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Abstract— We study a piecewise affine (PWA) model of the
spiking of neurons located in a subsystem of the olfactory sys-
tem. Our long-term goal is to understand the stability properties
of a network of such neurons and as a first step towards this
goal we consider the simplest case of the interaction between
two types of neurons (excitatory and inhibitory). Due to the
discontinuous nature of the PWA model, it is challenging to find
a continuous Lyapunov function, we therefore utilize a recently
proposed constructive method to find a discontinuous Lyapunov
function. In order to utilize this method, it is necessary to define
a suitable polyhedral partition of the state-space and carefully
investigate the dynamics at the boundaries. As an additional
step, we propose extending the analysis by employing tools from
the input-to-state (ISS) stability framework.

I. INTRODUCTION

In the biological field, there has been a vivid interest
in studying interactions between neurons and currently this
analysis has been expanding through the use of techniques
from different fields such as neuromorphic computing [1],
[2], graph theory [3], [4], dynamical systems [5], [6] and
systems and control [7], [8].

For this paper, the focus will be on the olfactory system,
and more precisely on the interactions between neurons
located in the olfactory bulb, a component responsible for re-
ceiving information and further relaying it to the higher areas
of the brain for identification [9], [10]. For simplification, we
will consider just two main types of neurons: excitatory ones,
named mitral cells (MC) and inhibitory ones, called granule
cells/interneurons (IN). The ODE system proposed in [10],
which for this paper we will refer to as the Wanner-Friedrich
(WF) model, encompasses the aforementioned interactions
between neurons in a threshold-linear network frame, which
is a special instance of a piecewise-affine (PWA) system. To
better understand the complex dynamical interactions within
such a network of neurons, we consider, as a first step,
the stability property of a simple network consisting of an
excitatory neuron interacting with an inhibitory neuron.

The aim of this paper is to prove the global asymptotic
stability (GAS) of the scalar autonomous WF model by using
a discontinuous piecewise Lyapunov function, introduced in
[11]. Moreover, we will offer an extension pathway on how
to deal with inputs once they are considered, using input-
to-state stability (ISS). The novelty involving this approach
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comes from two aspects: 1) we suggest a way to deal
with larger neural networks, which can be decomposed into
smaller components that can be easier dealt with and hence
offer a toolkit for testing stability; 2) we plan to develop
a theoretical framework for PWA systems involving the
cone copositive method in order to translate ISS Lyapunov
function requirements into linear matrix inequalities (LMIs),
which, given feasibility, would lead to certifying the systems
as ISS.

The modeling framework of PWA systems [12], [13]
or more generally, hybrid dynamical systems, has already
been used in biological regulatory networks [14] and one of
the earliest conceptualizations of this approach for control
theory was offered by [12]. Among the extensively studied
properties of PWA systems, stability is of particular relevance
to this work and has been studied in the following sources
[11], [15], [16], [17], [18], [19], [20], [21]. There has also
been some interest and use of the piecewise affine model
approach for analysing biological systems [22]. This formu-
lation presents the advantage that it captures the linearity
of the behaviour of the system given a proper split of the
state space. Along with this partition, several properties of
the PWA systems have been studied in biological networks
[22], [23], [24], [25], [26], [27]. In terms of determining
a piecewise Lyapunov function, certain similarities in our
proposed approach can be seen in [28], [29], [30], [31] in-
cluding some of the building blocks for the formulation of the
LMIs. These similarities include the piecewise affine nature
of the dynamics, with threshold-based switching between
states, and the presence of feedback mechanisms. Despite
the fact that we take inspiration from [16] in describing our
methodology, several important distinctions should be noted.
The biological mechanisms underlying the nonlinearities dif-
fer substantially, leading to distinct mathematical structures.
The WF model reflects the neuronal interaction with graded
firing rate, continuous responses to inputs, whereas the gene
transcription models and more explicitly the ones present
in [29], use binary switching, where genes are expressed or
not. Biologically, the gene model characterizes transcription
networks that exhibit behavior similar to logical circuits,
for instance toggle switches and bistability. Furthermore, the
threshold mechanisms play distinct roles: in the WF model,
thresholds switch the effect of excitation/inhibition, while
in the toggle-switch they delineate domains of attraction.
Having the biological models described above, the resulting
LMIs are constructed with different objectives. For the gene
network, the Lyapunov candidate ensures convergence to one
of two stable equilibria and requires continuity on certain



region boundaries, specifically, those belonging to cycles
or where sliding modes can occur, as discussed in [29].
Importantly, continuity is not required on all boundaries;
crossing boundaries that do not form cycles and can be
certified to lack sliding modes allow discontinuities, as it
will be seen in the formulation for the WF model. In
our case, allowing the Lyapunov function to be piecewise
discontinuous across such boundaries reflects the system’s
alternating neural dynamics and is consistent with existing
approaches cf. [29].

