

Stabilization of switched DAEs via fast switching

Stephan Trenn

university of

groningen

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Research seminar, VNU University of Science, Hanoi Vietnam, Wednesday, 7 August 2024

Stabilization via fast switching

Switched DAEs

Switched linear DAE (differential algebraic equation)

(swDAE) $E_{\sigma(t)}\dot{x}(t) = A_{\sigma(t)}x(t)$ or short $E_{\sigma}\dot{x} = A_{\sigma}x$

with

- $\,\,$ switching signal $\sigma:\mathbb{R}\to\{1,2,\ldots,\mathrm{m}\}$
 - piecewise constant, right-continuous
 - locally finitely many jumps
- > matrix pairs $(E_1, A_1), \ldots, (E_m, A_m)$
 - $E_p, A_p \in \mathbb{R}^{n \times n}$, $p = 1, \dots, m$
 - (E_p, A_p) regular, i.e. $det(sE_p A_p) \neq 0$

Main motivation

Modeling of electrical circuits

Special features

- > Changing algebraic constraints
- > Induced jumps
 - ightarrow consistency projectors Π_p
- > Dirac impulses possible

Question

$$E_p \dot{x} = A_p x$$
 asymp. stable $\forall p \implies E_\sigma \dot{x} = A_\sigma x$ asymp. stable $\forall \sigma$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Stabilization via fast switching

Example 1: jumps and stability

Example 1a:

Example 1b:

Stabilization via fast switching

Example 2: impulses in solutions

Stabilization via fast switching

Example 2: impulses in solutions

Stabilization via fast switching

Solution of example

Introduction

university of groningen

 $L \frac{\mathrm{d}}{\mathrm{d}t} i_L = v_L$, $0 = v_L - u$ or $0 = i_L$

$$\begin{array}{ll} u \text{ constant,} & i_L(0) = 0 \\ \text{switch at } t_s > 0 \end{tabular} & \sigma(t) = \begin{cases} 1, & t < t_s \\ 2, & t \geq t_s \end{cases} \end{array}$$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Observations from examples

Solutions

- > modes have constrained dynamics: consistency spaces
- > switches \Rightarrow inconsistent initial values

Stability

- > common Lyapunov function not sufficient
- stability depends on jumps

Impulses

- > switching \Rightarrow Dirac impulse in solution x
- > Dirac impulse = infinite peak \Rightarrow instability

Contents

Introduction

System class and motivation Examples Nonswitched DAEs Solutions: Consistency and underlying ODE

Stability

Impulse freeness Arbitrary switching Slow switching Generalization to nonlinear case Commutativity Lyapunov exponent and converse Lyapunov theorem

Stabilization via fast switching

Problem formulation The Mironchenko-Wirth-Wulff Approach Stabilization via direct averaging

Stabilization via fast switching

Solutions for unswitched DAEs

Consider $E\dot{x} = Ax$.

Theorem (Weierstrass 1868) (E, A) regular $\iff \exists S, T \in \mathbb{R}^{n \times n}$ inv.: $(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right),$ N nilpotent, T = [V, W]Corollary (for regular (E, A)) x solves $E\dot{x} = Ax \iff$ $x(t) = V e^{Jt} v_0$ $V \in \mathbb{R}^{n \times n_1}$, $J \in \mathbb{R}^{n_1 \times n_1}$, $v_0 \in \mathbb{R}^{n_1}$.

