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A B S T R A C T

We propose a novel sampled-data output-feedback controller for nonlinear systems of arbitrary relative degree
that ensures reference tracking within prescribed error bounds. We provide explicit bounds on the maximum
input signal and the required uniform sampling time. A key strength of this approach is its capability to serve
as a safety filter for various learning-based controller designs, enabling the use of learning techniques in safety-
critical applications. We illustrate its versatility by integrating it with two different controllers: a reinforcement
learning controller and a non-parametric predictive controller based on Willems et al.’s fundamental lemma.
Numerical simulations illustrate effectiveness of the combined controller design.
1. Introduction

In the context of output-reference tracking, funnel control is an
established adaptive high-gain control methodology, which guarantees
satisfaction of a-priori fixed, possibly time-varying output constraints.
Apart from imposing structural assumptions such as known relative
degree, a high-gain property, and a bounded-input-bounded-state prop-
erty of the internal dynamics, no system knowledge is required, see [1]
and the references therein. Pivotal for its functioning is the availability
of the system’s output as a time-continuous signal and the ability to
continuously adapt the input signal. This requirement, however, is
challenged by digital measurement devices and controllers.

Although funnel control has been successfully implemented in a
sampled-data system with Zero-order Hold (ZoH) for a sufficiently
small sampling time in [2], we are not aware of any results rigorously
showing that the output signal stays within the prescribed boundaries
for ZoH funnel control. In this paper, we address this disparity by
proposing a novel sampled-data feedback controller with ZoH. The
proposed controller ensures output tracking of a given reference signal
within prescribed, possibly time-varying performance bounds — at
every time instant meaning that also the intersampling behavior is fully
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taken into account. Balancing the need for a sufficiently large feedback
gain for output tracking and avoidance of overshooting (which could
violate error bounds within one sampling period), we derive uniform
bounds on sampling rates and control inputs such that the imposed
output constraints are satisfied along the closed loop leveraging coarse
bounds on the system dynamics. To the best of our knowledge, in
funnel control uniform bounds on the input signal are only known if the
region of feasible initial values is further restricted and the dynamics
are known [1]. While there have been several attempts to deal with the
closely related issue of input saturation [3–5] and bang–bang controller
designs [6] exhibiting similarities to our approach, an analysis of
combining a ZoH with funnel control has not been conducted.

The controller proposed in this article includes an ‘‘activation thresh-
old’’ to set the input to zero for small tracking errors, akin to approaches
in [7] and in [8] using an activation function, the 𝜆-tracker [9], or more
broadly event- and self-triggered controller designs, see e.g. [10] and
references therein. This opens up the possibility for the controller to
act as a safety filter for data-driven approaches and (online) learning
techniques, which have gained a lot of popularity recently. These
techniques, despite their superior performance, often lack rigorous
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constraint satisfaction, which is especially important in safety-critical
applications like medical devices and human–robot interaction, see
e.g. [11]. We also refer to [12,13] for an overview of the challenges
employing learning-based approaches to safety-critical systems; and for
challenges and recent results in the field of continual learning we refer
to the comprehensive surveys [14,15].

To address the challenge of ensuring constraint satisfaction while
leveraging the benefits of learning-based control, the field of safe
learning has gained prominence and several safety frameworks have
been proposed [16,17], employing various approaches like control bar-
rier functions [18], Hamilton–Jacobi reachability analysis [19], Model
Predictive Control (MPC) [20], and Lyapunov stability [21]. Predictive
safety filters, as exemplified in [22,23], verify control input signals
against a model to ensure compliance with prescribed constraints.
In [24], a feedback controller is proposed to compensate for model
inaccuracies. A key feature is that the model can be updated (or even
replaced) at runtime while being employed in an MPC algorithm.

Due to the activation threshold incorporated in the controller pro-
posed in the current paper, it may also be used in the context of
learning. When acting as a safety filter for a data-driven learning
algorithm, our controller temporarily interrupts the learning process
when the activation threshold is surpassed, resorting to the pure feed-
back control with ZoH component. The versatility of our proposed
framework is showcased through its application to prominent data-
driven predictive control schemes, specifically data-driven MPC and
Reinforcement Learning (RL).

The data-driven MPC scheme builds upon Willems et al.’s so-called
fundamental lemma [25], allowing a non-parametric description of
the system’s input–output behavior based on measurement data, see
also [26,27] and the references therein. The fundamental lemma states
that, for discrete-time linear time-invariant controllable systems, the
input–output trajectories of finite length lie in the column-space of
a suitable Hankel matrix constructed directly from measured input–
output data. This result paved the way in the development of data-
driven MPC schemes, where the prior model is replaced by measured
data, cf. [28–30]. Therefore, the fundamental lemma is subject to
recent substantial research in the field of data-driven control. In [27,
31,32], it was extended to stochastic descriptor systems. Extensions
towards continuous-time and non-linear systems were discussed, e.g., in
[33–37], respectively.

Reinforcement learning has proven to be a successful technique
for solving complex control problems, e.g. single- and multi-agent
games [38], robotics [39], and autonomous vehicles [40]. The control
objective is usually to either reach a target system state or to maximize
the cumulative expected reward, similar to solving an optimal control
problem. Through applying trial-and-error control actions to the system
while collecting data and information during the closed-loop system
operation, RL techniques are able to find a control policy to achieve
the desired control task without prior system knowledge. The main
difficulty here is to overcome the exploration–exploitation trade off
and to guarantee safety in exploration. A comprehensive survey on
applying RL to control systems can be found in [41]. See also the
textbook [42] for an overview of Reinforcement Learning, and for its
relationship to optimal control see [43].

The present article is organized as follows. In Section 2, we provide
the problem formulation and introduce the system class. In Section 3 we
introduce the feedback controller component, derive an explicit upper
bound on the sampling time 𝜏 > 0, and provide and rigorously proved
feasibility result for the ZoH feedback law. Motivated by a numerical
simulation presented in Section 4, we combine the proposed feedback
ZoH controller with learning-based predictive control algorithms in
Section 5, namely data-driven MPC based on Willems et al.’s fundamen-
tal lemma in Section 5.1, and Reinforcement Learning-based control in
Section 5.2. The integration of the proposed controller into learning-
based controllers illustrates its capability to serve as a safety filter for

safe online learning. We prove feasibility of the combined controllers,

2 
and demonstrate the superior control performance via numerical sim-
ulations. The more involved proofs, including the proofs of our main
results Theorems 3.1 and 5.1, are relegated to Appendix to make the
results more accessible.

Notation: N,R is the set of natural and real numbers, resp. R≥0 ∶=
[0,∞). The standard inner product onR𝑛 is denoted by ⟨⋅, ⋅⟩, and ‖𝑥‖ ∶=
√

⟨𝑥, 𝑥⟩ for 𝑥 ∈ R𝑛. 𝜌 ∶=
{

𝑥 ∈ R𝑛 |

|

|

‖𝑥‖ < 𝜌
}

. 𝑝(𝑉 ,R𝑛) is the linear
pace of 𝑝-times continuously differentiable functions 𝑓 ∶ 𝑉 → R𝑛,
here 𝑉 ⊂ R𝑚 and 𝑝 ∈ N∪{∞}; (𝑉 ,R𝑛) ∶= 0(𝑉 ,R𝑛). For an interval
⊂ R, 𝐿∞(𝐼,R𝑛) is the space of measurable essentially bounded

unctions 𝑓 ∶ 𝐼 → R𝑛 with norm ‖𝑓‖∞ ∶= ess sup𝑡∈𝐼 ‖𝑓 (𝑡)‖. 𝐿∞
loc(𝐼,R

𝑛)
s the space of locally bounded measurable functions. 𝑊 𝑘,∞(𝐼,R𝑛) is
he Sobolev space of all 𝑘-times weakly differentiable functions 𝑓 ∶
→ R𝑛 with 𝑓,… , 𝑓 (𝑘) ∈ 𝐿∞(𝐼,R𝑛), Lip(R≥0,R𝑚) is the space of

Lipschitz continuous functions 𝑓 ∶ R≥0 → R𝑚. For a finite sequence
(𝑓𝑘)𝑁−1

𝑘=0 in R𝑛 of length 𝑁 we define the vectorization 𝑓[0,𝑁−1] ∶=
[

𝑓⊤
0 … 𝑓⊤

𝑁−1
] ⊤ ∈ R𝑛𝑁 .

2. Control objective, system class, and preliminary results

We consider nonlinear continuous-time control systems

𝑦(𝑟)(𝑡) = 𝑓
(

𝑑(𝑡),𝐓(𝑦,… , 𝑦(𝑟−1))(𝑡)
)

+ 𝑔
(

𝑑(𝑡),𝐓(𝑦,… , 𝑦(𝑟−1))(𝑡)
)

𝑢(𝑡),

𝑦|[−𝜎,0] = 𝑦0 ∈ 𝑟−1([−𝜎, 0],R𝑚),
(1)

where 𝑑 ∈ 𝐿∞(R≥0,R𝑝) represents an unknown bounded disturbance,
𝑓 ∈ (R𝑝 ×R𝑞 ,R𝑚) is a drift term, the function 𝑔 ∈ (R𝑝 ×R𝑞 ,R𝑚×𝑚) is
the input gain function, and the operator 𝐓 is causal, locally Lipschitz
and satisfies a bounded-input bounded-output property; the operator is
characterized in detail in Definition 2.1, and the class of systems under
consideration is introduced in Definition 2.2. We emphasize that many
physical phenomena such as backlash and relay hysteresis, and nonlinear
time delays can be modeled by means of the operator 𝐓 (𝜎 corresponds
to the initial delay), cf. [1, Sec. 1.2]. Moreover, systems with infinite-
dimensional internal dynamics can be represented by (1), see e.g. [44].
For a control function 𝑢 ∈ 𝐿∞

loc(R≥0,R𝑚), system (1) has a solution
in the sense of Carathéodory, meaning a function 𝑥 ∶ [−𝜎, 𝜔) → R𝑟𝑚,
𝜔 > 0, with 𝑥|[−𝜎,0] = (𝑦0, �̇�0,… , (𝑦0)(𝑟−1)) such that 𝑥|[0,𝜔) is absolutely
continuous and satisfies �̇�𝑖(𝑡) = 𝑥𝑖+1(𝑡) for 𝑖 = 1,… , 𝑟 − 2, and �̇�𝑟(𝑡) =
𝑓 (𝑑(𝑡),𝐓(𝑥(𝑡)))+𝑔(𝑑(𝑡),𝐓(𝑥(𝑡)))𝑢(𝑡) (which corresponds to (1) with 𝑦 = 𝑥1)
for almost all 𝑡 ∈ [0, 𝜔). A solution 𝑥 is said to be maximal, if it does
ot have a right extension which is also a solution.