The structure of this paper is as follows. We introduce the
concept of stability in the context of a piecewise affine sys-
tem and the steps towards building the piecewise Lyapunov
function, along with the analysis on the WF model. Once the
analysis is performed and the building blocks are obtained,
we offer the result of the computational implementation
of these outputs and thus provide a stability certificate
for the scalar case of the biological model, along with a
graphical representation of the level sets for certain regions.
Furthermore, we introduce concepts from input-to-state (ISS)
theory, and we try to offer a perspective for extending the
cone copositive method, once inputs are considered. This
may also allow to study larger networks by viewing them
as interconnected small networks and using versions of the
small-gain-theorem (e.g. [32]) to conclude overall stability
of the complex network.

II. STABILITY OF A PWA SYSTEM

A. PWA system analysis for the Wanner-Friedrich olfactory
bulb model

When working within a PWA system framework, stability
analysis becomes a more complicated issue due to the par-
tition of the state space into regions which exhibit different
behaviors. According to [16], the Lyapunov method can
be still employed by resorting to the piecewise quadratic
Lyapunov functions for each region, combining these results
and then providing the stability conditions in terms of
cone-constrained inequalities. These inequalities are being
formulated and solved with the help of LMIs. Solving these
inequalities leads to suitable local Lyapunov function can-
didates, which together with suitable boundary conditions,
ensure asymptotic stability. According to [11], [16], several
ingredients will be introduced to perform the actual steps
that underline the aforementioned analysis.

1) Define the PWA system and perform the polyhedral
partition: We begin by defining the PWA system as

ẋ = Asx+bs x ∈ Xs, s = 1 . . .S, (1)

where As ∈ Rn×n, bs ∈ Rn, and X =
⋃S

s=1 Xs ⊆ Rn is a
polyhedral partition of the state space X , i.e. each Xs is a
finite intersection of closed half-spaces. Furthermore, let

Âs =

(
As bs
0 0

)
.

We start implementing this PWA structure for the WF model
from [10]. The adapted scalar version of this ODE system

is given by
ẋe(t) =−αxe(t)−β [xi(t)−θxi ]++σ(t),

ẋi(t) =−γxi(t)+δ [xe(t)−θxe ]+,
(2)

where xe(t),xi(t) ∈ R are the firing rates of the excita-
tory/inhibitory neuron; θxe ,θxi > 0 are firing thresholds;
α,β ,γ,δ > 0 are biological parameters; σ(t) is an external
input; [.]+ denotes the half-wave rectification function (i.e.
[p]+ = max{0, p}).
We indicate the following values based on [10] and the
coding of the scalar version of the ODE system in Matlab:
α = 1, β = 1.435, γ = 0.0125, δ = 0.0063. For this case
study, only the autonomous version of (2) will be considered
(i.e. σ(t) = 0) and thus formulated in the piecewise affine
system of the form (x = (xe,xi)T )

ẋ = Asx+bs, x ∈ Xs,
⋃
s

Xs = R2.

Based on the the half-wave rectification function, in order
to reflect the linear property of each case in the model, we
began with the assumption that the state space should be split
into four regions (I, II, III, IV), in the following format:

ẋ = AIx+bI =

[
−α 0
0 −γ

]
x,

{
xe ≤ θxe ,

xi ≤ θxi ,

ẋ = AIIx+bII =

[
−α 0
δ −γ

]
x+

(
0

−δθxe

)
,

{
xe ≥ θxe ,

xi ≤ θxi ,

ẋ = AIIIx+bIII =

[
−α −β

δ −γ

]
x+

(
βθxi

−δθxe

)
,

{
xe ≥ θxe ,

xi ≥ θxi ,

ẋ = AIVx+bIV =

[
−α −β

0 −γ

]
x+

(
βθxi

0

)
,

{
xe ≤ θxe ,

xi ≥ θxi .