Consistency space: $\mathfrak{C}_{(E,A)} := \operatorname{im} V$

Stabilization via fast switching

Consistency projector

Definition (Consistency projectors for regular (E, A))

Let $S, T \in \mathbb{R}^{n \times n}$ be invertible with $(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right)$:

$$\Pi_{(E,A)} := T \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} T^{-1}$$

Lyapunov functions for regular (E, A)

Definition (Lyapunov function for
$$E\dot{x} = Ax$$
)
 $Q = Q^{\top} > 0$ on $\mathfrak{C}_{(E,A)}$ and $P = P^{\top} > 0$ solutions of
 $A^{\top}PE + E^{\top}PA = -Q$ (generalize Lyapunov equation
Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}_{>0} : x \mapsto (Ex)^{\top}PEx$

 \boldsymbol{V} monotonically decreasing along solutions:

$$\frac{\mathrm{d}}{\mathrm{d}t}V(x(t)) = (Ex(t))^{\top}PE\dot{x}(t) + (E\dot{x}(t))^{\top}PEx$$
$$= x(t)^{\top}E^{\top}PAx(t) + x(t)^{\top}A^{\top}PEx(t)$$
$$= -x(t)^{\top}Qx(t) < 0$$

Theorem (OWENS & DEBELJKOVIC 1985)

 $E\dot{x} = Ax$ asymptotically stable $\iff \exists$ Lyapunov function

Stephan Trenn (Jan C. Willems Center, U Groningen)

Intermediate summary: Problems and their solutions

Consider again switched DAE

$$E_{\sigma}\dot{x} = A_{\sigma}x$$
 (swDAE)

- 1. Stability criteria for single DAEs $E_p \dot{x} = A_p x$ \Rightarrow Lyapunov functions
- 2. No classical solutions for switched DAEs \Rightarrow Allow for jumps in solutions
- 3. How does inconsistent initial value "jump" to consistent one? \Rightarrow Consistency projectors $\Pi_{(E_1,A_1)}, \dots, \Pi_{(E_m,A_m)}$
- 4. Differentiation of jumps
 - \Rightarrow Space of Distributions as solution space
- 5. Multiplication with non-smooth coefficients
 - \Rightarrow Space of piecewise-smooth distributions
 - \Rightarrow Existence and uniqueness of (distributional) solutions

Contents

Introduction

System class and motivation Examples Nonswitched DAEs Solutions: Consistency and underlying ODE

Stability

Impulse freeness Arbitrary switching Slow switching Generalization to nonlinear case Commutativity Lyapunov exponent and converse Lyapunov theorem

Stabilization via fast switching

Problem formulation The Mironchenko-Wirth-Wulff Approach Stabilization via direct averaging

Asymptotic stability and impulse free solutions

Definition (Asymptotic stability of switched DAE)

(swDAE) asymptotically stable : $\Leftrightarrow x$ is impulse free* and $x(t\pm) \to 0$ for $t \to \infty$

* i.e. $x[t]=0 ~\forall t \in \mathbb{R};$ however jumps in x are still allowed

Let $\Pi_p := \Pi_{(E_p, A_p)}$ be the consistency projector of (E_p, A_p)

Impulse freeness condition

(IFC): $\forall p, q \in \{1, \dots, m\}$: $E_q(I - \Pi_q)\Pi_p = 0$

Theorem (TRENN 2009)

(IFC) \iff all solutions of $E_{\sigma}\dot{x} = A_{\sigma}x$ are impulse free $\forall \sigma$

Sufficient conditions for impulse freeness Index 1: $E_q(I - \Pi_q) = 0$ or Same consistency spaces: $(I - \Pi_q)\Pi_p = 0$

Stability for arbitrary switching

Consider (swDAE) with:

$$(\exists V_p): \forall p \in \{1, \dots, m\} \exists$$
 Lyapunov function V_p for (E_p, A_p)

i.e. each DAE $E_p \dot{x} = A_p x$ is asymptotically stable

Lyapunov jump condition

(LJC): $\forall p, q \in \{1, \dots, m\} \ \forall x \in \mathfrak{C}_{(E_p, A_p)}: \quad V_q(\Pi_q x) \leq V_p(x)$

Theorem (LIBERZON & TRENN 2009)

 $(\mathsf{IFC}) \land (\exists V_p) \land (\mathsf{LJC}) \implies (\mathsf{swDAE}) \text{ asymtotically stable } \forall \sigma$

