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Switched DAEs

Switched linear DAE (differential algebraic equation)

(swDAE) Eo)i(t) = Agpz(t) | orshort E,i= Asx
with Main motivation
) switching signal o : R — {1,2,...,m} Modeling of electrical circuits
= piecewise constant, right-continuous
= locally finitely many jumps Special features
»  matrix pairs (E1, A1), ..., (En, 4n) » Changing algebraic constraints
» EpAp e R p=1,....n y Induced jumps
« (Ep, Ap) regular, i.e. det(sEp — Ap) Z 0 — consistency projectors II,

y Dirac impulses possible

Question

Ep = Apx asymp. stable Vp :7> Ey,i = Ayx asymp. stable Vo
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Example 1: jumps and stability

Example 1la:
(E1,Ar) =
(B2, Ag) =
T2

\}emark: V(x) = 22 + 22 is Lyapunov function for all subsystem

1

TN N
| — |

Example 1b:

a0 = (|p

(Ea, Az) = ({0

I
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Example 2: impulses in solutions

U u
constant input: u =0
inductivity law: L%iL =y
switch dependent: 0=vr —u 0=1ir

Stephan Trenn (Jan C. Willems Center, U Groningen) Stabilization of switched DAEs via fast switching (3 / 39)



1 rsityor Introduction
b n in_mm

Example 2: impulses in solutions

]

1 0 0 0 0 0 1 0 0 0 0 O
0 L 0lz=|0 0 1|z 0 L 0lz=1]0 0 1|=x
0 0 0 -1 0 1 0 0 O 01 0
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Solution of example
L%iL:UL, O:Uqu or O:iL

u constant, i5(0) =0

1, t<t
switch at t5 > 0: o(t) = B
2, >t
vr(t) ir(t)
u
A
t ts

Ot

Ls
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Introduction

Observations from examples

Solutions
» modes have constrained dynamics: consistency spaces
y switches = inconsistent initial values

y inconsistent initial values =- jumps in z

Stability
» common Lyapunov function not sufficient

y stability depends on jumps

Impulses

» switching = Dirac impulse in solution x

y Dirac impulse = infinite peak = instability
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Solutions for unswitched DAEs
Consider Ez = Ax.

Theorem (Weierstrass 1868)
(E,A) regular <= 35, T €R™"™ jnv.:

3
om0 310 1)
N nilpotent, T = [V, W]
Corollary (for regular (E, A)) 3

x solves Bt = Arx <—
z(t) = Veltug ‘

Ve R J e RMXm g9 € R,
Consistency space: € 4y :=imV {
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Consistency projector

€ (p,4) N .

Definition (Consistency projectors for regular (F, A))
Let S,T € R™ " be invertible with (SET, SAT) = ([{ %1,[39]):

I 0|,
(5, a) ::T[O O}Tl
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Lyapunov functions for regular (F, A)

Definition (Lyapunov function for Ei = Ax)

Q=Q" >00n €(p,a) and P = PT > 0 solutions of
ATPE+ETPA=—Q (generalize Lyapunov equation)
Lyapunov function V : R* — R : z + (Ez) T PEx

V' monotonically decreasing along solutions:
4V (2(t)) = (Bx(t))  PEi(t) + (Ei(t)) ' PEx
=2(t) ETPAz(t) + x(t) " AT PEx(t)
= —z(t) " Qux(t) <0

Theorem (OwENs & DEBELIKOVIC 1985)

Ei& = Az asymptotically stable <= 3 Lyapunov function
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Consider again switched DAE

E,t = Asx

Stability criteria for single DAEs E,& = Apx
= Lyapunov functions

No classical solutions for switched DAEs
= Allow for jumps in solutions

How does inconsistent initial value “jump” to consistent one?
= Consistency projectors I g, 4,y .-, (g, Ay
Differentiation of jumps