The control objective is to design a zero-order hold control strategy,
.e., for sampling time 𝜏 > 0,

(𝑡) ≡ 𝑢 ∀ 𝑡 ∈ [𝑡𝑖, 𝑡𝑖 + 𝜏), 𝑖 ∈ N,

here the data are collected at uniform sample times 𝑡𝑖 = 𝑖 ⋅ 𝜏 ∈ R≥0,
which achieves for a system (1) output tracking of a given reference
𝑦ref ∈ 𝑊 𝑟,∞(R≥0,R𝑚) within pre-specified error bounds. To be more
precise, the tracking error 𝑡 ↦ 𝑒(𝑡) ∶= 𝑦(𝑡) − 𝑦ref (𝑡) shall evolve within
he prescribed performance funnel

𝜑 =
{

(𝑡, 𝑒) ∈ R≥0 ×R𝑚 |

|

|

𝜑(𝑡) ‖𝑒‖ < 1
}

.

his funnel is determined by the function 𝜑 belonging to

∶=
{

𝜑 ∈ 𝑊 1,∞(R≥0,R) ||
|

inf
𝑠≥0

𝜑(𝑠) > 0
}

,

ee Fig. 1 for an illustration.
The specific application usually dictates the constraints on the

racking error and thus indicates suitable choices for 𝜑. To achieve the
control objective, we introduce auxiliary error variables. For 𝜑 ∈ ,
𝑦ref ∈ 𝑊 𝑟,∞(R≥0,R𝑚), a bijection 𝛼 ∈ 1([0, 1), [1,∞)), 𝑡 ≥ 0, and
𝜉 ∶= (𝜉1,… , 𝜉𝑟) ∈ R𝑟𝑚 we formally introduce the following auxiliary
variables

𝑒1(𝑡, 𝜉) ∶= 𝜑(𝑡)(𝜉1 − 𝑦ref (𝑡)), (2)

𝑒 (𝑡, 𝜉) ∶= 𝜑(𝑡)(𝜉 − 𝑦(𝑘) (𝑡)) + 𝛼(‖𝑒 (𝑡, 𝜉)‖2)𝑒 (𝑡, 𝜉),
𝑘+1 𝑘+1 ref ‖ 𝑘 ‖ 𝑘
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Fig. 1. Error evolution in a funnel 𝜑 with boundary 1∕𝜑(𝑡); the figure is based on [45,
ig. 1], edited for present purpose.

or 𝑘 = 1,… , 𝑟−1, where 𝑒1(𝑡) is the tracking error 𝑒(𝑡) normalized with
espect to the error boundary 𝜑(𝑡). A suitable choice for the bijection
s 𝛼(𝑠) ∶= 1∕(1 − 𝑠). While the error 𝑒𝑘+1 is formally not defined for
‖

‖

𝑒𝑘(𝑡, 𝜉)‖‖ = 1, we will in the following only evaluate the error variables
for 𝜉 ∈ 𝑟

𝑡 as defined in (5) in Section 2.2 excluding this edge case.
In favor of a simpler notation, we therefore refrain from defining 𝑒𝑘+1
at these points. Using the short notation 𝑒𝑟(𝑡) ∶= 𝑒𝑟(𝑡, (𝑦, �̇�,… , 𝑦(𝑟−1))(𝑡)),
we propose the following controller structure for 𝑖 ∈ N

∀𝑡 ∈ [𝑡𝑖, 𝑡𝑖 + 𝜏) ∶ 𝑢(𝑡) =

{

0, ‖𝑒𝑟(𝑡𝑖)‖ < 𝜆,
−𝛽 𝑒𝑟(𝑡𝑖)

‖𝑒𝑟(𝑡𝑖)‖2
, ‖𝑒𝑟(𝑡𝑖)‖ ≥ 𝜆,

(3)

where 𝜆 ∈ (0, 1) is an activation threshold, and 𝛽 > 0 is the input gain. In
Section 2.2 we show 𝑒𝑟 ∈ 1. Thus, the control function 𝑢 is uniformly
bounded since we have

∀𝑡 ≥ 0 ∶ ‖𝑢(𝑡)‖ ≤ 𝛽
𝜆
.

ur designed controller can be considered to be similar to funnel
ontrol, see [1,45,46], in terms of its ability to achieve output reference
racking within predefined error boundaries, as well as concerning the
sed intermediate error variables (2). On the other hand, contrary to
he standard funnel controller, the feedback law (3) is a normalized
inear sample-and-hold output feedback with uniform sampling rate.
ince it involves an activation threshold, it has also similarity with
he zero-or-hold controller in [7]. A further essential difference to
ontinuous funnel control is that in the present approach the control
bjective is achieved by using estimates about the system dynamics,
hile in funnel control no such information is used to the price that

he maximal control effort cannot be estimated a-priori.

.1. System class

In this section we formally introduce the system class under consid-
ration. Prior to that, we state assumptions on the system parameters
nd characterize the operator 𝐓.

ssumption 1. A bound 𝐷 > 0 for the unknown disturbance 𝑑 ∈
∞(R≥0,R𝑝) with ‖𝑑‖∞ ≤ 𝐷 is known.

ssumption 2. The matrix valued function 𝑔 ∈ (R𝑝 ×R𝑞 ,R𝑚×𝑚) is
trictly positive definite, that is

𝑥 ∈ R𝑝+𝑞 ∀𝑧 ∈ R𝑚 ⧵ {0} ∶ ⟨𝑧, 𝑔(𝑥)𝑧⟩ > 0.

Note that we could also allow the case of strictly negative 𝑔 by
hanging the sign in (3). Further, note that, while some authors only
se the term strictly positive definite for symmetric matrices, we do not
ssume 𝑔(𝑥) to be symmetric. Next, we provide the defining properties

f the class of operators to which 𝐓 in (1) belongs.

3 
efinition 2.1. For 𝑛, 𝑞 ∈ N and 𝜎 ≥ 0, the set  𝑛,𝑞
𝜎 denotes the class

f operators 𝐓 ∶ ([−𝜎,∞),R𝑛) → 𝐿∞
loc(R≥0,R𝑞) for which the following

properties hold:

(i) Causality : ∀ 𝑦1, 𝑦2 ∈ ([−𝜎,∞),R𝑛) ∀ 𝑡 ≥ 0:

𝑦1|[−𝜎,𝑡] = 𝑦2|[−𝜎,𝑡] ⟹ 𝐓(𝑦1)|[0,𝑡] = 𝐓(𝑦2)|[0,𝑡].

(ii) Local Lipschitz: ∀ 𝑡 ≥ 0 ∀ 𝑦 ∈ ([−𝜎, 𝑡];R𝑛) ∃𝛥, 𝛿, 𝑐 > 0 ∀ 𝑦1, 𝑦2 ∈
([−𝜎,∞);R𝑛) with 𝑦1|[−𝜎,𝑡] = 𝑦 = 𝑦2|[−𝜎,𝑡] and ‖

‖

𝑦1(𝑠) − 𝑦(𝑡)‖
‖

< 𝛿,
‖

‖

𝑦2(𝑠) − 𝑦(𝑡)‖
‖

< 𝛿 for all 𝑠 ∈ [𝑡, 𝑡 + 𝛥]:

ess sup
𝑠∈[𝑡,𝑡+𝛥]

‖

‖

𝐓(𝑦1)(𝑠) − 𝐓(𝑦2)(𝑠)‖‖ ≤ 𝑐 sup
𝑠∈[𝑡,𝑡+𝛥]

‖

‖

𝑦1(𝑠) − 𝑦2(𝑠)‖‖ .

(iii) Bounded-input bounded-output (BIBO): ∀ 𝑐0 > 0 ∃ 𝑐1 > 0 ∀ 𝑦 ∈
([−𝜎,∞),R𝑛):

sup
𝑡∈[−𝜎,∞)

‖𝑦(𝑡)‖ ≤ 𝑐0 ⟹ sup
𝑡∈[0,∞)

‖𝐓(𝑦)(𝑡)‖ ≤ 𝑐1.

While the first property (causality) introduced in Definition 2.1 is
quite intuitive, the second (locally Lipschitz) is of a more technical
nature, required to guarantee existence and uniqueness of solutions.
The third property (BIBO) can be motivated from a practical point of
view as an infinite-dimensional extension of minimum-phase. Various
examples for the operator 𝐓 can be found in [1,46].

With Assumptions 1 and 2 and Definition 2.1 we formally introduce
the system class under consideration.

Definition 2.2. For 𝑚, 𝑟 ∈ N a system (1) belongs to the sys-
tem class 𝑚,𝑟, written (𝑑, 𝑓 , 𝑔,𝐓) ∈ 𝑚,𝑟, if, for some 𝑝, 𝑞 ∈ N and
𝜎 ≥ 0, the following holds: 𝑑 ∈ 𝐿∞(R≥0,R𝑝) satisfies Assumption 1,
𝑓 ∈ (R𝑝 ×R𝑞 ,R𝑚), 𝑔 satisfies Assumption 2, and 𝐓 ∈  𝑟𝑚,𝑞

𝜎 .

Note that all linear minimum-phase systems with relative degree
𝑟 ∈ N are contained in the system class 𝑚,𝑟, cf. [1]. Moreover, under
assumptions provided in [47, Cor. 5.6], a nonlinear system of the form

�̇�(𝑡) = 𝑓 (𝑥(𝑡)) + �̃�(𝑥(𝑡))𝑢(𝑡), 𝑥(0) = 𝑥0 ∈ R𝑛,

𝑦(𝑡) = ℎ(𝑥(𝑡)),
(4)

ith nonlinear functions 𝑓 ∶ R𝑛 → R𝑛, �̃� ∶ R𝑛 → R𝑛×𝑚 and ℎ ∶
𝑛 → R𝑚, can be put in the form (1) with 𝜎 = 0 and appropriate

unctions 𝑓 and 𝑔 and an operator 𝐓 via a coordinate transformation
nduced by a diffeomorphism 𝛷 ∶ R𝑛 → R𝑛. The operator 𝐓 then is the

solution operator of the internal dynamics of the transformed system.
Using the diffeomorphism 𝛷, the presented results this paper can also
be expressed for the system (4). In this case, exact knowledge about the
coordinate transformation is not required for the design and application
of the presented controller — it merely serves as a tool for the proofs.