Examples 1a and 1b fulfill (IFC) and $(\exists V_p)$, but only 1b fulfills (LJC)

Stabilization via fast switching

Slow switching

Consider the set of switching signals with dwell time $\tau > 0$:

$$\Sigma^{\tau} := \left\{ \sigma : \mathbb{R} \to \{1, \dots, \mathtt{m}\} \middle| \begin{array}{l} \forall \text{ switching times} \\ t_i \in \mathbb{R}, i \in \mathbb{Z} : \\ t_{i+1} - t_i \geq \tau \end{array} \right\}.$$

Theorem (LIBERZON & TRENN 2009)

 $\exists \tau > 0$: (IFC) \land ($\exists V_p$) \implies (swDAE) asymptotically stable $\forall \sigma \in \Sigma^{\tau}$

Examples 1a and 1b both fulfill (IFC) and $(\exists V_p)$

 \Rightarrow both examples are asymptotically stable for slow switching

Remark

Result also holds for average dwell time.

Stephan Trenn (Jan C. Willems Center, U Groningen)

Generalization to nonlinear switched DAEs

Previous results can be generalized to nonlinear switched DAEs:

$$E_{\sigma}(x)\dot{x} = f_{\sigma}(x)$$

where (IFC) has to be replaced by suitable nonlinear version, e.g. [LIBERZON & TRENN 2012]:

$$\forall p,q \in \{1,\ldots,\mathtt{m}\} \ \forall x_0^- \in \mathfrak{C}_p \ \exists \text{ unique } x_0^+ \in \mathfrak{C}_q: \ x_0^+ - x_0^- \in \ker E_q(x_0^+)$$

where \mathfrak{C}_p is the consistency manifold of $E_p(x)\dot{x} = f_p(x)$

Problem

Above **(IFC)** not invariant under nonlinear coordinate transformation! A proper nonlinear generalization was recently published [CHEN & TRENN 2023]

Contents

Introduction

System class and motivation Examples Nonswitched DAEs Solutions: Consistency and underlying OD

Stability

Impulse freeness Arbitrary switching Slow switching Generalization to nonlinear case

Commutativity

Lyapunov exponent and converse Lyapunov theorem

Stabilization via fast switching

Problem formulation The Mironchenko-Wirth-Wulff Approach Stabilization via direct averaging

Commutativity and stability of switched ODEs

Theorem (NARENDRA AND BALAKRISHNAN 1994)

Consider switched ODE

(swODE) $\dot{x} = A_{\sigma} x$

with A_p Hurwitz, $p \in \{1, 2, ..., m\}$ and commuting A_p , i.e.

$$[A_p, A_q] := A_p A_q - A_q A_p = 0 \quad \forall p, q \in \{1, 2, \dots, \mathtt{m}\}$$

 \Rightarrow (swODE) asymptotically stable $\forall \sigma$.

Proof idea: Consider switching times $t_0 < t_1 < \ldots < t_k < t$ and $p_i := \sigma(t_i+)$, then

$$x(t) = e^{A_{p_k}(t-t_k)} e^{A_{p_{k-1}}(t_k-t_{k-1})} \cdots e^{A_{p_1}(t_2-t_1)} e^{A_{p_0}(t_1-t_0)} x_0$$

$$\stackrel{(\mathsf{C})}{=} e^{A_1 \Delta t_1} e^{A_2 \Delta t_2} \cdots e^{A_{\mathtt{m}} \Delta t_{\mathtt{m}}} x_0$$

and $\Delta t_p \to \infty$ for at least one p and $t \to \infty$.

(C)

Stabilization via fast switching

Generalization to (swDAE)

(swDAE) $E_{\sigma}\dot{x} = A_{\sigma}x$

Generalization - Questions

- > Which matrices have to commute?
- What about the jumps?