This four region partition describes the stance that each of
the two neurons has with respect to its threshold, namely
θxe = 2 and θxi = 50, with values taken from [10]. Hence,
for the region I, neither type of neuron has reached its
threshold. In region II, the excitatory neuron is active, but
the inhibitory one is below its threshold. Next, in region
III both neurons are active, meaning they both surpassed
their respective thresholds. Lastly, region IV covers the part
where only the inhibitory neuron is active and above the
threshold. In addition, to apply the method described in
more detail in [11], we had to ensure that the boundaries of
the proposed regions exhibited qualitatively uniform dynam-
ical behavior. However, it was observed that the boundary
between region II and region III did not exhibit a simple
crossing behavior. In particular, at the point

(
γ

δ
θxi +θxe , θxi

)
,

the direction of the vector field changed qualitatively: to
the left of this point, the flow decreased, while to the
right, there was a slight increase. This suggested that the
boundary was not a standard transition region, but rather
marked a change in flow behavior. This fact led us to
introduce additional boundaries, guided by the observation
of vector field turning behavior. Specifically, we examined
points where one component of the derivative became zero,
indicating a switch in the flow direction. For instance, within
region IV, the trajectory exhibited a turning motion around



a certain line before moving toward the point (0, θxi), after
which the flow decreased toward the equilibrium. By noticing
these patterns, we proposed a further refinement in order to
encapsulate similar behavior, which would lead to an easier
path to finding the Lyapunov function. The aforementioned
refinement resulted in a total of nine regions, as proposed
in Figure 1. These nine regions maintain the description
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Fig. 1. Proposed state partition for the WF model (2); note that the scale
was adjusted for illustration purposes.

of the behavior of the two neurons with respect to their
threshold and reflect the four region format as follows: I (X0
and X1); II (X2 and X3); III (X4 and X5); IV (X6, X7 and
X8). After establishing the PWA system in terms of the
regions, we described them in terms of vertices and rays,
thus obtaining the cones and ray matrices. In Figure 1, we
have the following vertices and rays:

v1 =
(

θxe
0

)
, v2 =

(
θxe
θxi

)
, v3 =

(
γ

δ
θxi+θxe

θxi

)
, v4 =

(
0

θxi

)
,

r1=
(

1
0

)
, r2=

(
0
-1

)
, r3=

(
δ
γ

)
, r4=

(
0
1

)
,r5=

(
-β
1

)
, r6=

(
-1
0

)
.

The selection of vertices and rays was guided by the ge-
ometry of the partition, with threshold-based coordinates
and behavioral transitions informing their placement and
connections to capture consistent neuronal dynamics within
regions.

2) Express the polyhedron partitions in terms of the sum
of convex hulls and cones: To perform this step, we introduce
the ν-representation of the polyhedron as given in [11].
Definition 1. The ν-representation of a polyhedron X in Rn

is
X = conv{v1,v2, . . . ,vλ}+ cone{r1,r2, . . . ,rρ} (3)

for a finite number λ ≥ 1 of vertices {vl}λ
l=1 and a finite

number ρ ≥ 0 of rays {rl}ρ

l=1, vl ,rl ∈ Rn. Here conv{...}
denotes the convex hull and cone{. . .} the smallest enclosing
convex cone (with the convention that cone{}= {0}).

With the aforementioned building blocks in the form
of vertices and rays, we expressed each proposed re-
gion of the WF model in the ν-representation form:
X0 = conv{v1,v4}+cone{r2,r6}, X1 = conv{v1,v2,v4}, X2 =
conv{v1,v2,v3}, X3 = conv{v1,v3} + cone{r1,r2}, X4 =
conv{v3}+ cone{r1,r3}, X5 = conv{v2,v3}+ cone{r3,r4},
X6 = conv{v2,v4}+cone{r4}, X7 = conv{v4}+cone{r4,r5},
X8 = conv{v4}+ cone{r5,r6}.

3) Perform conic homogenization and provide the cones
and ray matrices:

Definition 2. Consider a polyhedron X ⊂Rn with represen-
tation (3). For each vertex vl ∈Rn, its vertex homogenization
v̄l ∈ Rn+1 is defined as v̄l = col(vl ,1) ∈ Rn+1, where col(·)
indicates a vector obtained by stacking the arguments over
each other. For each ray rl ∈Rn, its direction homogenization
r̄l ∈ Rn+1 is defined as r̄l = col(rl ,0) ∈ Rn+1.