= Space of Distributions as solution space

Multiplication with non-smooth coefficients

= Space of piecewise-smooth distributions

= Existence and uniqueness of (distributional) solutions

Intermediate summary: Problems and their solutions

(swDAE)
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Asymptotic stability and impulse free solutions
Definition (Asymptotic stability of switched DAE)

(swDAE) asymptotically stable :< z is impulse free* and x(¢t4) — 0 for t — co
* i.e. zt] = 0 ¥t € R; however jumps in  are still allowed

Let Il := (g, 4,) be the consistency projector of (Ej, Ap)

Impulse freeness condition

(IFC): Vp,g e {1,...,m}: E (I —1IIy I, =0

Theorem (Trenn 2009)

(IFC) <« all solutions of E,i = Asx are impulse free Vo

Sufficient conditions for impulse freeness

Index 1: E,(I —1II;) =0 or Same consistency spaces: ([ —II;)II, =0
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Stability for arbitrary switching

Consider (swDAE) with:

(3Vp): Vpe{l,...,m} 3 Lyapunov function V,, for (E,, A})
i.e. each DAE E,& = A,z is asymptotically stable

Lyapunov jump condition

(LIC): Yp,g e {L,...,m} Vo € €, 4,y Vo(Ilgz) < V()

Theorem (LiserzoN & TRENN 2009)
(IFC) A (3Vp) A (LIC) =  (swDAE) asymtotically stable Vo

£ £

Examples 1a and 1b fulfill (IFC) and (3V}), ;”J" T
but only 1b fulfills (LJC) v T
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Slow switching

Consider the set of switching signals with dwell time 7 > 0:

V switching times
YTi=qo:R=>{1,....m} |t; eRieZ:
ti+1 7ti Z T

Theorem (LIBERZON & TRENN 2009)

Ir > 0: (IFC) A (3Vp) = (swDAE) asymptotically stable Vo € X7

Examples 1a and 1b both fulfill (IFC) and (3V})
= both examples are asymptotically stable for slow switching

Remark

Result also holds for average dwell time.
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Generalization to nonlinear switched DAEs

Previous results can be generalized to nonlinear switched DAEs:
Eo(@)i = fo(a)
where (IFC) has to be replaced by suitable nonlinear version, e.g. [LiBERZON & TRENN 2012]:
Vp,qe{l,...,m} Vay €€, 3 unique x(‘)"ECq : :L*a' -z EkerEq(;L'a')
where €, is the consistency manifold of E,(z)i = fp(x)

Problem

Above (IFC) not invariant under nonlinear coordinate transformation!
A proper nonlinear generalization was recently published [CHEN & TRENN 2023]

Stephan Trenn (Jan C. Willems Center, U Groningen) Stabilization of switched DAEs via fast switching (15 / 39)



Stability

g—r“"z university of
v / groningen | mmmam

Contents

Introduction

Stability

Commutativity

Stabilization via fast switching

Stephan Trenn (Jan C. Willems Center, U Groningen) Stabilization of switched DAEs via fast switching (16 / 39)



B universityor Stability
’6?/ groningen jn mmam

Commutativity and stability of switched ODEs

Theorem (NARENDRA AND BALAKRISHNAN 1994)
Consider switched ODE
(swODE) i = A
with A, Hurwitz, p € {1,2,...,m} and commuting A,, i.e.
[Ap, Ag] = ApA; — AgAp, =0 Vp,ge {1,2,...,m} (Q)
= (swODE) asymptotically stable Vo.

Proof idea: Consider switching times tg < t; < ... <ty <t and p; := o(t;+), then

x(t) — Arg (t_tk)eApkfl (te—tp—1) . eArt (t2—t1)€Apo (t1 —tO)xO

© A1t Arlty | Anltn g

and At, — oo for at least one p and ¢t — oo.
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Generalization to (swDAE)
(swDAE) E,i = Asx

Generalization - Questions

»  Which matrices have to commute?
»  What about the jumps?