2.2. Auxiliary results

In order to formulate the main result about feasibility of the pro-
posed ZoH controller, we introduce some notation and establish two
auxiliary results in this section. We use the shorthand notation

𝜒(𝑦)(𝑡) ∶= (𝑦(𝑡), �̇�(𝑡),… , 𝑦(𝑟−1)(𝑡)) ∈ R𝑟𝑚

for 𝑦 ∈ 𝑊 𝑟,∞(R≥0,R𝑚) and 𝑡 ∈ R≥0. To guarantee that the tracking
error 𝑒 = 𝑦−𝑦ref evolves within the boundary of 𝜑, we want to address
the problem of ensuring that 𝜒(𝑦)(𝑡) is at every time 𝑡 ≥ 0 an element
of the set

𝑟
𝑡 ∶=

{

𝜉 ∈ R𝑟𝑚 |

|

|

‖

‖

𝑒𝑘(𝑡, 𝜉)‖‖ < 1, 𝑘 = 1,… , 𝑟 − 1,
‖𝑒𝑟(𝑡, 𝜉)‖ ≤ 1

}

. (5)

We define the set of all functions 𝜁 ∈ 𝑟([−𝜎,∞),R𝑚) which coincide
with 𝑦0 on the interval [−𝜎, 0] and for which 𝜒(𝑦)(𝑡) ∈ 𝑟

𝑡 on the interval
[𝑡0, 𝛿) for 𝛿 ∈ (0,∞]:

𝑟
𝛿 ∶=

{

𝜁 ∈ 𝑟−1([−𝜎,∞),R𝑚) ||
𝜁 |[−𝜎,0] = 𝑦0,

𝑟

}

.

| ∀ 𝑡 ∈ [0, 𝛿) ∶ 𝜒(𝜁 )(𝑡) ∈ 𝑡
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We aim to infer the existence of bounds for the error variables 𝑒𝑘
efined in (2) for all functions in 𝑟

𝛿 independent of the functions 𝑓 , 𝑔,
he disturbance 𝑑, the operator 𝐓, and the applied control 𝑢 in system
ynamics (1). To this end, we introduce the following constants 𝜀𝑘, 𝜇𝑘.
et 𝜀0 = 0 and �̄�0 ∶= 0. Successively for 𝑘 = 1,… , 𝑟 − 1 define

�̂�𝑘 ∈ (0, 1) s.t. 𝛼(�̂�2𝑘)�̂�𝑘 =
‖

‖

‖

‖

�̇�
𝜑
‖

‖

‖

‖∞
(1 + 𝛼(𝜀2𝑘−1)𝜀𝑘−1) + 1 + �̄�𝑘−1,

𝜀𝑘 ∶= max{‖𝑒𝑘(0)‖, �̂�𝑘} < 1, (6)

𝑘 ∶=
‖

‖

‖

‖

�̇�
𝜑
‖

‖

‖

‖∞
(1 + 𝛼(𝜀2𝑘−1)𝜀𝑘−1) + 1 + 𝛼(𝜀2𝑘)𝜀𝑘 + �̄�𝑘−1,

�̄�𝑘 ∶= 2𝛼′(𝜀2𝑘)𝜀
2
𝑘𝜇𝑘 + 𝛼(𝜀2𝑘)𝜇𝑘.

With these constants we may derive the following result.

Lemma 2.1. Let 𝑦ref ∈ 𝑊 𝑟,∞(R≥0,R𝑚), 𝜑 ∈ , and 𝑦0 ∈ 𝑟−1([−𝜎, 0],
R𝑚) with 𝜒(𝑦0) ∈ 𝑟

0 be given. Then there exist constants 𝜀𝑘, 𝜇𝑘 > 0 defined
in (6) such that for all 𝛿 ∈ (0,∞] and all 𝜁 ∈ 𝑟

𝛿 the functions 𝑒𝑘 defined
in (2) satisfy

(i) ‖𝑒𝑘(𝑡, 𝜒(𝜁 )(𝑡))‖ ≤ 𝜀𝑘 < 1,
(ii) ‖

d
d𝑡 𝑒𝑘(𝑡, 𝜒(𝜁 )(𝑡))‖ ≤ 𝜇𝑘,

for all 𝑡 ∈ [0, 𝛿) and for all 𝑘 = 1,… , 𝑟 − 1.

The proof is relegated to Appendix. Next, we derive bounds on the
ight-hand side of system (1).

emma 2.2. Consider (1) with (𝑑, 𝑓 , 𝑔,𝐓) ∈ 𝑚,𝑟. Let 𝑦ref ∈ 𝑊 𝑟,∞

(R≥0,R𝑚), 𝜑 ∈ , 𝑦0 ∈ 𝑟−1([−𝜎, 0],R𝑚) with 𝜒(𝑦0)(0) ∈ 𝑟
0, and 𝐷 > 0

from Assumption 1. Then, there exist constants 𝑓max, 𝑔max, 𝑔min > 0 such
that for every 𝛿 ∈ (0,∞], 𝜁 ∈ 𝑟

𝛿 , 𝑑 ∈ 𝐿∞(R≥0,R𝑝) with ‖𝑑‖∞ ≤ 𝐷,
𝑧 ∈ R𝑚∖ {0}, and 𝑡 ∈ [0, 𝛿)

𝑓max ≥
‖

‖

‖

𝑓 ((𝑑,𝐓(𝜒(𝜁 )))|[0,𝛿))
‖

‖

‖∞
,

𝑔max ≥
‖

‖

‖

𝑔((𝑑,𝐓(𝜒(𝜁 )))|[0,𝛿))
‖

‖

‖∞
,

𝑔min ≤
⟨

𝑧, 𝑔((𝑑,𝐓(𝜒(𝜁 )))|[0,𝛿)(𝑡))𝑧
⟩

‖𝑧‖2
.

(7)

The proof is relegated to Appendix. Lemma 2.2 ensures existence of
ounds on the dynamics of the system to be controlled. To compute
hese bounds, some system knowledge is necessary. For instance, if
he structure of the governing equations is known and the param-
ters are known to be in a certain range, the worst case estimates
max, 𝑔max, 𝑔min can be computed using the desired reference trajec-
ory and the prescribed error tolerance, i.e., seeking the maximum of
ontinuous functions within a compact set.

. Sampled-data feedback controller

With the introductory results presented in the previous section, we
re now in a position to formulate a feasibility result about the ZoH
eedback controller. To phrase it, Theorem 3.1 yields that the ZoH
ontroller (3) achieves the control objective discussed in Section 2 for
system (1) with (𝑑, 𝑓 , 𝑔,𝐓) ∈ 𝑚,𝑟, if the sampling time 𝜏 satisfies the

ollowing condition (8).

heorem 3.1. Given a reference 𝑦ref ∈ 𝑊 𝑟,∞(R≥0,R𝑚) and a funnel
function 𝜑 ∈  consider a system (1) with (𝑑, 𝑓 , 𝑔,𝐓) ∈ 𝑚,𝑟. With the
constants given in (6), set

𝜅0 ∶=
‖

‖

‖

‖

�̇�
𝜑
‖

‖

‖

‖∞
(1 + 𝛼(𝜀2𝑟−1)𝜀𝑟−1) + ‖𝜑‖∞ (𝑓max + ‖𝑦(𝑟)ref‖∞) + �̄�𝑟−1,

define the input gain

𝛽 >
2𝜅0

𝑔min inf 𝑠≥0 𝜑(𝑠)
,

nd the constant 𝜅1 ∶= 𝜅0 + ‖𝜑‖∞ 𝑔max𝛽. Assume that the initial condition
0 𝑟
atisfies 𝜒(𝑦 )(0) ∈ 0, i.e., the error variables from (2) (here we omit

4 
he dependence on 𝜒(𝑦) = (𝑦,… , 𝑦(𝑟−1))) satisfy ‖𝑒𝑘(0)‖ < 1 for all 𝑘 =
,… , 𝑟−1, and 𝑒𝑟(0) ≤ 1; and, for an activation threshold 𝜆 ∈ (0, 1), let the
ampling time satisfy

< 𝜏 ≤ min

{

𝜅0
𝜅2
1

, 1 − 𝜆
𝜅0

}

. (8)

Then the ZoH controller (3) applied to a system (1) yields that ‖𝑒𝑘(𝑡)‖ < 1
for all 𝑘 = 1,… , 𝑟 − 1 and ‖𝑒𝑟(𝑡)‖ ≤ 1 for all 𝑡 ≥ 0. This is initial and
recursive feasibility of the ZoH control law (3). In particular, the tracking
error satisfies ‖𝑒(𝑡)‖ < 1∕𝜑(𝑡) for all 𝑡 ∈ R≥0.

The proof of Theorem 3.1 is relegated to Appendix.
The parameter 𝜆 ∈ (0, 1) in (3) is an activation threshold (cf. event-

triggered control [10]), chosen by the designer, which divides the
tracking error in a safe and a safety critical region. A large value of
𝜆 implies that the controller will be inactive for a wide range of values
of the last error variable, which, in case of relative degree one, means
inactivity for a wide range of the tracking error, while still guaranteeing
transient accuracy.

The sampling time 𝜏 in (8) strongly depends on the evolution of the
funnel function and on the reference 𝑦ref . This gives the possibility of
dynamically adapting the sampling time, e.g., in the case of setpoint
transition, where the reference is constant 𝑦0ref in the first period and
constant 𝑦1ref ≠ 𝑦0ref in the last period. At the setpoints the sampling time
can be larger than during the transition.

An explicit bound on the control input can be computed in advance,
since ‖𝑢‖∞ ≤ 𝛽∕𝜆. This bound depends on the system parameters
derived in Lemma 2.2. However, precise knowledge about the functions
𝑓 , 𝑔 and the operator 𝐓 is not necessary. Mere (conservative) estimates
on the bounds 𝑓max, 𝑔max, and 𝑔min as in (7) are sufficient.

Remark 3.1. The results in Theorem 3.1 are also valid for ‖𝑒𝑟(0)‖ = 1.
This is in contrast to continuous time funnel control, where all 𝑟 error
variables (2) initially have to be bounded away from 1 to guarantee
boundedness of the input. To illustrate this, consider �̇�(𝑡) = 𝑢(𝑡),
and 𝑦ref = 0. Let 𝜑 ∈  and choose the bijection 𝛼(𝑠) = 1∕(1 − 𝑠).
According to [1] the control is given by 𝑢(𝑡) = − 𝑦(𝑡)

1−𝜑(𝑡)2𝑦(𝑡)2 . Now, for
a sequence of initial values 𝑦𝑗 (0), 𝑗 ∈ N, such that 𝜑(0)|𝑦𝑗 (0)| → 1
for 𝑗 → ∞, the sequence of corresponding initial controls 𝑢𝑗 (0) is
unbounded. On the other hand, for the same sequence of initial values
the controller (3) yields a bounded signal ‖𝑢ZoH‖∞ ≤ 𝛽∕𝜆. Moreover,
such a sequence of initial values requires ever smaller sampling time,
if a continuous funnel controller is implemented, cf. Section 4.

Remark 3.2. Note that 𝑢 = 0 is not necessary for ‖𝑒𝑟(𝑡𝑖)‖ < 𝜆;
however, according to the current proof, 𝑢 ≠ 0 will decrease 𝜏.
For instance, applying the control value 𝑢(𝑡𝑖−1) of the last sampling
period is feasible, or the control value may be chosen according to
the data informativity framework [48]. Such a data-driven control is
safeguarded by the proposed controller (3), similar to the combined
controller [24]. We will exploit this observation in Section 5, where we
propose a two-component data-driven/learning-based controller with
𝑢 ≠ 0 for ‖𝑒𝑟(𝑡𝑘)‖ < 𝜆.

4. Numerical example: pure ZoH feedback

To illustrate the controller (3) we consider the mass-on-car sys-
tem [49]. On a car with mass 𝑚1, to which a force 𝐹 = 𝑢 can be applied,
a ramp is mounted on which a second mass 𝑚2 moves passively, see
Fig. 2.