Since we utilized a cone copositive approach, we consid-
ered for all regions X (given by a ν-representation), which
contain the origin, the following cone:

CX = cone{{vl}λ
l=1,{rl}ρ

l=1}
with corresponding ray matrix

R =
[
v1 . . . vλ r1 . . .rρ

]
∈ Rn×(λ+ρ); whereas for

regions X , which do not contain the origin, we considered
the homogenized cone:

CX̂ = cone{{v̄l}λ
l=1,{r̄l}ρ

l=1}
with v̄l and r̄l given as in Definition 2, the corresponding ray
matrix is given by

R̂ =

[
v1 . . . vλ r1 . . . rρ

1 . . . 1 0 . . . 0

]
,

with R̂ ∈ R(n+1)×(λ+ρ). Having given above the ν-
representation form of our biological model, applying this
definition is straightforward, thus being skipped.

4) Define the piecewise quadratic Lyapunov candidate for
each region: Let

Vs(x) = xT Psx+2ν
T
s x+ωs, x ∈ Xs, s = 1 . . .S, (4)

be a piecewise quadratic function, with {Ps}S
s=1 a family of

symmetric matrices in Rn×n, {νs}S
s=1 a family of real vectors

in Rn and {ωs}S
s=1 a family of real scalars. Denote by

P̂s =

(
Ps νs
νT

s ωs

)
, (5)

which will be used further in defining the LMIs. With respect
to the partition, there is also a case to be made for when
0 belongs to the region or not. Hence, let Σ0 denote the
subset of indices such that 0 ∈ Xs and Σ̄0 = Σ \Σ0 denote
the subset of indices such that 0 /∈ Xs. Moreover, if 0 ∈ Xs,
then ωs = 0. The goal in the following is to find a family of
Lyapunov functions {Vs}S

s=1 such that, firstly, in each region
Xs the function Vs is a local Lyapunov function, i.e. it is
positive definite and decreases along solutions and, secondly,
the values at the boundaries between regions are compatible
with the solution behavior.

5) Introduce suitable LMI conditions locally: To ensure
that Vs is a Lyapunov function on region Xs the following
set of LMIs are proposed in [11, Lem. 2]:

• For all s ∈ Σ0

RT
s PsRs −Ns ⪰ 0

2ν
T
s Rsei ≥ 0, i = 1, . . . ,λs +ρs

−RT
s (A

T
s Ps +PsAs)Rs −Ms ⪰ 0

−2ν
T
s AsRsei ≥ 0, i = 1, . . . ,λs +ρs

(6)

• For all s ∈ Σ̄0

R̂T
s P̂sR̂s −Ns ⪰ 0

− R̂T
s (Â

T
s P̂s + P̂sÂs)R̂s −Ms ⪰ 0

(7)



where Ns, Ms are unknown symmetric entrywise pos-
itive matrices. If the set of LMIs have a solution
{Ps,νs,ωs,Ns,Ms}s∈Σ, then the quadratic functions given
by (4) are indeed local Lyapunov functions for the PWA
system (1). For the WF model, this means that we have to
set up one set of LMIs of the form (6) for region X0 and
eight sets of LMIs of the form (7) for the remaining regions
X1,X2, . . . ,X8.

6) Determine the type of boundary and further formulate
suitable LMI conditions: In order to ensure asymptotic
stability, we need to determine what type of boundaries the
PWA system exhibits and such a characterization allows us
to further indicate operative conditions in terms of LMIs.
According to [11, Def. 23, Cor. 30], we have to distinguish
between the following boundary types: unreachable, cross-
ing, Caratheodory, and other types, including sliding bound-
aries. By our specific choice of partitioning, we ensured that
all boundaries of the WF model are crossing boundaries
and therefore we do not need to provide further details
about the other type of boundaries. Furthermore, since the
WF is actually a locally Lipschitz continuous PWA system,
the existence and uniqueness of classical solutions (in the
sense of Caratheodory) are guaranteed and the definition of a
crossing boundary, given in [11], simplifies to the following:
Definition 3. For a PWA system (1) a boundary XB ⊆ X
between two or more regions is called a crossing boundary
if for all x in the relative interior of XB the set of modes
from which x can be reached with a solution is disjoint from
the set of modes which the solution starting at x can continue
in.