Example 1a: $\begin{aligned} & \left(E_1, A_1 \right) = \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \right) \\ & \left(E_2, A_2 \right) = \left(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right) \end{aligned}$

 $[A_1, A_2] = 0$, but unstable for fast switching

The matrix A^{diff}

Let
$$(E, A)$$
 regular with $(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right)$, N nilpotent consistency projector: $\Pi_{(E,A)} = T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T^{-1}$

Definition (differential "projector")

$$\Pi_{(E,A)}^{\mathsf{diff}} = T \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} S$$

Lemma (Dynamics of DAE, TANWANI & TRENN 2010)

$$x \text{ solves } E\dot{x} = Ax \iff \dot{x} = \underbrace{\Pi_{(E,A)}^{\text{diff}} A}_{=:A^{\text{diff}}} x, x(0) \in \operatorname{im} \Pi_{(E,A)}$$

Note: $A^{\text{diff}} = T \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} T^{-1}$, hence $\Pi_{(E,A)} A^{\text{diff}} = A^{\text{diff}} = A^{\text{diff}} \Pi_{(E,A)}$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Commutativity condition

(swDAE) $E_{\sigma}\dot{x} = A_{\sigma}x$

Theorem (LIBERZON, TRENN & WIRTH 2011) (IFC) $\land (\exists V_p) \land$ $[A_p^{\text{diff}}, A_q^{\text{diff}}] = 0 \quad \forall p, q \in \{1, 2, ..., m\}$ \implies (swDAE) is asymptotically stable $\forall \sigma$. (IFC) $\land (\exists V_p) \land (C) \implies \exists$ common quadratic Lyapunov function with $V(\Pi_p x) \leq V(x) \quad \forall x \forall p$

Remarkable: No explicit condition on jumps!

(C)

Proof idea and extenstions

Key property:

$$[A_p^{\mathsf{diff}}, A_q^{\mathsf{diff}}] = 0 \quad \forall p, q \in \{1, 2, \dots, \mathfrak{m}\}$$
(C)

implies

$$[\Pi_p, A_q^{\mathsf{diff}}] = 0 \quad \land \quad [\Pi_p, \Pi_q] = 0.$$

Consider switching times $t_0 < t_1 < \ldots < t_k < t$ and $p_i := \sigma(t_i+)$, then

$$x(t) = e^{A_{p_{k}}^{\text{diff}}(t-t_{k})} \Pi_{p_{k}} e^{A_{p_{k-1}}^{\text{diff}}(t_{k}-t_{k-1})} \Pi_{p_{k-1}} \cdots e^{A_{p_{1}}^{\text{diff}}(t_{2}-t_{1})} \Pi_{p_{1}} e^{A_{p_{0}}^{\text{diff}}(t_{1}-t_{0})} \Pi_{p_{0}} x_{0}$$

$$\stackrel{(\underline{\mathsf{C}})}{=} e^{A_{1}^{\text{diff}}\Delta t_{1}} \Pi_{1} e^{A_{2}^{\text{diff}}\Delta t_{2}} \Pi_{2} \cdots e^{A_{\mathtt{m}}^{\text{diff}}\Delta t_{\mathtt{m}}} \Pi_{\mathtt{m}} x_{0}$$

and $\Delta t_p \to \infty$ for at least one p and $t \to \infty$.

Extension to Lie-algebraic conditions

Commutativity \implies jointly diagonalizable \iff matrices form solvable Lie-algebra \implies recent results available [RAJ & PAL 2021,2024]

Contents

Introduction

System class and motivation Examples Nonswitched DAEs Solutions: Consistency and underlying ODE

Stability

Impulse freeness Arbitrary switching Slow switching Generalization to nonlinear case Commutativity

Lyapunov exponent and converse Lyapunov theorem

Stabilization via fast switching

Problem formulation The Mironchenko-Wirth-Wulff Approach Stabilization via direct averaging