The second mass is coupled to the car by a spring–damper com-
bination, and the ramp is inclined by a fixed angle 𝜗 ∈ (0, 𝜋∕2). The
equations of motion are given by
[

𝑚1 + 𝑚2 𝑚2 cos(𝜗)
](

�̈�(𝑡)
)

+
(

0
)

=
(

𝑢(𝑡)
)

, (9a)

𝑚2 cos(𝜗) 𝑚2 �̈�(𝑡) 𝑘𝑠(𝑡) + 𝑑�̇�(𝑡) 0
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Fig. 2. Mass-on-car system. The figure is based on [1,49].

where 𝑧 is the car’s horizontal position, and 𝑠 is the relative position
of the second mass. As output the second mass’ horizontal position is
measured

𝑦(𝑡) = 𝑧(𝑡) + cos(𝜗)𝑠(𝑡). (9b)

For simulation we choose the parameters 𝜗 = 𝜋∕4, 𝑚1 = 1, 𝑚2 = 2,
spring constant 𝑘 = 1, and damping 𝑑 = 1. A short calculation yields
that for these parameters system (9) has relative degree 𝑟 = 2, and
as outlined in [1, Sec. 3] it can be represented in the form (1) with
BIBO internal dynamics. We simulate output reference tracking of the
signal 𝑦ref = 0.4 sin( 𝜋2 𝑡) for 𝑡 ∈ [0, 1], transporting the mass 𝑚2 on
the car from position 0 to 0.4 within chosen error boundaries ±0.15.
We choose the activation threshold 𝜆 = 0.75. With these parameters
a brief calculation (using the variation of constants formula for the
internal dynamics) yields 𝑓max ≤ 1.4, 𝑔min = 𝑔max = 0.25, and hence,
the sampling time 𝜏 ≤ 4.8 ⋅ 10−3, and the gain 𝛽 ≥ 27.55, which
guarantee success of the tracking task. Choosing the smallest 𝛽 this
already gives ‖𝑢ZoH‖∞ ≤ 𝛽∕𝜆 ≤ 36.73. We start with a small initial
tracking error 𝑦(0) = −0.0925, and �̇�(0) = �̇�ref (0). We compare the
controller (3) with the continuous funnel controller [1]; corresponding
signals have the subscript FC, e.g., 𝑢FC. Moreover, simulating the ZoH
controller was even successful for 𝜏 = 2.0⋅10−2 and 𝛽 = 4; corresponding
signals have a circumflex, e.g., �̂�ZoH. Fig. 3 shows the system’s output
and the reference plus/minus error tolerance. Note that although the
control input is discontinuous, the output signal is continuous due
to integration. All controllers achieve the tracking task. In Fig. 4 the
controls are depicted. The ZoH input consists of separated pulses —
for two reasons. First, the control law (3) uses (undirected) worst-case
estimations 𝑔min, 𝑔max and 𝑓max to compute the input signal. Hence, the
control signal is at many time instances unnecessary large; however,
it is ensured that the control signal is sufficiently large for all times.
Second, (3) involves an activation threshold 𝜆, i.e., the controller is
inactive, if the tracking error is small. If at sampling the tracking error
is above this threshold, the applied input is sufficiently large (due to
the worst case estimations) to push the error back below the threshold.
Thus, at the next sampling instance the input is determined to be zero.
The worst-case estimations and the ZoH setting make it inevitable that
the control signal looks peaky. The control signal �̂�ZoH (black) is also
peaky, but not so large in magnitude (smaller 𝛽) and with a larger
width (larger 𝜏). Overall, �̂�ZoH is comparable with 𝑢FC. The success of
the simulation with these parameters gives rise to the hope of finding
better estimates for sufficient control parameters 𝛽, 𝜏 in future work.
Improving the control performance is also topic of Section 5. Note that
the control signal 𝑢FC also has a large peak at the beginning, where
‖𝑢FC‖∞ ≈ 100. For simulation, we used Matlab, for integration of the
dynamics the routine ode15s with AbsTol = 𝑅𝑒𝑙𝑇 𝑜𝑙 = 10−6, with
adaptive step size. Integrating the funnel controller [1] ode15s yields
that the maximal step size is ≈ 3.99 ⋅ 10−2 and the minimal step size is
≈ 1.21 ⋅ 10−6. This means, the largest step is about eight times larger
than 𝜏, and the smallest time step is about 4000 times smaller than 𝜏.
5 
Fig. 3. Outputs, reference, and error tolerance.

Fig. 4. Controls.

5. Safeguarded data-based control

As can be seen from the numerical simulation in Section 4, the
control signal 𝑢ZoH exhibits undesirably large peaks. This is due to the
worst case estimations in the controller design. In this section, a basic
idea for improving the control signal is explained using two example
techniques.

These ideas are based on the observation made in Remark 3.2,
namely if ‖𝑒𝑟(𝑡𝑘)‖ < 𝜆, then any bounded input 𝑢 can be applied to
the system. In particular, data-driven control schemes are applicable,
which often show superior performance due to collection of ‘‘system
knowledge’’ in terms of input–output data. The idea of a combined
control scheme is illustrated in Fig. 5.

Since the calculations in the proof of Theorem 3.1 involve worst
case estimates, the application of 𝑢(𝑡) ≠ 0 for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝜏), if ‖𝑒𝑟(𝑡𝑘)‖ < 𝜆
requires adaption of the sampling time 𝜏. This adaption is formulated
in the following feasibility result for the switched control strategy

∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) ∶ 𝑢(𝑡) =

{

𝑢data, ‖𝑒𝑟(𝑡𝑘)‖ < 𝜆,
−𝛽 𝑒𝑟(𝑡𝑘)

‖𝑒𝑟(𝑡𝑘)‖2
, ‖𝑒𝑟(𝑡𝑘)‖ ≥ 𝜆.

(10)

Theorem 5.1. Given a reference 𝑦ref ∈ 𝑊 𝑟,∞(R≥0,R𝑚) and a funnel
function 𝜑 ∈  consider a system (1) with (𝑑, 𝑓 , 𝑔,𝐓) ∈ 𝑚,𝑟. Let the
constants given in (6), and 𝜅0, 𝜅1 and 𝛽 be given as in Theorem 3.1. Assume
that the initial condition satisfies 𝜒(𝑦0)(0) ∈ 𝑟

0 and, for an activation
threshold 𝜆 ∈ (0, 1), and 𝑢max ≥ 0 let the sampling time satisfy

0 < 𝜏 ≤ min

{

𝜅0
𝜅2
1

, 1 − 𝜆
𝜅0 + ‖𝜑‖∞𝑔max𝑢max

}

. (11)

If ‖𝑢data‖∞ ≤ 𝑢max, then the combined controller (10) applied to a system (1)
yields that ‖𝑒𝑘(𝑡)‖ < 1 for all 𝑘 = 1,… , 𝑟 − 1 and ‖𝑒𝑟(𝑡)‖ ≤ 1 for all 𝑡 ≥ 0.
This is initial and recursive feasibility of the controller (10). In particular,
the tracking error satisfies ‖𝑒(𝑡)‖ < 1∕𝜑(𝑡) for all 𝑡 ∈ R≥0.

Proof. By adapting the sampling time 𝜏 the statement follows with the
same proof as for Theorem 3.1. □

With Theorem 5.1 at hand, we may now consider the following ex-
tensions of the control law (3), resulting in a combined controller (10).
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Fig. 5. Schematic structure of the combined controller.

emark 5.1. We comment on some aspects of the presented two-
omponent controller.

(i) None of the control schemes applied if ‖𝑒𝑟(𝑡𝑘)‖ < 𝜆 are required
to achieve any tracking guarantees. The only requirement is
that the control signal 𝑢data satisfies ‖𝑢data‖∞ ≤ 𝑢max for given
𝑢max > 0. In particular, this means that any controller (predictive,
or learning-based, or model inversion-based, or locally stabiliz-
ing) applied in the safe region satisfies input constraints given
by 𝑢max. Moreover, a control scheme applied in the safe region is
not even supposed to be suitable for the system to be controlled.
The latter means that it is possible to apply, e.g., controllers
designed for discrete-time systems to the continuous-time system
to be controlled. Maintenance of the tracking behavior is still
ensured by Theorem 5.1.

(ii) The input 𝑢data in (10) is not necessarily supposed to be of data-
driven or learning-based type. A sample-and-hold version of the
funnel control law [1], i.e.,

𝑢data(𝑡) = −𝛼(‖𝑒𝑟(𝑡𝑘)‖2)𝑒𝑟(𝑡𝑘), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝜏) (12)

is feasible with 𝑢max = 𝜆∕(1 − 𝜆2). This choice approximates
the continuous funnel control signal on a fixed time grid. Since
this discrete-time funnel controller is safeguarded by the ZoH
controller in (10), none of the issues regarding feasibility of this
sampled-and-hold funnel control signal (cf. the considerations
in [2]) are present.

(iii) If a nominal model of the system is available, another combined
controller strategy would be to include a pre-computed feed-
forward signal, cf. [50,51], with 𝑢 = 𝑢feedforward + 𝑢ZoH where
the feedforward controller is active in the safe as well in the
safety-critical region. The controller (10) would interpret this
additional signal as a ‘‘helpful’’ disturbance (‘‘helpful’’ since it
will reduce the control effort of the feedback), and constraint
satisfaction is guaranteed.

5.1. Data-driven MPC using Willems’ fundamental lemma

In this section, we present a safe region control strategy employing
a data-driven MPC scheme. This approach is based on the fundamental
lemma by Willems’ et al. [25], which leverages the standard MPC
algorithm to a data-enabled predictive control scheme, cf. [29,35]. Re-
cently, this method attracted a lot of interest in the data-driven control
community with various applications e.g. in power systems [52,53] and
aerial robotics [29,54].

Consider a surrogate model for the system (1). The surrogate is
given by a discrete-time linear time-invariant system in minimal, i.e.
controllable and observable, state–space realization

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 (13a)

𝑦𝑘 = 𝐶𝑥𝑘 +𝐷𝑢𝑘 (13b)

with matrices 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, 𝐶 ∈ R𝑚×𝑛 and 𝐷 ∈ R𝑚×𝑚. Except the
dimension 𝑚, which is determined by the input and output dimension of
the system (1), the parameters 𝐴,𝐵, 𝐶,𝐷 are assumed to be unknown.
6 
Next we recall the property of persistency of excitation and the
fundamental lemma for controllable systems by Willems et al. [25],
which are pivotal elements in the subsequent discussion. A sequence
𝑢 = (𝑢𝑘)𝑁−1

𝑘=0 with 𝑢𝑘 ∈ R𝑚, 𝑘 = 0,… , 𝑁 − 1, is called persistently exciting
of order 𝐿, 𝐿 ∈ N, if the Hankel matrix

𝐻𝐿(𝑢) ∶=
⎡

⎢

⎢

⎣

𝑢0 … 𝑢𝑁−𝐿
⋮ ⋱ ⋮

𝑢𝐿−1 … 𝑢𝑁−1

⎤

⎥

⎥

⎦

∈ R𝑚𝐿×(𝑁−𝐿+1) (14)

has full row rank.

Lemma 5.1 (Fundamental Lemma). Let (�̂�, �̂�) = ((�̂�𝑘)𝑁−1
𝑘=0 , (�̂�𝑘)𝑁−1

𝑘=0 ) be an
input–output trajectory of length 𝑁 , 𝑁 ∈ N, of the system (13) such that
̂ is persistently exciting of order 𝐿 + 𝑛, where 𝐿 ∈ N and 𝑛 is the state
dimension of system (13). Then (𝑢, 𝑦) = ((𝑢𝑘)𝐿−1𝑘=0 , (𝑦𝑘)

𝐿−1
𝑘=0 ) is an input–output

trajectory of length 𝐿 of system (13) if and only if there is 𝜈 ∈ R𝑁−𝐿+1 such
that
[

𝑢[0,𝐿−1]
𝑦[0,𝐿−1]

]

=
[

𝐻𝐿(�̂�)
𝐻𝐿(�̂�)

]

𝜈. (15)

The fundamental lemma allows a complete non-parametric, data-
driven description of the system’s finite-length input–output trajectories
based only on measured input–output data.