In the case of planar PWA systems, boundaries are either
the intersection of two regions or a single point (i.e. the
boundaries of boundaries). For single point boundaries, it
suffices to show that these are not equilibria to conclude
that they are crossing boundaries; for the WF model this is
indeed the case. Hence, it remains to verify the following
twelve boundaries, where we use the notation Xi j := Xi ∩X j
and also provide a ν-representation and a corresponding
normal vector ηi j for each boundary: X10 = conv{v4,v1},

η10 =
(
−1 −

θxe
θxi

)⊤
, X21 = conv{v1,v2}, η21 = (−1 0)⊤,

X32 = conv{v2,v3}, η32 =
(
−1 δ

γ

)⊤
, X34 = {v3}+cone{r1},

η34 = (0 1)⊤, X45 = {v3}+cone{r3}, η45 =
(

1 − δ

γ

)⊤
X56 =

{v2} + cone{r4}, η56 = (−1 0)⊤, X67 = {v4} + cone{r4},

η67 = (−1 0)⊤, X78 = {v4}+ cone{r5}, η78 =
(

1 − β

α

)⊤
,

X80 = {v4}+ cone{r6}, η80 = (0 −1)⊤, X61 = conv{v2,v4},
η61 = (0 −1)⊤, X52 = conv{v2,v3}, η52 = (0 −1)⊤, X30 =
{v1}+ cone{r2}, η30 = (−1 0)⊤.

It can be easily seen, that a solution of the PWA system
crosses a boundary Xi j at the point x in the relative interior
of Xi j from region Xi to X j if

η
⊤
i j (Aix+bi)> 0∧η

⊤
i j (A jx+b j)> 0.

In case of a continuous PWA system, as it is for the WF
model, only one of the above two conditions needs to be

checked. However, this condition still has to hold for in-
finitely many x and cannot be checked directly. Nonetheless,
similar to [11, Lem. 32] we can reduce the condition to a
finite check:
Lemma 1. 1) Xi j = conv{xl

i j,x
r
i j} is a crossing boundary

if either (Aixl
i j + bi)

T ηi j ≥ 0 and (Aixr
i j + bi)

T ηi j > 0
or (Aixl

i j +bi)
T ηi j > 0 and (Aixr

i j +bi)
T ηi j ≥ 0.

2) Xi j = {xi j}+cone{ri j} is a crossing boundary if either
(Aixi j + bi)

T ηi j > 0 and (Airi j)
T ηi j ≥ 0 or (Aixi j +

bi)
T ηi j ≥ 0 and (Airi j)

T ηi j > 0.
Applying this check to all of the above twelve boundaries

we can indeed conclude that all boundaries are crossing
boundaries. To ensure that the local Lyapunov functions
decrease along the boundaries, we impose the following
additional LMIs:

R̂⊤
i j(P̂i − P̂j)R̂i j −Ni j ⪰ 0 (8)

for each of the twelve boundaries Xi j with (i, j) ∈ {(1,0),
(2,1), (3,2), (3,4), (4,5), (5,6), (6,7), (7,8), (8,0), (6,1),
(5,2), (3,0)}.

Note that it is important to keep track of how the solution
crosses the boundary in order to set up the correct LMI. In
our approach, we have used the convention that the normal
vector ηi j points in the direction of region j and therefore
Lemma 1 then ensures that indeed the solution crosses the
boundary Xi j from region Xi to X j; in particular, the order of
the index in the boundary is important: while Xi∩X j =X j∩Xi
the LMIs for Xi j and X ji are different.

7) Feasibility and GAS: Given the LMIs constraints pro-
vided in (6), (7) and with the additional boundary conditions
from (8), we can conclude that if a feasible solution exists,
then the PWA system (1) is globally asymptotically stable,
with a piecewise quadratic Lyapunov function.

B. Stability certificate for WF model

Using the Matlab environment together with YALMIP and
the SeDuMi solver, we implemented the above LMIs and
a feasible solution was found, thus certifying stability of
the WF model. The found feasible solution resulted in the
Lyapunov function shown in (9).

This Lyapunov function is discontinuous along the bound-
aries. We also tried to find a continuous Lyapunov func-
tion; however, for the considered partition the corresponding
more restrictive LMIs were not feasible. Although refining
the partition may allow the construction of a continuous
Lyapunov function, employing a discontinuous Lyapunov
function typically simplifies the search, as it involves fewer
constraints. For illustration purposes, we indicate several
levels sets based on (9) for regions X0 and X1 (Fig.2).