Evolution operator

$$x(t) = \underbrace{e^{A_k^{\mathsf{diff}}(t-t_k)} \Pi_k e^{A_{k-1}^{\mathsf{diff}}(t_k-t_{k-1})} \Pi_{k-1} \cdots e^{A_1^{\mathsf{diff}}(t_2-t_1)} \Pi_1 e^{A_0^{\mathsf{diff}}(t_1-t_0)} \Pi_0}_{=: \Phi^{\sigma}(t,t_0)} x(t_0-t_0)$$

Let $\mathcal{M} := \{(A_p^{\mathsf{diff}}, \Pi_p) \mid \text{corresponding to } (E_p, A_p), p = 1, \dots, \mathtt{m}\}.$

Definition (Set of all evolution matrices with fixed time span t > 0)

$$\begin{split} & \mathcal{S}_{t} := \{ \Phi^{\sigma}(t,0) \mid \sigma \text{ arbitrary switching signal} \} \\ & = \left\{ \prod_{i=0}^{k} e^{A_{i}^{\mathsf{diff}} \tau_{i}} \Pi_{i} \mid (A_{i}^{\mathsf{diff}}, \Pi_{i}) \in \mathcal{M}, \ \sum_{i=0}^{k} \tau_{i} = \Delta t, \ \tau_{i} > 0 \right] \end{split}$$

Lemma (Semi group, TRENN & WIRTH 2012) The set $S := \bigcup_{t>0} S_t$ is a semi group with $S_{s+t} = S_s S_t := \{\Phi_s \Phi_t \mid \Phi_s \in S_s, \Phi_t \in S_t\}$

Exponential growth bound

Definition (Exponential growth bound)

For t > 0 the exponential growth bound of $E_{\sigma}\dot{x} = A_{\sigma}x$ is

$$\lambda_t(\mathcal{S}_t) := \sup_{\Phi_t \in \mathcal{S}_t} \frac{\ln \|\Phi_t\|}{t} \in \mathbb{R} \cup \{-\infty, \infty\}$$

Definition implies for all solutions x of $E_{\sigma}\dot{x} = A_{\sigma}x$:

$$||x(t)|| = ||\Phi_t x(0-)|| \le ||\Phi_t|| \, ||x(0-)|| \le e^{\lambda_t(\mathcal{S}_t) \, t} ||x(0-)||$$

Difference to switched ODEs without jumps

 $\lambda_t(\mathcal{S}_t) = \pm \infty$ is possible!

university of groningen

All jumps are trivial, i.e. $\Pi_p=0 \quad \Longleftrightarrow \quad \lambda_t(\mathcal{S}_t)=-\infty$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Infinite exponential growth bound

Example 1a revisited:

Lyapunov exponent of a switched DAE

Theorem (Boundedness of S_t , TRENN & WIRTH 2012)

 \mathcal{S}_t is bounded \iff the set of consistency projectors is product bounded

(swDAE) $E_{\sigma}\dot{x} = A_{\sigma}x$

Theorem (Lyapunov exponent well defined, TRENN & WIRTH 2012)

Let the consistency projectors be product bounded and not all be trivial, then the (upper) Lyapunov exponent

$$\lambda(\mathcal{S}) := \lim_{t \to \infty} \lambda_t(\mathcal{S}_t) = \lim_{t \to \infty} \sup_{\Phi_t \in \mathcal{S}_t} \frac{\ln \|\Phi_t\|}{t}$$

of (swDAE) is well defined and finite.