Remark 5.2. Note that persistency of excitation order �̃� implies
persistency of excitation of lower order 𝐿, 𝐿 ≤ �̃�. This fact might
be exploited in situations where the state dimension 𝑛 of a suitable
surrogate model (13) is unclear but can be estimated, for instance,
from physical interpretations of the underlying system (1). At worst
overestimation of 𝑛 results in an increased data demand for the signal
(�̂�, �̂�), while the representation (15) is maintained.

Next we introduce a data-driven MPC scheme leveraged by the
fundamental lemma, cf. Lemma 5.1. To this end let (�̂�, �̂�) = ((�̂�𝑘)𝑁−1

𝑘=0 ,
(�̂�𝑘)𝑁−1

𝑘=0 ) be measured input–output data, where �̂� is persistently exciting
of order 𝐿+2𝑛. In every discrete time step 𝑡𝑘 we aim to solve the optimal
control problem

minimize
(𝑢,𝑦,𝜈,𝜎)

𝑘+𝐿
∑

𝑖=𝑘+1

(

‖𝑦𝑖 − 𝑦ref,𝑖‖
2
𝑄 + ‖𝑢𝑖‖

2
𝑅

)

+ 𝜆𝜈‖𝜈‖
2 + 𝜆𝜎‖𝜎‖

2 (16a)

with (𝑢, 𝑦) = ((𝑢𝑖)𝑘+𝐿𝑖=𝑘−𝑛+1, (𝑦𝑖)
𝑘+𝐿
𝑖=𝑘−𝑛+1) subject to

[

𝑢[𝑘−𝑛+1,𝑘+𝐿]
𝑦[𝑘−𝑛+1,𝑘+𝐿] + 𝜎

]

=
[

𝐻𝐿+𝑛(�̂�)
𝐻𝐿+𝑛(�̂�)

]

𝜈, (16b)
[

𝑢[𝑘−𝑛+1,𝑘]
𝑦[𝑘−𝑛+1,𝑘]

]

=
[

�̃�[𝑘−𝑛+1,𝑘]
�̃�[𝑘−𝑛+1,𝑘]

]

, (16c)

[

1 … 1
]

𝜈 = 1, (16d)

‖𝑢𝑖‖ ≤ 𝑢max, 𝑖 = 𝑘 + 1,… , 𝑘 + 𝐿 (16e)

on a finite horizon 𝐿 > 0, given a past input–output trajectory (�̃�, �̃�) =
((�̃�𝑖)𝑘𝑖=𝑘−𝑛, (�̃�𝑖)

𝑘
𝑖=𝑘−𝑛), where �̃�𝑖 = 𝑢(𝑡𝑖), �̃�𝑖 = 𝑦(𝑡𝑖) with 𝑢, 𝑦 denote

the input and output of system (1), respectively. The weighting ma-
trices 𝑄,𝑅 ∈ R𝑚×𝑚 in the stage cost in (16a) are assumed to be
symmetric and positive-definite. As a key difference to standard MPC
the state–space model (13) is replaced in the optimal control prob-
lem (16) by the equivalent non-parametric description (16b) based
on Lemma 5.1. The constraint (16c) serves as initial condition which
together with the observability of surrogate model (13) imposes align-
ment on the latent state, i.e. 𝑥[𝑘−𝑛+1,𝑘] = �̃�[𝑘−𝑛+1,𝑘] for the state se-
quences (𝑥𝑖)𝑘𝑖=𝑘−𝑛+1 and (�̃�𝑖)𝑘𝑖=𝑘−𝑛−1 corresponding to the input–output
trajectories ((𝑢𝑖)𝑘𝑖=𝑘−𝑛+1, (𝑦𝑖)

𝑘
𝑖=𝑘−𝑛+1) and ((�̃�𝑖)𝑘𝑖=𝑘−𝑛+1, (𝑦𝑖)

𝑘
𝑖=𝑘−𝑛+1). In order

to take into account possible nonlinearities in system (1) not covered
by the surrogate (13), we introduce a slack variable 𝜎 ∈ R(𝐿+𝑛)𝑚 with
weight 𝜆𝜎 > 0 in the cost and the constraint (16d), cf. [30,35]. Further,

the cost functional in (16a) involves a regularization in terms of 𝜈 with



L. Lanza et al.

(

s
d
W
a
b
s
t
d
o
d

d
c
p
a
a
t
i
f
t

d
w
T
v
1

𝑒

F
o
p

𝑖

w
e

i
a

s
h
s
a
a

o
d

Systems & Control Letters 192 (2024) 105892 
weighting parameter 𝜆𝜈 > 0. Further, we impose input constraints in
16e). The data-driven MPC scheme is summarized in Algorithm 1.

In practice the observed past trajectory (�̃�, �̃�) sampled from the
ystem (1) up to a certain point in time may serve as source for the
ata (�̂�, �̂�) deployed in the system description (16c) via Hankel matrices.
ith this choice more and more data is available with increasing time

nd, hence, in this way a higher persistency of excitation order can
e achieved. As an extension to the above proposed data-driven MPC
trategy one may allow for a prediction horizon 𝐿, which increases over
ime whenever the updated data is persistently exciting of sufficient or-
er, cf. [55, Sec. 5]. An additional countermeasure against a divergence
f the data-enabled model described by (15) and the underlying system
ue to nonlinearity is to frequently update the data.

Algorithm 1 Data-driven MPC with error guarantees
𝑃𝐸 ← false;
for 𝑘 = 0, 1,… do

get latest sample point (�̃�𝑘, �̃�𝑘);
calculate ‖𝑒𝑟(𝑡𝑘)‖;
if not 𝑃𝐸 then //learn the dynamics

update data (�̂�, �̂�), �̂�𝑘 ← �̃�𝑘, �̂�𝑘 ← �̃�𝑘;
if �̂� is p.e. of order 𝐿 + 𝑛 then

𝑃𝐸 ← true;
store 𝐿+𝑛(�̂�), 𝐿+𝑛(�̂�);

if ‖
‖

𝑒𝑟(𝑡𝑘)‖‖ < 𝜆 then
if PE then //MPC feedback

𝑢act ← solve(OCP (16));
else //random input action

𝑢act ← random (bounded by 𝑢max);
else //sampled-data feedback

𝑢act ← −𝛽 𝑒𝑟(𝑡𝑘)

‖𝑒𝑟(𝑡𝑘)‖
2 ;

apply 𝑢act as ZoH input action to the system (1)

We briefly discuss one possible adaption of the previously presented
ata-driven control algorithm. The feedback law (3) involves the re-
ursively defined auxiliary error variables 𝑒𝑗 defined in (2), which in
articular involve higher-order derivatives of both the system output 𝑦
nd the reference signal 𝑦ref . To take the structure of these 𝑒𝑗 into
ccount in the data-driven MPC scheme, we discuss one possibility
o include information on these derivatives in the cost function to
mprove the predictions. Since the data-driven framework is formulated
or discrete-time models (13), we use finite differences to approximate
he output’s derivatives, i.e., we use 𝑦𝑖−𝑦𝑖−1

𝜏 =∶ 𝑦[1]𝑖 . Higher-order
derivatives are approximated accordingly, and we denote with 𝑦[𝓁]𝑖 =
1
𝜏𝓁

∑𝓁
𝑗=0(−1)

𝑗(𝑗
𝓁

)

𝑦𝑖−𝑗 for 𝑦𝑖 being the output of (13) the backwards finite
ifference approximation of the 𝓁th-order derivative. Furthermore, we
ant to take into account the weighting of the higher-order derivatives.
o see, how the derivatives are to be weighted, we explicate the error
ariable 𝑒3 (we omit the time argument) using the bijection 𝛼(𝑠) =
∕(1 − 𝑠), and obtain

3 = 𝜑𝑒 + 1
1 − ‖𝑒2‖2

𝑒2

= 𝜑𝑒 + 1
1 − ‖𝑒2‖2

(

𝜑�̇� + 1
1 − ‖𝑒1‖2

𝑒1
)

= 𝜑
(

𝑒 + 1
1 − ‖𝑒2‖2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

≥1

�̇� + 1
1 − ‖𝑒2‖2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

≥1

1
1 − ‖𝑒1‖2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

≥1

𝑒
)

.
(17)

rom this it is clear that the weighting is decreasing with increasing
rder of the derivative. Combining the regularization in (16) and the
revious reasoning, we propose the following cost functional
𝑘+𝐿
∑

=𝑘+1

(

𝑟−1
∑

𝓁=0
𝜑(𝑡𝑖)𝜇𝓁‖𝑦

[𝓁]
𝑖 − 𝑦(𝓁)ref (𝑡𝑖)‖

2
𝑄 + ‖𝑢𝑖‖

2
𝑅

)

+ 𝜆𝜈‖𝜈‖
2 + 𝜆𝜎‖𝜎‖

2, (18)

here 𝜇0 ≥ 𝜇1 ≥ ⋯ ≥ 𝜇𝑟−1 ≥ 0, and 𝜑(𝑡𝑖) is the funnel function

valuated at 𝑡 = 𝑡𝑖. The weights 𝜇𝓁 reflect the weighting structure in t

7 
Fig. 6. Outputs, reference, and boundaries.

Fig. 7. Controls.

Fig. 8. Error variables.

the auxiliary error variables, see (17). We observe 1∕(1 − 𝑠2) = 1 if
and only if 𝑠 = 0, i.e., it is reasonable to order the factors 𝜇𝓁 strictly.
The reasoning presented above is just one possibility to improve the
prediction of the data-enabled MPC by taking into account the structure
of the auxiliary signals 𝑒𝑗 introduced in (2). Since the control process
s safeguarded by the ZoH controller (10), there are several options to
dapt the cost function in Algorithm 1.

In the following we demonstrate the data-enabled MPC scheme de-
cribed in Algorithm 1 on the example system (9) with fixed prediction
orizon 𝐿 = 20. Because of the linearity of system (9) we waive the
lack variable in the optimal control problem (16), i.e. we set 𝜎 = 0,
nd the constraint (16d). We set 𝑢max = 10 which yields 𝜏 ≤ 2.8 ⋅ 10−3

ccording to (11). As weights we choose 𝑄 = 103 ⋅ 𝐼 , 𝑅 = 10−4 ⋅ 𝐼 ,
𝜆𝜈 = 10−6. We consider a constant funnel given by 𝜑(𝑡) = 0.15. The
utput tracking, the control signal and the auxiliary error variables are
epicted in Figs. 6, 7 and 8 in blue, respectively. In the beginning,
here is random control in order to generate a persistently exciting
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input signal. Then, at 𝑡 = 0.2728 persistency of excitation is reached and
MPC produces a control signal, however, the error 𝑒2 exceeds the safety
region [−𝜆, 𝜆]. Hence, the ZoH signal becomes active. In the subsequent
phase the system is governed by the MPC component, while the signal is
saturated at −𝑢max. Again the error variable 𝑒2 leaves the safety region
at 𝑡 = 0.3770 and the ZoH component takes over, resulting in a large
ontrol input, which is applied for one sampling interval. Afterwards,
PC again is sufficient to keep 𝑒2 and 𝑒1 below 𝜆 and maintains the

tracking goal.
In a second numerical experiment we extend the MPC strategy

towards higher auxiliary error variables in the cost functional and
an adaptively increasing prediction horizon. Respective quantities in
Figs. 6 to 8 are labeled with the subscript ‘‘adapt’’. The performance
is depicted in Figs. 6 to 8 in red. Starting with 𝐿 = 1 the prediction
horizon is allowed to increases over time until 𝐿 = 20. Further, we
set 𝑄 = 103 ⋅ 𝐼 , 𝑅 = 10−4 ⋅ 𝐼 , 𝜆𝜈 = 10−6 as before, and 𝜇0 = 1

𝜑(0) ,
𝜇1 = 1

𝜑(0) ⋅ 10−2, where the funnel is constant with 𝜑(𝑡) = 0.15. In
comparison to the first experiment one observes that the enhanced MPC
strategy suffices to safeguard both error variables and, therefore, at no
time the ZoH component becomes active. The tracking performance in
both runs is of similar quality.