We observe that the level sets from X1 that cross into the
region X0 decrease, thus confirming the desired properties of
a piecewise Lyapunov function. We have also tried to reduce
the regions from nine to six, meaning we defined I (X0); II (X1
and X2); III (X3 and X4); IV (X5), together with demarcating
their respective boundaries. When seeking a feasible solution,
the solver indicated an ill-posed problem, hence supporting
the initial nine region split.



V (x) =



0.2990(xe)2 +0.0005(xi)2 −0.0018xexi, for region 0
−0.0941(xe)2 +0.0017(xi)2 −0.0090xexi +1.4758xe −0.0256xi +0.8133, for region 1
0.0023(xi)2 −0.0010xexi +0.0674xe −0.1126xi +5.2495, for region 2
0.0980(xe)2 +0.3909(xi)2 −0.3898xexi −0.303xe +0.2757xi +8.4278, for region 3
0.0651(xe)2 +65.5738(xi)2 +13.098xexi −668.036xe −6953.2xi +184400, for region 4
0.00047(xe)2 +4.9741(xi)2 +0.097xexi −4.9024xe −487.798xi +11964.56, for region 5
0.4893(xe)2 +4.4419(xi)2 +0.878xexi −45.7598xe −438.449xi +10825, for region 6
0.0474(xe)2 +3.9357(xi)2 +0.6714xexi −35.9002xe −389.3846xi +9635.5, for region 7
2.1469(xe)2 +4.729(xi)2 +4.7084xexi −237.733xe −470.2282xi +11690, for region 8

(9)
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Fig. 2. Level sets for X0 and X1

III. ISS

A. ISS definition and corresponding LMIs

In the previous section, we have obtained a Lyapunov
function, hence establishing GAS. By achieving this result,
in the autonomous case, several steps can be taken forward.
We could proceed by trying to scale further to a network
of neurons and attempt to obtain a similar result. However,
adding just one neuron to the model increases the difficulty in
terms of defining the activation regions and then determining
the boundaries and ensuring that each boundary is a crossing
boundary. Therefore, we propose a new avenue to tackle the
higher dimension interactions by using concepts stemming
from input-to-state stability (ISS).
Definition 4. Systems of the form

ẋ = f (x,u) x(0) = x0, (10)

where x(t)∈Rn, u∈U = L∞(R+,Rm) and x0 ∈Rn are called
input-to-state stable (ISS), if (10) is forward complete and
there exist β ∈ K L and γ ∈ K such that for all x0 ∈ Rn,
all u ∈ U and all t ≥ 0 the following holds

|x(t)| ≤ β (|x0|, t)+ γ(||u||∞), (11)

where β describes the transient behavior of the system
and γ is called gain and shows the influence of the input on
the system [33]. For a better understanding of the following
function classes K ,K L ,K∞, we reference [34, Def. 3.3,
Def. 3.4, Lem. 3.2]. Next, we introduce the ISS Lyapunov
function definition.
Definition 5. A continuous function V : Rn → R+ is called
an ISS Lyapunov function for (10), if there exist α1,α2 ∈
K∞,α ∈ K∞, and ξ ∈ K such that

α1(|x|)≤V (x)≤ α2(|x|), ∀x ∈ Rn,

and for any x(t)∈Rn, u∈U , the following inequality holds:

V̇u(x)≤−α(V (x))+ξ (||u||∞),
where V̇u(x) = ∇V (x) f (x,u).

From [33, Th. 2.12], the existence of an ISS Lyapunov
function indicates that the system is also ISS. Next, the ISS
Lyapunov functions have the added benefit that together with
a condition called small-gain, certify that we ensure stability
of interconnection of the subsystems. In particular, under a
robust small-gain condition, one can guarantee the existence
of a common ISS Lyapunov function for the interconnected
system [33]. If we consider the 1-1 neuron interaction as
such a subsystem and we can find an ISS Lyapunov function,
we could therefore couple several such subsystems and then
provided a suitable small-gain condition equivalent, we could
establish the stability for the network. Since we will work
within a PWA structure, we will also indicate an updated
version of ISS, called ”practical ISS” (input-to-state practical
stability or in short ISpS) [35], for which we have the
following alteration of (11)

|x(t)| ≤ β (|x0|, t)+ γ(||u||∞)+ c,

where c ≥ 0 is a constant. Having these concepts introduced,
we pursue the matter by trying to offer the set-up for the LMI
for the PWA system. Firstly, we consider an ISS Lyapunov
function restricted to the regions provided by the PWA
formulation. Therefore, we begin adapting the ideas from
[16] and [11] to extend the cone copositive method. We
proceed to consider the stability problem for the PWA system