Note that: **(swDAE)** uniformly exponentially stable : $\Leftrightarrow \exists M \ge 1, \mu > 0 : ||x(t)|| \le Me^{-\mu t} ||x(0-)|| \quad \forall t \ge 0$ $\iff \lambda(S) \le -\mu < 0$

Converse Lyapunov theorem for switched DAEs

For $\varepsilon>0$ define "Lyapunov norm"

$$|||x|||_{\varepsilon} := \sup_{t>0} \sup_{\Phi_t \in \mathcal{S}_t} e^{-(\lambda(\mathcal{S}) + \varepsilon)t} ||\Phi_t x||$$

(swDAE) $E_{\sigma}\dot{x} = A_{\sigma}x$

Theorem (Converse Lyapunov theorem, TRENN & WIRTH 2012)

(swDAE) is uniformly exponentially stable $\forall \sigma \Rightarrow V = \|\|\cdot\||_{\varepsilon}$ is Lyapunov function for sufficiently small $\varepsilon > 0$

In particular: $V(\Pi x) \leq V(x)$ for all consistency projectors Π

Non-smooth Lyapunov function

 $\|\|\cdot\||_{\varepsilon}$ in general non-smooth. "Smoothification" as in [YIN, SONTAG & WANG 1996] might violate jump condition!

Contents

Introduction

System class and motivation Examples Nonswitched DAEs Solutions: Consistency and underlying OI

Stability

Impulse freeness Arbitrary switching Slow switching Generalization to nonlinear case Commutativity Lyapunov exponent and converse Lyapunov theorem

Stabilization via fast switching

Problem formulation The Mironchenko-Wirth-Wulff Approach Stabilization via direct averaging

Stabilization via fast switching

Control task

 $\xrightarrow{}$ Switched System Σ_{σ} State variable x Goal: Stabilization

Find σ such that $x(t) \to 0$ as $t \to \infty$.

Usual approach

State-depending switching $x\mapsto \sigma(x)$

Problems

- > No solution theory available for state-dependent switched DAEs!
- State x may not be available for feedback control
 - \rightarrow observer with estimation \widehat{x}
 - ightarrow non-matching switching signals $\sigma(x)
 eq \sigma(\widehat{x})$, NO seperation principle

Alternative approach

Time-dependent switching $t \mapsto \sigma(t)$

Example: Stabilization of switched ODEs

$$\dot{x} = A_{\sigma}x, \quad A_1 = \begin{bmatrix} -2 & 1\\ 0 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & -1\\ 1 & -2 \end{bmatrix}$$

Why does the example work?

Convex combination

$$\frac{1}{2}A_1 + \frac{1}{2}A_2 = \frac{1}{2} \begin{bmatrix} -1 & 0\\ 1 & -1 \end{bmatrix}$$
 Hurwitz!

Classical averaging result

For switched ODE $\dot{x} = A_{\sigma}x$ any convex combination

$$\dot{x} = A_{av}x, \quad A_{av} := \sum_{k=1}^{m} d_k A_k, \quad d_1, d_2, \dots, d_m \in [0, 1], \sum_{k=1}^{m} d_k = 1,$$

can be approximated arbitrarily well by sufficiently fast (periodic) switching.

Corollary

 \exists Hurwitz convex combination \implies Stabilizable by fast (time-dependent) switching

The Mironchenko-Wirth-Wulff Approach

Key observation

$$e^{A^{\text{diff}}t}\Pi \approx e^{A^{\varepsilon}t}$$
 with $A^{\varepsilon} := T \begin{bmatrix} J & 0\\ 0 & -\frac{1}{\varepsilon}I \end{bmatrix} T^{-1}$ hence $E_{\sigma}\dot{x} = A_{\sigma}x \approx \dot{x} = A_{\sigma}^{\varepsilon}x$

Theorem (MIRONCHENKO, WIRTH & WULFF 2013)

 σ stabilizes $\dot{x} = A_{\sigma}^{\varepsilon} x \quad \forall \varepsilon \in (0, \varepsilon_0) \implies \sigma$ stabilizes $E_{\sigma} \dot{x} = A_{\sigma} x$