5.2. Reinforcement learning: 𝑄-table control

Using the example of 𝑄-learning, we show, in this section, how the
controller (3) can be combined with model-free Reinforcement Learn-
ing (RL) techniques to safeguard the learning process on the one hand,
and to improve the control signal using the control strategy (10). 𝑄-
learning was first developed in [56] and has since become a cornerstone
of Reinforcement Learning and foundation for many other learning
algorithms [57].

To explain the basic concepts of 𝑄-learning, we consider a nonlinear
discrete-time control system of the form

𝑥𝑘+1 = 𝑓
(

𝑥𝑘, 𝑢𝑘
)

(19)

where 𝑥 ∈  ⊂ R𝑛 is the state of the system, 𝑢 ∈  ⊂ R𝑚 is the control
input, and 𝑓 ∶ × →  is an unknown function. Given an initial state
𝑥0 ∈  , we denote, for a control sequence 𝑢 = (𝑢𝑘) ∈ N, the solution
of (19) by 𝑥(⋅; 𝑥0, 𝑢). We further assume that there exists a bounded
function 𝑟 ∶  ×  → R, which is also called reward function. Note
that we do not assume the function 𝑟 to be known but merely that the
reward 𝑟(𝑥𝑘, 𝑢𝑘) can be obtained at every step 𝑘 ∈ N of the system (19).
The objective is to maximize the cumulative future reward, i.e. to solve
the optimization problem

maximize
𝑢∈N

∞
∑

𝑘=0
𝛾𝑘𝑟(𝑥(𝑘; 𝑥0, 𝑢), 𝑢𝑘) (20)

with discount factor 𝛾 ∈ (0, 1) which determines the relative importance
of long-term versus short-term future rewards. The so called 𝑄-function
𝑄 ∶  × → R, defined by

𝑄(�̂�, �̂�) ∶= 𝑟
(

�̂�, �̂�
)

+ 𝛾 sup
𝑢∈N

∞
∑

𝑘=0
𝛾𝑘𝑟(𝑥(𝑘; 𝑓 (�̂�, �̂�), 𝑢), 𝑢𝑘), (21)

plays a key role in solving the optimization problem, as stated in the
following result which we recall for the sake of completeness.

Theorem 5.2 ([43, Sec. 1.1]). Consider the system (19). If 𝜋 ∶  →  is
a feedback control with

𝜋(𝑥) ∈ argmax
𝑢∈

𝑄(𝑥, 𝑢) (22)

for all 𝑥 ∈  , then 𝜋 applied to the system (19) is a solution to the
optimization problem (20).

If the Q-function is known, then an optimal feedback control 𝜋, in

the sense of solving the optimization problem (20), can be calculated. m

8 
Its simplicity makes the optimal feedback control, also known as the
optimal policy, very appealing. This, however, gives rise to the problem
of approximating or learning the 𝑄-function (21). While there exist
various modern approaches addressing the problem, see e.g. [57], the
original 𝑄-learning algorithm from [56] takes the form of Algorithm 2.

Algorithm 2 Q-learning algorithm

1. Initialise 𝑘 = 0 and �̃�0(𝑥, 𝑢) ∶= 0 for all 𝑥 ∈  and 𝑢 ∈  . Let
state 𝑥0 ∈  and select a learning rate (𝛼𝑘) ∈ [0, 1)N.

2. Select 𝑢𝑘 ∈  , observe 𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘) ∈  .
3. Update �̃�𝑘+1(𝑥𝑘, 𝑢𝑘) by

(1 − 𝛼𝑘)�̃�𝑘(𝑥𝑘, 𝑢𝑘) + 𝛼𝑘
(

𝑟(𝑥𝑘, 𝑢𝑘) + 𝛾 max
𝑢′∈

�̃�𝑘(𝑥𝑘+1, 𝑢′)
)

.

4. Increase 𝑘 by one, and go to step 2.

An essential part of Algorithm 2 is the selection of the control
action in Step 2. One has to find a balance between selecting the
currently expected optimal control and selecting a different action
hoping it yields a higher cumulative reward in the future. There exist
several strategies to address this exploration–exploitation dilemma, see
e.g. [58]. One of the commonly used selection strategies for the control
action in the Step 2 of Algorithm 2 is the 𝜀-greedy choice. For a given
𝜀 ∈ [0, 1], the control action is selected as 𝑢𝑘+1 = max𝑢∈ �̃�𝑘(𝑥𝑘, 𝑢) with
probability 1 − 𝜀, and an arbitrary control 𝑢𝑘+1 ∈  is selected with
probability 𝜀.

The learning rate (𝛼𝑘) also plays a crucial role in addressing the
exploration–exploitation dilemma. It determines the extent to which Al-
gorithm 2 updates its estimate of the 𝑄-function during each iteration
by new information. It is a decisive factor in the convergence rate
of the learning algorithm, see e.g. [59]. To proceed combining the
controller (3) with the Q-learning strategy, we recall the following
result [60].

Theorem 5.3 ([60]). Consider the system (19) with finite sets  ,  . If the
learning rate (𝛼𝑘) ∈ 𝓁2(N)∖𝓁1(N) and if all (𝑥, 𝑢) ∈ × appear infinitely
often in Step 2 of Algorithm 2, then

lim
𝑘→∞

�̃�𝑘(𝑥, 𝑢) = 𝑄(𝑥, 𝑢)

for all 𝑥 ∈  , 𝑢 ∈  .

In view of Theorem 5.3, combining 𝑄-learning with the controller
(3) in the form of a combined controller (10) and applying it to the
system (1) faces three challenges which need to be addressed: 𝑄-
earning is formulated for discrete systems, the sets  ,  are assumed
o be finite, and the problem is presumed to be time-invariant. Under
he assumption that the operator 𝐓 does not have a time-delay, using a
ampling rate 𝜏 > 0 and only applying constant control signals between
wo sampling instances puts the system (1) via evaluation of its solution
perator into a discrete system of the form (19). There are various
pproaches to overcome the requirement of a finite state  and control
pace  , see e.g. [61]. As a consequence of Lemma 2.1, the system
tates 𝜒(𝑦), respectively the error signals 𝑒𝑖 for 𝑖 = 1,… , 𝑟 − 1, evolve
ithin a compact set 𝐾 when applying the combined controller (10) to

he system (1). Using a quantization of this compact set therefore is a
traightforward way to overcome the problem of the requirement of a
inite set  . Since the controller (3) is bounded by 𝛽∕𝜆, a quantization
f the set ̄𝛽∕𝜆 is a natural choice for  . However, the curse of
imensionality renders a quantization approach unsuitable for high-
imensional problems. Note that the quantization of the set  is only
sed for the learning-based component of the controller (10) but not for
he ZoH controller component (3) which is used in the safety critical
egion. It is still an open research question whether safety guarantees as
n Theorem 5.1 can be given if the controller (3) can only emit finitely
any different control signals. Due to the fact that 𝑦 and 𝜑 are
ref
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explicit functions of time, the considered control problem is inherently
time variant. There are a number of different results for addressing
this issue, see e.g. [62,63]. Furthermore, it is also possible to encode
the time dependency in the state of the system (19) by enlarging the
compact set 𝐾 and modifying (19), because the functions 𝑦ref and 𝜑
are bounded. However, one cannot guarantee that all (𝑥, 𝑢) ∈  × 
ppear infinitely often in the algorithm, unless 𝑦ref and 𝜑 are periodic.
oreover, encoding the time dependency in the compact set 𝐾 further
orsens the problem of the curse of dimensionality. Nevertheless, in
irtue of Remark 5.1 it is still meaningful to combine the Q-learning
cheme with the ZoH controller (3).

In the following, we demonstrate the combined controller (10) con-
isting of (3) and the 𝑄-learning Algorithm 2 on the example system (9).
sing the control strategy (10) with sampling time 𝜏 > 0 and time

nstances 𝑡𝑘 ∈ 𝜏N, the aim is to take advantage of 𝑄-learning by
xploring the safe tracking region, e.g. for ‖

‖

𝑒𝑟(𝑡𝑘)‖‖ < 𝜆, and applying
an improved control signal while the safety critical region is secured
by the controller 𝑢ZoH as in (3) for ‖𝑒𝑟(𝑡𝑘)‖ ≥ 𝜆. We, therefore, only
consider the error variable 𝑒𝑟 for the 𝑄-learning Algorithm 2 and choose
a uniform quantization of the set ̄𝜆 as the state space  . Considering
the system (1) and the error variables (2), 𝑒𝑟 satisfies the ordinary
differential equation

̇ 𝑟(𝑡) =
�̇�(𝑡)
𝜑(𝑡)

(𝑒𝑟(𝑡) − 𝛾𝑟−1(𝑡)) + �̇�𝑟−1(𝑡) + 𝜑(𝑡)(𝑓 (𝑧(𝑡)) + 𝑔(𝑧(𝑡))𝑢 − 𝑦(𝑟)ref (𝑡)),

with 𝛾𝑟−1(𝑡) ∶= 𝛼(‖𝑒𝑟−1(𝑡)‖2)𝑒𝑟−1(𝑡) and 𝑧(⋅) ∶= (𝑑(⋅),𝐓(𝜒(𝑦))(⋅)). Sampling
this differential equation with sampling time 𝜏 results in a discrete-
time control system. However, note that it does not have the form (19)
due to the time dependency of 𝑦ref and 𝜑. Note further that the state
variables 𝑒1,… , 𝑒𝑟−1 are neglected. Nevertheless, the application of
the 𝑄-learning algorithm achieves that the error variable 𝑒𝑟 remains,
after an initial learning period, below the threshold 𝜆 as simulations
show, see Figs. 9 and 10. Further research is necessary to determine
whether it is always the case that solely considering 𝑒𝑟 in the 𝑄-learning
algorithm is sufficient and if guarantees about the convergence of the
learning algorithm can be given despite the inherent time dependency
of the problem. As for the set of control values, we choose  to be a
uniform quantization of the set ̄𝑢max

where 𝑢max is chosen as 𝑢max =
10 as in the example in Section 5.1. To improve the performance of
the original controller (3), meaning better tracking performance and
reduced control values, we choose the reward function