ẋ = Asx+Bsu+bs, (12)

for which the terms are as in (1), with the additional Bs ∈
Rn×m as the input matrix. In terms of (4), we make use of
the following formulation

Vs(x) =
[
xT 1

][Ps νs
νT

s ωs

][
x
1

]
= x̂T P̂sx̂. (13)

We notice that the format of (4) remains unchanged, and
therefore the ideas from [16] and [11] about this part are kept
in the current analysis, with a small change: we require that
all the elements of matrix Ns should be greater than εs > 0,
rather than just positive, to satisfy the ISS condition.
Next, we need to compute V̇u,s(x). We obtain

V̇u,s(x) =

x
u
1

T AT
s Ps +PsAs PsBs Psbs +AT

s νs
BT

s Ps 0 BT
s νs

bT
s Ps +νT

s As νT
s Bs 2νT

s bs

x
u
1

 . (14)

Next, we aim to match the required conditions for the
existence of an ISS Lyapunov function. To do so in a more
general framework, we first adopt the conditions for input-



to-state practical stability (ISpS), and then reduce to the ISS
case by setting the constant bounding term to zero (i.e.,
Θ∗

s = 0). Our goal is to bound V̇u,s(x), given by (14), as
follows:

V̇u,s(x)≤−λ
∗
s Vs(x)+Γ

∗
s |u|2 +Θ

∗
s , ∀x ∈ Xs (15)

where λ ∗
s ∈ R+,Γ

∗
s ,Θ

∗
s ∈ R+∪{0}. The following proposed

lemma, offers the key ingredients towards the ISS analysis
of PWA systems through PWQ- Lyapunov function by using
the cone copositive method.
Lemma 2. Consider the system (12) with the polyhedra
{Xs}S

s=1 expressed as (3), the ray matrices {Rs}s∈Σ0 with
Rs ∈Rn×(λs+ρs), the homogenized ray matrices {R̂s}s∈Σ̄0

with
R̂s ∈ R(n+1)×(λs+ρs), and define the matrices

Âs =

(
As bs
0 0

)
with s ∈ Σ0 ∪ Σ̄0. Consider the following LMI conditions:

• For all s ∈ Σ0

RT
s PsRs −Ns ⪰ 0; Ni j

s ≥ εs

2ν
T
s Rsei ≥ 0, i = 1, . . . ,λs +ρs

(16)

• For all s ∈ Σ̄0

R̂T
s P̂sR̂s −Ns ⪰ 0; Ni j

s ≥ εs (17)

where P̂s ∈R(n+1)×(n+1) are symmetric matrices in the form
(5), and Ns, Ms are symmetric (entrywise) positive matrices
of appropriate dimensions and εs is a small positive value.
Moreover, consider the following LMI condition AT

s Ps +PsAs +λ ∗
s Ps PsBs Psbs +λ ∗

s νs +AT
s νs

BT
s Ps -Γ∗

s Iλs+ρs BT
s νs

bT
s Ps +λ ∗

s νT
s +νT

s As νT
s Bs 2νT

s bs +λ ∗
s ωs-Θ∗

s

⪯ 0.

If for our choices of λ ∗
s ∈ R+ and εs > 0 the

above given LMI conditions produce a feasible solution
{Ps,νs,ωs,Ns,Ms,Γ

∗
s ,Θ

∗
s}s∈Σ, then the resulting family of

Lyapunov candidate (13) consists of local ISS-Lyapunov
functions in the sense that it is positive definite on Xs and
(15) holds.

We need to further adapt the conditions from the above
stated lemma to the definition of ISS Lyapunov function in
order to be able to certify that (13) is ISS. We will need to
further show that there exist class K∞-functions α1 and α2
such that (13) satisfies:

α1(|x̂|)≤Vs(x)≤ α2(|x̂|),
where x̂ represents a component-wise transformation of x and
also V̇u,s(x) satisfies:

V̇u,s(x)≤−α(Vs(x))+ξ (∥u∥∞),

where α is a class K -function and ξ is a function of the
L∞-norm of u. Additional aspects that can be transformed via
the cone copositive method into LMI conditions are subject
to further work.