C(ELA) = ([86]. 195D
Example la: 00
11

(B2, A2) = ([99]. [ o' &)

[A1, A2] = 0, but unstable for fast switching
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The matrix Adff

Let (E, A) regular with (SET, SAT) = ({ ] { ]) N nilpotent
T

consistency projector: H(E’A) [0 O] 1

Definition (differential “projector”)

diff I 0
Tpa=T {0 0] o
Lemma (Dynamics of DAE, Tanwant & TreNN 2010)
z solves Bi = Az <+ & = H?EF,A)A z, 2(0) € im I g 4)
diff
=:Adl

Note: Adiff — T [J O] 71 . hence H(E A) Adiff — Adiff _ AdlffH(E A)
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Commutativity condition

(swDAE) Eyi = Agx

Theorem (LiserzoN, TRENN & WIRTH 2011)

(IFC) A (3Vp) A
[Aglff7 Aglff} =0 VP, q = {1’ 2, e ,m} (C)

— (swDAE) is asymptotically stable Vo.

(IFC) A (3Vp) A (C) = 3 common quadratic Lyapunov function with

V(II,z) < V(x) Vz Vp

Remarkable: No explicit condition on jumps!
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Proof idea and extenstions
Key property: . _
[Af,'ff7 Ag'ff] =0 Vp,qge{l,2,...,n} (Q)
implies
[, A9 =0 A [I,,10,] = 0.
Consider switching times tg < t1 < ... < t, <t and p; := o(t;+), then

diff

diff (p_ A tr—t._ diffrp diff gy
Z'(t) _ eApk(t tk)Hpke pk*l(k k I)H '~6Ap1 (t2 tl)leeApo(tl tO)HpOx(]

Pk—1 "

C diff diff diff
( )eAl' AtlHl €A2I AtZHQ . .eAm' Atmnmm(]

and At, — oo for at least one p and ¢t — oo.

Extension to Lie-algebraic conditions

Commutativity = jointly diagonalizable <= matrices form solvable Lie-algebra
~» recent results available [RAJ & PAL 2021,2024]
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Evolution operator

w(t) = AR LA Gt ATt AT (B o) T (1)

=: (I)U(t, to)
Let M := {(Agiff7 I1,) | corresponding to (Ep, Ap),p=1,... ,m}.

Definition (Set of all evolution matrices with fixed time span ¢ > 0)

S; := {®7(t,0) | o arbitrary switching signal}

k diff,
= HeA"'I "L
i=0

k
(Agiff, Hi) e M, ZTZ‘ = At, 7; > 0}
=0

Lemma (Semi group, TrENN & WirTH 2012)

The set S :=J,5o St is a semi group with Ssiy = 885 := { PPy | D5 € S, Oy € St}
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Exponential growth bound

Definition (Exponential growth bound)
For ¢t > 0 the exponential growth bound of E,i& = Ay x is

In||®
At(Sy) = @Sléps M € RU{—o0, 00}
t t

Definition implies for all solutions = of E ;& = Ay x:

lz(@)l] = ([ @2 (0=)I| < @2l l2(0-)]| < A (0-)]]

Difference to switched ODEs without jumps
At(St) = oo is possible!

All jumps are trivial, i.e. II, =0 <= A\(S) = —0

Stephan Trenn (Jan C. Willems Center, U Groningen) Stabilization of switched DAEs via fast switching (24 / 39)
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Infinite exponential growth bound

Example 1a revisited:

= (3 15 ) w0 D[

2 ] ]
[« %
-t N : H
NV N 5
* b
. —+—
T t t

1 17" 11
For small dwell times: ®; ~ (II;I15)* = { } = ok—1 [1 J
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Lyapunov exponent of a switched DAE

Theorem (Boundedness of S;, TrenN & WirrH 2012)

St is bounded <= the set of consistency projectors is product bounded
(swDAE) Eyi = Ay