𝑟(𝑒𝑟(𝑡𝑘), 𝑢) = − ‖

‖

𝑒𝑟(𝑡𝑘)‖‖
2 − 𝛼𝑢 ‖𝑢‖

2 ,

with parameter 𝛼𝑢 ∈ R≥0. The function 𝑟 rewards small values of
the error variable 𝑒𝑟 and the applied control values (depending on
the penalty parameter 𝛼𝑢). For the simulation of the example system
(9), we chose the system parameters as in Section 4. The reference
trajectory was 𝑦ref = 0.4 sin( 𝜋4 𝑡) for 𝑡 ∈ [0, 20]. Further for the 𝑄-learning
parameters, the size of the finite sets  and  were selected as 8
and 25, respectively. The learning rate was set as constant 𝛼 = 0.8. In
rder to let the algorithm explore the state and action space, the greedy
arameter was set to 𝜀 = 1 for 𝑡 ∈ [0, 1], thereafter the greedy parameter
s halved in order to take the control action more often according to
earned 𝑄-function. For the reward function the parameter 𝛼𝑢 = 1∕𝑢max
as selected. The simulations are depicted in Figs. 9 and 10. Fig. 9

hows how the error signals evolving within the funnel, respectively
he 𝜆 activation threshold. Fig. 10 shows the corresponding control
ction. It can be seen that with the help of the primary controller
ZoH in (3), Q-learning algorithm is able to safely explore the state
nd action space and learn/approximate the Q-function by applying
andom control actions with an amplitude lower than 10. Only if the
rror exceeds the activation threshold, the ZoH control component
ntervenes with a large control input to prevent a violation of the funnel
oundaries. One can see that with decaying 𝜀 the number of random

control actions applied to the system reduces and the auxiliary signal
𝑒2(𝑡) gets closer to 0 and remains close to it. Overall, the 𝑄-learning
algorithm reduces the peaks of the control significantly in comparison

to Section 4 where merely the controller (3) was applied.

9 
Fig. 9. Error signals.

Fig. 10. Control signals.

Remark 5.3. To reduce computational effort, the control signal 𝑢data
in (10) does not have to be updated at every 𝑡𝑖 = 𝑖𝜏. Since the system
class (1) allows for bounded disturbances, it is possible to combine
the data-driven control with a move blocking strategy, cf. [64], i.e., to
apply the control value 𝑢data for longer than one sampling interval 𝜏.
If then 𝑒𝑟 leaves the safe region, the controller (10) interprets the
additional value 𝑢data as a disturbance in the system (according to
Assumption 1 this means 𝐷 = ‖𝑑‖∞ + 𝑢max), and hence the con-
straint satisfaction is guaranteed by the controller. Note that system
measurements, however, have to be taken at every 𝑡𝑖 = 𝑖𝜏.

5.3. Nonlinear example: Van der Pol oscillator

The previously considered example (9) is a linear system. Now, we
briefly present a numerical simulation of a nonlinear system, namely an
externally driven Van der Pol oscillator with additive disturbance 𝑑(𝑡).
This system is a typical example for nonlinear systems with global
relative degree two. The system dynamics are governed by

�̈�(𝑡) − (1 − 𝑦(𝑡)2)�̇�(𝑡) + 𝑦(𝑡) − 𝑢(𝑡) − 𝑑(𝑡) = 0,

with 𝑦(0), �̇�(0) ∈ R, and external input 𝑢(𝑡). The bounded function 𝑑 ∈
∞(R≥0,R) acts as a disturbance. To illustrate the effect of the nonlin-
arity, we track a constant reference 𝑦ref (𝑡) ≡ 2. We use a non-constant
unnel 𝜑(𝑡) = (𝑎𝑒−𝑏𝑡 + 𝑐)−1 with 𝑎 = 5, 𝑏 = 4, 𝑐 = 2. We set 𝑦(0) = −2,

i.e., starting with a large tracking error, and �̇�(0) = 4. We choose
𝑑(𝑡) = 0.1 cos(7𝑡). For activation threshold 𝜆 = 0.75 we calculate 𝛽 ≥
.6918⋅103. Then, with 𝑢max = 𝛽∕𝜆 (input bound for data-driven control)
he requirements of Theorem 5.1 are satisfied with 𝜏 ≤ 1.149 ⋅ 10−4.
he results of the simulation are depicted in Figs. 11 and 12, where
e use the subscript WL for using Algorithm 1, and RL for using
lgorithm 2. Like for the previous example, we consider both data-
riven controllers. For Algorithm 1 we use the cost function (18) with
arameters 𝜑(𝑡𝑖)𝜇0(𝑡𝑖) = 1, 𝜑(𝑡𝑖)𝜇1(𝑡𝑖) = 1∕2 ⋅ 10−3, 𝑄 = 2 ⋅ 103 ⋅ 𝐼 ,
= 10−4 ⋅ 𝐼 , 𝜆𝜈 = 10−5, 𝜆𝜎 = 106. Moreover, we use an adapted

rediction horizon with 𝐿max = 20. To account for the underlying
onlinear dynamics, additionally, once 𝐿 is reached, the database
max
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Fig. 11. Output within the funnel around reference.

Fig. 12. Control signals.

is constantly updated with new data points and older data is removed,
provided that the persistency of excitation is maintained. As can be seen
in Fig. 11 the tracking guarantees are valid as stated in Theorem 5.1.
Fig. 12 shows the control actions. It can be observed that the Q-
learning algorithm requires some more data to produce controls, which
are sufficient to achieve ‖𝑒2(𝑡𝑘)‖ < 𝜆, i.e., to avoid activation of the
safeguarding controller component. While Algorithm 1 (WL) produces
smaller input values, the tracking is more accurate using Algorithm 2
(RL) after the learning process.

6. Conclusion and future work

We presented a novel two-component controller for continuous-
time nonlinear control systems. The ZoH tracking controller consists
of a data-driven/learning-based component and a discrete-time output-
feedback controller with prescribed performance. The feedback con-
troller is designed to achieve the control objective (tracking with
prescribed performance) and safeguards the learning-based controller.
We derived explicit upper bounds on the sampling time 𝜏 > 0 and for
the maximal control input. As data-driven controller we employed an
MPC algorithm based on the fundamental results of Willems et al. [25],
which enables predictive control using only input–output data. Further,
we implemented a Reinforcement Learning scheme and investigated
a Q-table control algorithm to explore the system’s dynamics. The
proposed two-component data-driven controller was proven to achieve
the control objective, and in particular, outperform the pure feedback
controller.

Based on the presented results, future work will aim to reduce
the conservatism of the controller and to investigate the interplay
with observers and/or the funnel pre-compensator [65,66] to alleviate
the strict assumption of not only knowing the output but also its
derivatives. Moreover, we plan to perform a comprehensive comparison
(simulation study) with other data-driven ZoH controllers, e.g., the
one recently proposed in [67], and combining these with the proposed
safeguarding feedback component.
 a
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Appendix. Proofs of auxiliary results

We present the proofs of the auxiliary results Lemmas 2.1 and 2.2
presented in Section 2.2, and Theorem 3.1 in Section 3.

Proof of Lemma 2.1. We use the constants 𝜀𝑘, 𝜇𝑘 > 0 defined in (6),
and to improve legibility, we use the notation 𝑒𝑘(𝑡) ∶= 𝑒𝑘(𝑡, 𝜒(𝜁 )(𝑡)) for
𝜁 ∈ 𝑟

𝛿 . Let 𝛿 ∈ (0,∞] and 𝜁 ∈ 𝑟
𝛿 be arbitrary but fixed. We define the

auxiliary function 𝛾𝑘(𝑡) ∶= 𝛼(‖𝑒𝑘(𝑡)‖2)𝑒𝑘(𝑡), and set 𝛾0(⋅) = �̇�0(⋅) = 0. Note
that for 𝑘 = 1,… , 𝑟 − 1 each of the error signals defined in (2) satisfies
for 𝑡 ∈ [0, 𝛿) the differential equation

̇𝑘 =
�̇�
𝜑
(𝑒𝑘 − 𝛾𝑘−1) + 𝑒𝑘+1 + �̇�𝑘−1 − 𝛼(‖𝑒𝑘‖2)𝑒𝑘,

here the dependency on 𝑡 has been omitted and 𝑒(𝑘) denotes the 𝑘th
erivative of 𝑒(𝑡) = 𝜁 (𝑡) − 𝑦ref (𝑡). We observe

�̇�𝑘 = 2𝛼′(‖𝑒𝑘‖2) ⟨𝑒𝑘, �̇�𝑘⟩ 𝑒𝑘 + 𝛼(‖𝑒𝑘‖2)�̇�𝑘.

eeking a contradiction, we assume that for at least one 𝓁 ∈ {1,… , 𝑟 − 1}
here exists 𝑡∗ ∈ (0, 𝛿) such that ‖𝑒𝓁(𝑡∗)‖2 > 𝜀𝓁 . W.l.o.g. we assume that
his is the smallest possible 𝓁. Invoking 𝜒(𝑦0) ∈ 𝑟

0 and continuity of the
nvolved functions we may define 𝑡∗ ∶= max

{

𝑡 ∈ [0, 𝑡∗) ||
|

‖𝑒𝓁(𝑡)‖2 = 𝜀𝓁
}

.
hen, for 𝑡 ∈ [𝑡∗, 𝑡∗] we calculate, omitting again the dependency on 𝑡,

d
d𝑡

1
2‖𝑒𝓁‖

2 =
⟨

𝑒𝓁 ,
�̇�
𝜑 (𝑒𝓁 − 𝛾𝓁−1) + 𝑒𝓁+1 + �̇�𝓁−1 − 𝛼(‖𝑒𝓁‖2)𝑒𝓁

⟩

≤ ‖𝑒𝓁‖
(

‖

‖

‖

‖

�̇�
𝜑
‖

‖

‖

‖∞
(1 + 𝛼(𝜀2𝓁−1)𝜀𝓁−1) + 1 + �̄�𝓁−1 − 𝛼(𝜀2𝓁)𝜀𝓁

)

≤ 0,

n the last line we used the monotonicity of 𝛼(⋅), the definition of 𝜀𝓁 ,

nd that �̇�𝓁−1 is bounded by minimality of 𝓁. Hence, the contradiction
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𝜀𝓁 < ‖𝑒𝓁(𝑡∗)‖2 ≤ ‖𝑒𝓁(𝑡∗)‖2 = 𝜀𝓁 arises after integration. This yields
oundedness of 𝑒𝓁 , 𝛾𝓁 . Using the derived bounds we estimate

�̇�𝓁‖ ≤
‖

‖

‖

‖

�̇�
𝜑
‖

‖

‖

‖∞
(1 + 𝛼(𝜀2𝓁−1)𝜀𝓁−1) + 1 + 𝛼(𝜀2𝓁)𝜀𝓁 + �̄�𝓁−1 = 𝜇𝓁 .

e conclude ‖𝑒𝑘(𝑡)‖ ≤ 𝜀𝑘 < 1 and ‖�̇�𝑘(𝑡)‖ ≤ 𝜇𝑘 for all 𝑘 = 1,… , 𝑟 − 2
and all 𝑡 ∈ [0, 𝛿). For 𝑘 = 𝑟 − 1 the same arguments are valid invoking
𝑒𝑟 ∶ [0, 𝛿) → 1. □

roof of Lemma 2.2. To prove the assertion, we invoke continuity
f the system functions 𝑓, 𝑔 and the resulting boundedness on compact
ets. According to Lemma 2.1, there exist 𝜀𝑘 ∈ (0, 1) for 𝑘 = 1,… , 𝑟 − 1

such that

∀ 𝜁 ∈ 𝑟
∞ ∀ 𝑡 ∈ R≥0 ∀ 𝑘 = 1,… , 𝑟 − 1 ∶ ‖

‖

𝑒𝑘(𝑡, 𝜒(𝜁 )(𝑡))‖‖ ≤𝜀𝑘.