B. Application to WF model

We could consider ISS for the WF model w.r.t. to the
input σ , however, qualitatively, we know that a nonzero input
pushes away the equilibrium from zero and for now we
want to primarily understand that once the input vanishes,

the state returns back to the origin. The challenge is to
answer this question for a large network and we expect
that the stability property depends on the coupling strength
between the different neurons. In principle, the construction
of a piecewise Lyapunov function from the previous section
can be extended to arbitrary high dimension, but it quickly
becomes challenging to set up all regions and necessary
refinement. Instead, we propose to use the cone copositive
approach to first establish ISS for a small sub-network
(here the 1-1 case studied in the previous section) and
then consider the coupling with the remaining network as
additional inputs to this small network and the corresponding
ISS property thereof. Let us materialize this conceptual idea
by considering 2 excitatory and 2 inhibitory neurons. Now,
let us group them as subsystems, rather than based on the
type and then we get the following couplings[

ẋe
1

ẋi
1

]
=
[

-α 0
0 -γ

][
xe

1
xi

1

]
+
[

-β1 0
0 δ1

][
xi

1 −θxi
xe

1 −θxe

]
+
+
[

-β2 0
0 δ2

][
xi

2 −θxi
xe

2 −θxe

]
+[

ẋe
2

ẋi
2

]
=
[

-α 0
0 -γ

][
xe

2
xi

2

]
+
[

-β4 0
0 δ4

][
xi

2 −θxi
xe

2 −θxe

]
+
+
[

-β3 0
0 δ3

][
xi

1 −θxi
xe

1 −θxe

]
+
.

We can see from the coupling that the output of one of
the subsystems will appear as input for the other subsystem.
Testing the above given lemma should offer an ISS Lyapunov
function for each of the subsystems and with the step further
of formulating an adapted small-gain theorem, which will be
the focus of further research, we are on the path of ensuring
the stability of networks of neurons. This offers us also
the chance to explore and assess aspects from excitatory-
inhibitory neuron models which rely on weighted interaction
in a way that the analysis provided by the current cone-
copositive tools on autonomous systems restrict, especially
when the system has to be considered with inputs. Further
investigation into these extensions will be conducted in
subsequent work.

IV. CONCLUSIONS

In the pursuit of trying to understand the interactions
between neurons, we have focused on a specific biolog-
ical subsystem called the olfactory bulb, that belongs to
the olfactory system. From the field related literature, we
selected the WF model, that encapsulates the interaction
between excitatory and inhibitory neurons. Considering the
scalar autonomous version of the model, we proceeded in
studying the stability by means of Lyapunov functions. Due
to the nature of the system, we approached the case from a
piecewise affine system perspective. We have seen that by
expressing the WF model as a PWA system with a poly-
hedral partition, we could make use of the cone copositive
method to find a discontinuous Lyapunov function certifying
asymptotic stability for the autonomous case. Several aspects
that needed to be highlighted revolve around the suitable
partitioning of the state space, which was achieved when
carefully taking into account the thresholds and also the
points where a certain change in the vector field direction
occurred. Moreover, establishing the boundaries and properly
classifying them was another aspect that we carefully dealt
with. Lastly, the previous work on formulating the LMIs that



lead to a possibility of a discontinous piecewise Lyapunov
function made the restrictions less conservative than if we
required also continuity. We moved further with trying to
scale the analysis to a larger network of excitatory and
inhibitory neurons that exist in the olfactory bulb. Therefore,
starting from the proven GAS for the neuronal subsystem,
we proceeded to extend the approach to finding now Lya-
punov functions which certify ISS. First, we provided some
theoretical base for the ISS part that would be required in the
extension of the cone copositive method for PWA systems.
We indicated some sufficient conditions given by Lemma 2
that would be a first step towards certifying ISS, and more
precisely ISpS, for a PWA system. Next, by considering
the definition of ISS Lyapunov, we would need to further
provide suitable conditions that would ensure we have an
ISS Lyapunov, thus proving the system is ISS. Moving a
step further, with additional work into adapting the small-
gain theorem for the stability of interconnected ISS system
or ISpS for our case, we could reach the desired result of
ensuring the stability property for a network of neurons.
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[25] E. Farcot and J.-L. Gouzé, “A mathematical framework for the control
of piecewise-affine models of gene networks,” Automatica, vol. 44,
no. 9, pp. 2326–2332, 2008.

[26] J.-i. Imura, K. Kashima, M. Kusano, T. Ikeda, and T. Morohoshi,
“Piecewise affine systems approach to control of biological networks,”
Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 368, no. 1930, pp. 4977–
4993, 2010.
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