Overall stabilization strategy

Discussion of the MWW-approach

No further assumptions needed for individual approximations

$$swDAE(\sigma) \longrightarrow swODE(\sigma, \varepsilon) \qquad \qquad x_{\sigma, p}(t^{-}) - x_{\sigma, p}^{\varepsilon}(t) \to 0 \text{ as } \varepsilon \to 0$$

$$swODE(\sigma, \varepsilon) \longrightarrow ODE(\varepsilon, d_1, \dots, d_m) \qquad \qquad x_{\sigma, p}^{\varepsilon}(t) - x_{av}^{\varepsilon}(t) \to 0 \text{ as } p \to 0$$

Problem

For fixed $\varepsilon > 0$ it is possible that $x_{\sigma, \mathfrak{p}}(t^-) - x_{\sigma, \mathfrak{p}}^{\varepsilon}(t) \to \infty$ as $\mathfrak{p} \to 0$

Underlying problem

Consistency projectors not explicitly considered:

- > Destabilizing effect for fast switching
- > Non-existence of averaged model

Direct approach

Directly utilize averaging approach for switched DAEs

Assumptions

>
$$(E_k, A_k)$$
 regular and index-1 with Π_k , A_k^{diff}

-) $\sigma:\mathbb{R} \to \{1,2,\ldots,\mathtt{m}\}$ periodic with
 - period $\mathfrak{p} > 0$
 - duty cycles $d_1,\ldots,d_{\tt m}\in(0,1)$ for fixed (periodic) mode sequence $(1,2,\ldots,{\tt m})$

Existence of averaged ODE

When can (swDAE) be approximated by averaged ODE $\dot{x}_{av} = A_{av}x_{av}$?

Existence of an averaged model

Definition (Averaged model)

We call $\dot{x}_{av} = A_{av}x_{av}$ an averaged model of $E_{\sigma}\dot{x} = A_{\sigma}x$: $\Leftrightarrow \forall T > 0 \ \forall x_0 \ \forall \varepsilon > 0 \ \exists x_0^{av} \ \exists \overline{p} > 0 \ \exists C > 0$

 $\forall \mathfrak{p} \in (0,\overline{\mathfrak{p}}): \quad \|x_{\sigma,\mathfrak{p}}(t^{\pm}) - x_{\mathsf{av}}(t)\| \le C\mathfrak{p} \quad \forall t \in [\mathfrak{p},T]$

Problem

Averaged model does not always exist (even for exponentially stable (swDAE)!

Example 1b revisited:

 $(E_1, A_1) = \left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \right)$ $(E_2, A_2) = \left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right)$

Underlying problem

Although $\{\Pi_1, \Pi_2\}$ is product bounded, jumps in $x_{\sigma, \mathfrak{p}}$ do not converge to zero as $\mathfrak{p} \to 0$ BUT: $x_{\sigma, \mathfrak{p}} \to x_{\mathsf{av}}$ requires vanishing jumps because x_{av} is always continuous!

In which space would x_{av} evolve? $x_{\sigma,\mathfrak{p}}((t+\mathfrak{p})^-) = e^{A_{\mathfrak{m}}^{\mathsf{diff}}d_{\mathfrak{m}}\mathfrak{p}} \prod_{\mathfrak{m}} \cdots e^{A_{2}^{\mathsf{diff}}d_{2}\mathfrak{p}} \prod_{2} \cdot e^{A_{1}^{\mathsf{diff}}d_{1}\mathfrak{p}} \prod_{1} x_{\sigma,\mathfrak{p}}(t^-) \text{ for } t = k\mathfrak{p}$ If averaged model exists then

$$x_{\mathsf{av}}(t) = \lim_{\mathfrak{p} \to 0} x_{\sigma, \mathfrak{p}}((t+\mathfrak{p})^{-}) = \underbrace{\Pi_{\mathfrak{m}} \cdots \Pi_{2} \Pi_{1}}_{=: \Pi_{\bigcap}} x_{\mathsf{av}}(t)$$