Theorem (Lyapunov exponent well defined, Treny & Wirrn 2012)

Let the consistency projectors be product bounded and not all be trivial,
then the (upper) Lyapunov exponent

In || P
AS) = lim A(S) = lim sup el
t—o0 t—00 d,€S;
of (swDAE) is well defined and finite.
Note that: (swDAE) uniformly exponentially stable

& AM > 1,u0>0: ||a@)| < Me #x(0-)] Vt>0
—= AS)<—pu<0
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Converse Lyapunov theorem for switched DAEs

For € > 0 define “Lyapunov norm”

z||. = sup sup e”AME+ P,
. p sup
t>0 ¢Sy

(swDAE) Eyi = Asz
Theorem (Converse Lyapunov theorem, TrexN & WirTH 2012)

(swDAE) is uniformly exponentially stable Vo
= V = |||l is Lyapunov function for sufficiently small ¢ > 0

In particular: V(IIz) < V(x) for all consistency projectors II

Non-smooth Lyapunov function

Il in general non-smooth.
“Smoothification” as in [YIN, SONTAG & WANG 1996] might violate jump condition!
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Control task

Switched System %, Goal: Stabilization
7 State variable = Find o such that z(t) — 0 as t — oo.

Usual approach

State-depending switching = — o(z)

Problems

)

)

No solution theory available for state-dependent switched DAEs!

State  may not be available for feedback control
— observer with estimation Z
— non-matching switching signals o(z) # o(z), NO seperation principle

Alternative approach

Time-dependent switching t — o(t)

Stephan Trenn (Jan C. Willems Center, U Groningen)
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Example: Stabilization of switched ODEs

N P

Unstable modes
x2

/

ZdENS
/

0

x1

=

0

Periodic switching signal:

Stability:

5

q
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Stabilization of switched DAEs via fast switching (30 / 39)



Stabilization via fast switching
.

Why does the example work?

Convex combination

1A +14,=1 {_1 0 ] Hurwitz!

Classical averaging result
For switched ODE & = A,z any convex combination

& =Anz, Aa:=) dpAp, didy,...dn€[0,1], Y dp=1,
k=1 k=1

can be approximated arbitrarily well by sufficiently fast (periodic) switching.

Corollary

3 Hurwitz convex combination =  Stabilizable by fast (time-dependent) switching

Stephan Trenn (Jan C. Willems Center, U Groningen) Stabilization of switched DAEs via fast switching (31 / 39)
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The Mironchenko-Wirth-Wulff Approach

Key observation
Adiffy Act . c J 0 1 . e
e II=~e with A =T 0 —1IT hence E,i=A,x =~ &=Ax

Theorem (MiroNcHENKO, WIRTH & WULFF 2013)

o stabilizes & = A5z Ve € (0,e0) — o stabilizes E,& = Az

Overall stabilization strategy

Approximation [ ] Averaging [
swDAE(o) ¥ swODE(o,¢) ¥ ODE(e,d1,...,dn) ]
A;, e > 0 small I l Fast switching l
))
stabilization with suitable dy, ..., d, and sufficiently high switching frequency
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Discussion of the MWW-approach
No further assumptions needed for individual approximations
swDAE(o) ¥ swODE(o,¢) Top(t™) —25,(t) > 0ase—0
swODE(o, €) Y ODE(e,dy,...,dn) ] x5 o (t) — x5, (t) > 0asp —0
Problem

For fixed € > 0 it is possible that 2, (t7) — 25 ,(t) 00 asp =0

Underlying problem

Consistency projectors not explicitly considered:
y Destabilizing effect for fast switching

» Non-existence of averaged model

Stephan Trenn (Jan C. Willems Center, U Groningen) Stabilization of switched DAEs via fast switching (33 / 39)
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Direct approach

Directly utilize averaging approach for switched DAEs

Averaging [
E,t = Asx >
Fast switching L

ODE(dy, ...

o)

Assumptions
» (Eg, Ag) regular and index-1 with T, Agiff
y o:R—{1,2,...,m} periodic with

= period p >0

= duty cycles dj,...,dn € (0,1) for fixed (periodic) mode sequence (1,2,...,m)

Existence of averaged ODE

When can (swDAE) be approximated by averaged ODE i, = Aay2ay?

