists a τ∗1 > 0
such that for all 0 < τ < τ∗1 and j ∈ Z≥0,

∥ζ(t)∥ ≤ δ, ∀jT ≤ t < jT + T1, (16)

where ζ(t) := χ(t)− χqss(t) and

χqss(t) := [xqss(t); z̄qss(t); zqss(t)]

is the solution to (8) with χqss(jT ) = χ(jT ). Therefore, we
have

χ(jT + T1) = eA
qssT1 · χqss(jT ) + ζ(jT + T1)

= eA
qssT1 · χ(jT ) + ζ(jT + T1), (17)

where Aqss is the system matrix of (8).
On the other hand, let us consider the second mode where

yaux(t) = y(t)+α⊤z(t) and system (12) is now active. Let us
define χaux(t) := [xaux(t); z̄(t); z(t)] as the solution to (12)
with χaux(jT+T1) = [Txx(jT+T1)+Tzz(jT+T1); z̄(jT+
T1); z(jT +T1)] defined from χ(jT +T1). In the same way,
there exists a τ∗2 > 0 such that for all 0 < τ < τ∗2 and
j ∈ Z≥0,

∥ξ(t)∥ ≤ δ, ∀jT + T1 ≤ t < (j + 1)T, (18)

where ξ(t) := χaux(t)− χaux, qss(t) and

χaux, qss(t) := [xaux, qss(t); z̄aux, qss(t); zaux, qss(t)]

is the solution to (13) with χaux, qss(jT+T1) = χaux(jT+T1).
Accordingly, it holds that

χaux((j + 1)T )

= eA
aux, qss(T−T1) · χaux, qss(jT + T1) + ξ((j + 1)T )

= eA
aux, qss(T−T1) · χaux(jT + T1) + ξ((j + 1)T ), (19)
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Fig. 3. Closed-loop system with Q-filter-based DOB (cyan block) to which
switched output redefinition (15) is applied.

where Aaux, qss is the system matrix of (13). For convenience,
we define Tχ ∈ R(2n−ν)×(2n−ν) as the one satisfying

χaux(t) =

xaux(t)
z̄(t)
z(t)

 =

Tx 0 Tz
0 I 0
0 0 I

χ(t) =: Tχ · χ(t)

(20)
from (10), which is nonsingular by definition.

Combining (17), (19), and (20), we have that there exists a
τ∗ ≤ min(τ∗1 , τ

∗
2 ) such that for all 0 < τ < τ∗ and j ∈ Z≥0,

χ((j + 1)T ) = T−1
χ · χaux((j + 1)T )

= T−1
χ

(
eA

aux, qss(T−T1) · Tχ · χ(jT + T1) + ξ((j + 1)T )
)

= T−1
χ

(
eA

aux, qss(T−T1) · Tχ
(
eA

qssT1 · χ(jT ) + ζ(jT + T1)
)

+ ξ((j + 1)T )
)

= A · χ(jT ) + U(jT ),

where A := T−1
χ · eAaux, qss(T−T1) · Tχ · eAqssT1 ∈

R(2n−ν)×(2n−ν) and U(jT ) := T−1
χ · eAaux, qss(T−T1) · Tχ ·

ζ(jT+T1)+T
−1
χ ·ξ((j+1)T ) ∈ R2n−ν . Note that there exists

a µ ≥ 0 (regardless of T1 > 0) such that ∥U(jT )∥ ≤ µδ for
all j ∈ Z≥0 by (16) and (18). Also, Aaux, qss is the same
with Aqss, in which the block matrix S having an eigenvalue
with a positive real part is replaced by S − Gα⊤, and thus
is Hurwitz. Then, there exists a T ∗ > 0 such that for all
0 < T1 < T ∗,

σ(A) = σ(T−1
χ · eA

aux, qss(T−T1) · Tχ · eA
qssT1) ⊂ B(0, 1)

by continuity of eigenvalues. As a result, there exist a class
KL function β and a class K function γ such that

∥χ(jT )∥ ≤ β(∥χ(0)∥, jT ) + γ(µδ) (21)

for all j ∈ Z≥0. In addition, let κ > 0 be the largest real
part of the eigenvalues of Aqss. Then, there exist K1,K2 ≥ 0
such that for all j ∈ Z≥0,

sup
jT≤t<jT+T1

∥χ(t)∥ ≤ K1e
κT1 · ∥χ(jT )∥+K2δ

≤ K1e
κT1 · (β(∥χ(0)∥, jT ) + γ(µδ)) +K2δ (22)
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Fig. 4. Response of the closed-loop system with Q-filter-based DOB to
which switched output redefinition (15) with T = 1 and T1 = 0.5 in (14)
is applied. The upper limit of ∥[x(t); z(t)]∥ decreases as τ is decreased.

by (21). We can also derive an inequality similar to (22) for
jT +T1 ≤ t < (j+1)T and hence, lim supt→∞ ∥χ(t)∥ ≤ ϵ
if δ > 0 has been chosen to be sufficiently small, which
concludes the proof.

Roughly speaking, the state of system (1) follows the
behavior of (8) and (13) alternately according to the switch-
ing period in (14). Specifically, Assumption 1 (a), which
asserts the Hurwitzness of S −Gα⊤, and sufficiently small
T1 > 0 imply that stable (13) becomes more dominant in
determining stability of system (1), resulting in the state of
system (1) satisfying condition (2). On the other hand, we
want to have T − T ∗ > 0 as small as possible to minimize
the (high) cost of using yaux = y+α⊤z. To this end, we can
choose α ∈ Rn−ν in Assumption 1 (a) to maximize T ∗ > 0,
but a way to design such α is yet unexplored.

V. ILLUSTRATIVE EXAMPLE

In this section, an illustrative example is presented to
describe the utility of the solution to Problem 1 proposed
in Theorem 1. System (1) with n = 2 and ν = 1 has
parameters chosen as ψ = 1, ϕ = 2, g = 0.5, S = 3,
and G = 1. The nominal parameters are set to be ψ̄ = −1,
ϕ̄ = −1, ḡ = 0.7, S̄ = −2, and Ḡ = 1, which ensure the
nominal model P̄ to be asymptotically stable. The Q-filters
QA and QB are designed to be second-order low-pass filters
with a0 = 1, a1 = 1, and c0 = 1. It is easy to check that
these components make Af Hurwitz. For switched output
redefinition (15), α = 7 is taken so that S − Gα = −4.
The saturation level of Φ is set to be s̄ = 65. The initial
condition of the real plant P is [x(0); z(0)] = [0; 0.5] and all
the other initial conditions are given by zeros. Fig. 4 shows
the simulation result of the closed-loop system with Q-filter-
based DOB and switched output redefinition having T = 1
and T1 = 0.5 in (14) under disturbance d(t) = 2 sin(2t) for
three different values of τ . Clearly, ∥[x(t); z(t)]∥ remains
bounded and its upper limit decays as τ is decreased, which
demonstrates that the proposed Q-filter-based DOB with
switched output redefinition is a solution to Problem 1. It
is also seen that ∥z(t)∥ occasionally increases because of
the unstable original internal dynamics.

VI. CONCLUDING REMARKS

The main contribution of this paper is to propose the
switched output redefinition of non-minimum phase systems
and rigorously analyze the DOB-controlled system when the
switched output redefinition is in use. Since this paper is
only about stabilization, further study is needed to observe if
tracking problems for non-minimum phase systems can also
be addressed by the proposed output redefinition approach.
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