 $\leadsto x_{\mathsf{av}}(t) \in \operatorname{im} \Pi_{\cap}$

Condition for vanishing jumps

$$\forall k \in \{1, 2, \dots, \mathbf{m}\} : \quad \Pi_k \cdots \Pi_2 \Pi_1 \Pi_{\cap} = \Pi_{\cap} \quad \text{and} \quad \Pi_{\cap} \Pi_{\mathbf{m}} \cdots \Pi_{k+1} \Pi_k = \Pi_{\cap}$$

$$\iff \forall k \in \{1, 2, \dots, \mathbf{m}\} : \quad \operatorname{im} \Pi_k \supseteq \operatorname{im} \Pi_{\cap} \quad \text{and} \quad \ker \Pi_k \subseteq \ker \Pi_{\cap}$$

$$(\mathsf{PA})$$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Averaged model

For $E_{\sigma}\dot{x} = A_{\sigma}x$, $x(0^-) = x_0$, define averaged system:

 $\dot{x}_{\mathsf{av}} = \prod_{\bigcap} A_{\mathsf{av}}^{\mathsf{diff}} \prod_{\bigcap} x_{\mathsf{av}}, \ x_{\mathsf{av}}(0) = \prod_{\bigcap} x_0 \tag{Σ_{av}}$

where $A_{av}^{\text{diff}} := \sum_{k=1}^{m} d_k A_k^{\text{diff}}$ and $\Pi_{\cap} = \Pi_{m} \dots \Pi_2 \Pi_1$ with projector assumption

 $\forall k \in \{1, 2, \dots, \mathfrak{m}\}: \quad \operatorname{im} \Pi_k \supseteq \operatorname{im} \Pi_{\cap} \quad \text{and} \quad \ker \Pi_k \subseteq \ker \Pi_{\cap}$ (PA)

Theorem (Mostacciuolo, Trenn & Vasca 2017)

If (PA) then (Σ_{av}) is an averaged system for (swDAE), i.e.

 $\|x_{\sigma,\mathfrak{p}} - x_{\mathsf{av}}\|_{\infty} = O(p)$

on every compact interval in $\left(0,\infty\right)$

Remarks on (PA) condition

-) (PA) \implies Π_{\cap} is a projector (converse is not true in general)
- > (PA) depends on order of modes ----- existence of averaged system depends on mode sequence
-) $\Pi_i \Pi_j = \Pi_j \Pi_i \implies$ (PA) (converse not true in general)

Stabilization via fast switching

Corollary

 \exists mode sequence satisfying (PA) and d_1, \ldots, d_m such that (Σ_{av}) is exponentially stable $\implies \exists \mathfrak{p} > 0$ sufficiently small: $E_{\sigma}\dot{x} = A_{\sigma}x$ exponentially stable

Key steps of proof:

1. Chose T > 0 and c < 1 such that

$$||x_{av}(T)|| < c ||x_{av}(T/2)||$$

2. Chose $\mathfrak{p} > 0$ sufficiently small such that

$$x_{\sigma,\mathfrak{p}}(T^-) \approx x_{\mathsf{av}}(T)$$
 and $x_{\sigma,\mathfrak{p}}(T/2^-) \approx x_{\mathsf{av}}(T/2)$

so that we can conclude for some $\tilde{c} \in (c,1)$

$$\|x_{\sigma,\mathfrak{p}}(T^{-})\| < \tilde{c}\|x_{\sigma,\mathfrak{p}}(T/2^{-})\|$$

3. Conclude exponential stability.

Summary

$E_{\sigma}\dot{x} = A_{\sigma}x$ (swDAE)

> Stability

- Impulse freeness
- Lyapunov jump condition for arbitrary switching
- Stability under slow switching
- Generalization to nonlinear case
- Commutativity and stability
- Converse Lyapuynov Theorem
- > Stabilization by fast switching
 - MWW approach
 - Averaging approach