Stephan Trenn (Jan C. Willems Center, U Groningen)
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Existence of an averaged model

Definition (Averaged model)

We call &5, = A,vzay an averaged model of E & = Asx
& VT > 0 Voo Ve > 0 Jzf¥ Ip > 03C > 0

VP e (0,8): zop(t™) —zav(t)| < Cp VE€ [p,T]
T2

Problem

Averaged model does not always exist
(even for exponentially stable (swDAE)!

Example 1b revisited:

A) 71

Stabilization of switched DAEs via fast switching (35 / 39)
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Underlying problem

Although {II;,II2} is product bounded, jumps in 24, do not converge to zero as p — 0
BUT: x5 — @ay requires vanishing jumps because x5y is always continuous!

In which space would x,, evolve?

Top((t+p)7) = A8 aPTL, . . . A2 d2PTT, . AT NPIT 3, (+7) for t = kp
If averaged model exists then

zav(t) = ;%xa,p((t + P)_) = Iy - - - II211y $av(t)

~ Tay(t) € im Il =:1In
Condition for vanishing jumps

Vk € {1,2,...,111} : Hk"‘H2H1Hm :Hm and HﬂHm"'Hk+1Hk :Hm

<~ Vke{l,2,...,m}: imIlx DimIly and kerIl; C kerIln (PA)

Stephan Trenn (Jan C. Willems Center, U Groningen) Stabilization of switched DAEs via fast switching (36 / 39)
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Averaged model

For E,& = Asx, x(07) = z, define averaged system:

Tay = HﬂAg\i/ﬁHﬂxav, xav(o) = Ilnzg (ZBV)
where AJiff.— Srq dk,A‘,iifF and Il = Il . . . IIoI1; with projector assumption
Vk e {1,2,...,m}: imIly DimIln and kerIl; C kerIln (PA)

Theorem (MosTaccruoro, TRENN & VAsca 2017)

If (PA) then (Xay) is an averaged system for (swDAE), i.e.
[Za,p — Zavlloe = O(p)

on every compact interval in (0, c0)

Remarks on (PA) condition

» (PA) = Il is a projector  (converse is not true in general)
» (PA) depends on order of modes ~»» existence of averaged system depends on mode sequence
y ILIT; =T1I;II; = (PA) (converse not true in general)

Stephan Trenn (Jan C. Willems Center, U Groningen) Stabilization of switched DAEs via fast switching (37 / 39)
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Stabilization via fast switching

Corollary

3 mode sequence satisfying (PA) and dy, . .., dy such that (X,y) is exponentially stable
= dp > 0 sufficiently small: E,i& = A,x exponentially stable

Key steps of proof:
1. Chose T'> 0 and ¢ < 1 such that

[zay (T)I| < ellzav(T/2)]]
2. Chose p > 0 sufficiently small such that
Top(T7) = aa(T) and  x5,(T/27) = xay(T/2)
so that we can conclude for some ¢ € (¢, 1)

[2e,p (T < llzon (T/27)]]

3. Conclude exponential stability.

Stephan Trenn (Jan C. Willems Center, U Groningen) Stabilization of switched DAEs via fast switching (38 / 39)
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Summary

Ey,i = Ayx

» Stability

Impulse freeness

Lyapunov jump condition for arbitrary switching
Stability under slow switching

Generalization to nonlinear case

Commutativity and stability

Converse Lyapuynov Theorem

» Stabilization by fast switching

MWW approach

Averaging approach

(swDAE)
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