Further, ‖𝑒𝑟(𝑡, 𝜒(𝜁 )(𝑡))‖ ≤ 1. Thus, due to the definition of 𝑒𝑘 in (2),
there exists a compact set 𝐾𝜁 ⊂ R𝑟𝑚 with

∀ 𝜁 ∈ 𝑟
∞ ∀ 𝑡 ∈ R≥0 ∶ 𝜒(𝜁 )(𝑡) ∈ 𝐾𝜁 .

Due to the BIBO property of the operator 𝐓, there exists a compact set
𝐾𝑞 ⊂ R𝑞 with 𝐓(𝜉)(R≥0) ⊂ 𝐾𝑞 for all 𝜉 ∈ (R≥0,R𝑟𝑚) with 𝜉(R≥0) ⊂ 𝐾𝜁 .
For arbitrary 𝛿 ∈ (0,∞) and 𝜁 ∈ 𝑟

𝛿 , we have, according to Lemma 2.1,

∀ 𝑡 ∈ [0, 𝛿) ∀ 𝑘 = 1,… , 𝑟 − 1 ∶ ‖

‖

𝑒𝑘(𝑡, 𝜒(𝜁 )(𝑡))‖‖ ≤𝜀𝑘.

Further, ‖𝑒𝑟(𝑡, 𝜒(𝜁 )(𝑡))‖ ≤ 1. Thus, 𝜒(𝜁 )(𝑡) ∈ 𝐾𝜁 for all 𝑡 ∈ [0, 𝛿). For
every element 𝜁 ∈ 𝑟

𝛿 the function 𝜒(𝜁 )|[0,𝛿) can smoothly be extended
to a function 𝜁 ∈ ((R≥0,R𝑚))𝑟 with 𝜁 (𝑡) ∈ 𝐾𝜁 for all 𝑡 ∈ R≥0.
Due to the BIBO property of the operator 𝐓, we have 𝐓(𝜁 )(𝑡) ∈ 𝐾𝑞
for all 𝑡 ∈ R≥0. Since 𝐓 is causal, this implies 𝐓(𝜒(𝜁 ))|[0,𝛿)(𝑡) ∈
𝐾𝑞 for all 𝑡 ∈ [0, 𝛿) and 𝜁 ∈ 𝑟

𝛿 . Define the compact set 𝐾 ∶=
𝐷 × 𝐾𝑞 ⊂ R𝑝+𝑞 . Since 𝑓 (⋅) and 𝑔(⋅) are continuous, the constants
𝑓max ∶= max𝑥∈𝐾 𝑓 (𝑥) and 𝑔max ∶= max𝑥∈𝐾 𝑔(𝑥) exist. For every 𝛿 ∈
(0,∞], 𝜁 ∈ 𝑟

𝛿 , and 𝑑 ∈ 𝐿∞(R≥0,R𝑝) with ‖𝑑‖∞ ≤ 𝐷 we have
∀ 𝑡 ∈ [0, 𝛿) ∶ (𝑑(𝑡),𝐓(𝜒(𝜁 ))(𝑡)) ∈ 𝐾. Therefore, we obtain 𝑓max ≥
‖

‖

‖

𝑓 ((𝑑,𝐓(𝜒(𝜁 )))|[0,𝛿))
‖

‖

‖∞
and 𝑔max ≥

‖

‖

‖

𝑔((𝑑,𝐓(𝜒(𝜁 )))|[0,𝛿))
‖

‖

‖∞
. Since 𝑔(𝑥) is

positive definite, for every 𝑥 ∈ 𝐾 there exists 𝑔min > 0 such that
𝑔min ≤

⟨𝑧,𝑔((𝑑,𝐓(𝜒(𝜁 )))|[0,𝛿)(𝑡))𝑧⟩
‖𝑧‖2

for all 𝑧 ∈ R𝑚∖ {0}. □

roof of Theorem 3.1. The proof consists of two main steps. In the
irst step we establish the existence of a solution of the initial value
roblem (1), (3). In the second step we show feasibility of the proposed
ontrol law, i.e., all error variables are bounded by 𝜀𝑘 and the tracking
rror evolves within the funnel boundaries.

Step 1. The application of the control signal (3) to system (1)
eads to an initial value problem. If this problem is considered on the
nterval [0, 𝜏], then there exists a unique maximal solution on [0, 𝜔)

with 𝜔 ∈ (0, 𝜏]. If all error variables 𝑒𝑘 evolve within the set 1 for
all 𝑡 ∈ [0, 𝜔), then ‖𝜒(𝑦)(⋅)‖ is bounded on the interval [0, 𝜔) and, as
a consequence of the BIBO condition of the operator, 𝐓(⋅) is bounded
as well. Then 𝜔 = 𝜏, cf. [68, § 10, Thm. XX] and there is nothing else
to show. Seeking a contradiction, we assume the existence of 𝑡 ∈ [0, 𝜔)
such that ‖𝑒𝑘(𝑡)‖ ≥ 1 for at least one 𝑘 = 1,… , 𝑟. Invoking Lemma 2.1 it
remains only to show that the last error variable 𝑒𝑟 satisfies ‖𝑒𝑟(𝑡)‖ ≤ 1
for all 𝑡 ∈ [0, 𝜔). Before we do so, we record the following observation.
For 𝛾𝑟−1(𝑡) ∶= 𝛼(‖𝑒𝑟−1(𝑡)‖2)𝑒𝑟−1(𝑡) we calculate for 𝑧(⋅) ∶= (𝑑(⋅),𝐓(𝜒(𝑦))(⋅))

�̇�𝑟(𝑡) − 𝜑(𝑡)𝑔(𝑧(𝑡))𝑢 = �̇�(𝑡)𝑒(𝑟−1)(𝑡) + 𝜑(𝑡)𝑒(𝑟)(𝑡) + �̇�𝑟−1(𝑡) − 𝜑(𝑡)𝑔(𝑧(𝑡))𝑢

=
�̇�(𝑡)
𝜑(𝑡)

(𝑒𝑟(𝑡) − 𝛾𝑟−1(𝑡)) + �̇�𝑟−1(𝑡) + 𝜑(𝑡)(𝑓 (𝑧(𝑡)) − 𝑦(𝑟)ref (𝑡)) =∶ 𝐽 (𝑡).
(A.1)

Step 2. We show ‖𝑒𝑟(𝑡)‖ ≤ 1 for all 𝑡 ∈ [0, 𝜔). We separately
investigate the two cases ‖𝑒𝑟(0)‖ < 𝜆 and ‖𝑒𝑟(0)‖ ≥ 𝜆.

Step 2.a We consider ‖𝑒𝑟(0)‖ < 𝜆. In this case we have 𝑢 = 0.
Seeking a contradiction, we suppose that there exists a time instance
𝑡∗ ∶= inf

{

𝑡 ∈ (0, 𝜔) || ‖𝑒 (𝑡)‖ > 1
}

. For the function 𝐽 (⋅) introduced

|

𝑟

11 
in (A.1) we observe ‖𝐽 |[0,𝑡∗)‖∞ ≤ 𝜅0 according to Lemmas 2.1 and 2.2.
Then we calculate for 𝑡 ∈ [0, 𝑡∗]

1 = ‖𝑒𝑟(𝑡∗)‖ ≤ ‖𝑒𝑟(0)‖ + ∫ 𝑡∗
0 ‖�̇�𝑟(𝑠)‖ d𝑠

= ‖𝑒𝑟(0)‖ + ∫ 𝑡∗
0 ‖𝐽 (𝑠)‖ d𝑠

≤ ‖𝑒𝑟(0)‖ + ∫ 𝑡∗
0 𝜅0 d𝑠 < 𝜆 + 𝜅0𝜔 < 1,

where we used 𝑡∗ < 𝜔 ≤ 𝜏 < (1 − 𝜆)∕𝜅0. This contradicts the definition
of 𝑡∗.

Step 2.b We consider ‖𝑒𝑟(0)‖ ≥ 𝜆. In this case we have the control
𝑢 = −𝛽𝑒𝑟(0)∕‖𝑒𝑟(0)‖2. We show again ‖𝑒𝑟(𝑡)‖ ≤ 1 for all 𝑡 ∈ [0, 𝜔).
To this end, seeking a contradiction, we suppose the existence of
𝑡∗ = inf

{

(0, 𝜔) ||
|

‖𝑒𝑟(𝑡)‖ > 1
}

. Invoking the initial conditions and
ontinuity of the involved functions, and utilizing Lemma 2.2 and (A.1),
e calculate for 𝑡 ∈ [0, 𝑡∗]

d
d𝑡

1
2‖𝑒𝑟(𝑡)‖

2 = ⟨𝑒𝑟(𝑡), �̇�𝑟(𝑡)⟩ =
⟨

𝑒𝑟(0) + ∫ 𝑡
0 �̇�𝑟(𝑠) d𝑠, �̇�𝑟(𝑡)

⟩

≤ ‖𝑒𝑟(0)‖‖𝐽 (𝑡)‖ + 𝜔‖�̇�𝑟|[0,𝑡∗]‖
2
∞ + 𝜑(𝑡) ⟨𝑒𝑟(0), 𝑔(𝑧(𝑡))𝑢⟩

= ‖𝑒𝑟(0)‖‖𝐽 (𝑡)‖ + 𝜔‖�̇�𝑟|[0,𝑡∗]‖
2
∞ − 𝜑(𝑡)𝛽 ⟨𝑒𝑟(0),𝑔(𝑧(𝑡))𝑒𝑟(0)⟩

‖𝑒𝑟(0)‖2

≤ ‖𝑒𝑟(0)‖𝜅0 + 𝜔‖�̇�𝑟|[0,𝑡∗]‖
2
∞ − inf

𝑠≥0
𝜑(𝑠)𝑔min𝛽

≤ 𝜅0 + 𝜔𝜅2
1 − inf

𝑠≥0
𝜑(𝑠)𝑔min𝛽 ≤ 2𝜅0 − inf

𝑠≥0
𝜑(𝑠)𝑔min𝛽 < 0,

he third line due to 𝑡∗ < 𝜔 ≤ 𝜏, the penultimate line via the definition
f 𝜏 and the last line by definition of 𝛽; moreover, we used ‖�̇�𝑟|[0,𝑡∗]‖ ≤
1 and ‖𝐽 |[0,𝑡∗]‖∞ ≤ 𝜅0. In particular this yields 1

2
d
d𝑡‖𝑒𝑟(𝑡)|𝑡=0‖

2 < 0,
by which 𝑡∗ > 0. Therefore, we find the contradiction 1 = ‖𝑒𝑟(𝑡∗)‖2 <
‖𝑒𝑟(0)‖2 ≤ 1. Repeated application of the arguments in Steps 1 and 2 on
the interval [𝑡𝑖, 𝑡𝑖 + 𝜏], 𝑖 ∈ N, yields recursive feasibility. □
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