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Introduction Stability Stabilization via fast switching

Switched DAEs
Switched linear DAE (differential algebraic equation)
(swDAE) Eσ(t)ẋ(t) = Aσ(t)x(t) or short Eσẋ = Aσx

with
› switching signal σ : R → {1, 2, . . . , m}

• piecewise constant, right-continuous
• locally finitely many jumps

› matrix pairs (E1, A1), . . . , (Em, Am)
• Ep, Ap ∈ Rn×n, p = 1, . . . , m

• (Ep, Ap) regular, i.e. det(sEp − Ap) ̸≡ 0

Main motivation
Modeling of electrical circuits

Special features
› Changing algebraic constraints
› Induced jumps

→ consistency projectors Πp

› Dirac impulses possible

Question
Epẋ = Apx asymp. stable ∀p

?=⇒ Eσẋ = Aσx asymp. stable ∀σ
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Example 1: jumps and stability
Example 1a:

(E1, A1) =
([

0 0
0 1

]
,

[
1 −1
0 −1

])
(E2, A2) =

([
0 0
1 1

]
,

[
−1 0
0 −1

])
Example 1b:

(E1, A1) =
([

0 0
0 1

]
,

[
1 −1
0 −1

])
(E2, A2) =

([
0 0
0 1

]
,

[
1 0
0 −1

])

x1

x2

unstab
le!!!

x1

x2

x1

x2

Remark: V (x) = x2
1 + x2

2 is Lyapunov function for all subsystem
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Example 2: impulses in solutions

−
+

Lu vL

iL

constant input:
inductivity law:
switch dependent: 0 = vL − u

−
+

Lu vL

iL

u̇ = 0
L d

dt iL = vL

0 = iL
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Example 2: impulses in solutions

−
+

Lu vL

iL

x = [u, iL, vL]⊤1 0 0
0 L 0
0 0 0

 ẋ =

 0 0 0
0 0 1

−1 0 1

 x

−
+

Lu vL

iL

1 0 0
0 L 0
0 0 0

 ẋ =

0 0 0
0 0 1
0 1 0

 x
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Solution of example
L d

dt iL = vL, 0 = vL − u or 0 = iL

u constant, iL(0) = 0

switch at ts > 0: σ(t) =
{

1, t < ts

2, t ≥ ts

t

vL(t)

ts
t

iL(t)

ts

u

δts
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Observations from examples

Solutions
› modes have constrained dynamics: consistency spaces
› switches ⇒ inconsistent initial values
› inconsistent initial values ⇒ jumps in x

Stability
› common Lyapunov function not sufficient
› stability depends on jumps

Impulses
› switching ⇒ Dirac impulse in solution x

› Dirac impulse = infinite peak ⇒ instability
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Solutions for unswitched DAEs
Consider Eẋ = Ax.

Theorem (Weierstrass 1868)
(E, A) regular ⇐⇒ ∃S, T ∈Rn×n inv.:

(SET, SAT ) =
([

I 0
0 N

]
,

[
J 0
0 I

])
,

N nilpotent, T = [V, W ]

Corollary (for regular (E, A))
x solves Eẋ = Ax ⇐⇒

x(t) = V eJtv0

V ∈ Rn×n1 , J ∈ Rn1×n1 , v0 ∈ Rn1 .
Consistency space: C(E,A) := im V

(E, A) =
([ 0 4 0

1 0 0
0 0 0

]
,

[
−4π −4 0
−1 4π 0
−1 −4 4

])

x1

x2

x3

V =
[ 0 4

1 0
1 1

]
, J =

[ −1 −4π
π −1

]
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Consistency projector
x

Π(E,A)x

C(E,A)

Definition (Consistency projectors for regular (E, A))
Let S, T ∈ Rn×n be invertible with (SET, SAT ) =

([
I 0
0 N

]
,
[

J 0
0 I

])
:

Π(E,A) := T

[
I 0
0 0

]
T −1
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Lyapunov functions for regular (E, A)
Definition (Lyapunov function for Eẋ = Ax)
Q = Q⊤ > 0 on C(E,A) and P = P ⊤ > 0 solutions of

A⊤PE + E⊤PA = −Q (generalize Lyapunov equation)

Lyapunov function V : Rn → R≥0 : x 7→ (Ex)⊤PEx

V monotonically decreasing along solutions:
d
dtV

(
x(t)

)
=

(
Ex(t)

)⊤
PEẋ(t) +

(
Eẋ(t)

)⊤
PEx

= x(t)⊤E⊤PAx(t) + x(t)⊤A⊤PEx(t)
= −x(t)⊤Qx(t) < 0

Theorem (Owens & Debeljkovic 1985)

Eẋ = Ax asymptotically stable ⇐⇒ ∃ Lyapunov function
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Intermediate summary: Problems and their solutions
Consider again switched DAE

Eσẋ = Aσx (swDAE)

1. Stability criteria for single DAEs Epẋ = Apx
⇒ Lyapunov functions

2. No classical solutions for switched DAEs
⇒ Allow for jumps in solutions

3. How does inconsistent initial value “jump” to consistent one?
⇒ Consistency projectors Π(E1,A1), . . . , Π(Em,Am)

4. Differentiation of jumps
⇒ Space of Distributions as solution space

5. Multiplication with non-smooth coefficients
⇒ Space of piecewise-smooth distributions
⇒ Existence and uniqueness of (distributional) solutions
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Asymptotic stability and impulse free solutions
Definition (Asymptotic stability of switched DAE)
(swDAE) asymptotically stable :⇔ x is impulse free∗ and x(t±) → 0 for t → ∞
∗ i.e. x[t] = 0 ∀t ∈ R; however jumps in x are still allowed

Let Πp := Π(Ep,Ap) be the consistency projector of (Ep, Ap)

Impulse freeness condition
(IFC): ∀p, q ∈ {1, . . . , m} : Eq(I − Πq)Πp = 0

Theorem (Trenn 2009)
(IFC) ⇐⇒ all solutions of Eσẋ = Aσx are impulse free ∀σ

Sufficient conditions for impulse freeness
Index 1: Eq(I − Πq) = 0 or Same consistency spaces: (I − Πq)Πp = 0
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Stability for arbitrary switching
Consider (swDAE) with:

(∃Vp): ∀p ∈ {1, . . . , m} ∃ Lyapunov function Vp for (Ep, Ap)

i.e. each DAE Epẋ = Apx is asymptotically stable

Lyapunov jump condition
(LJC): ∀p, q ∈ {1, . . . , m} ∀x ∈ C(Ep,Ap) : Vq(Πqx) ≤ Vp(x)

Theorem (Liberzon & Trenn 2009)
(IFC) ∧ (∃Vp) ∧ (LJC) =⇒ (swDAE) asymtotically stable ∀σ

Examples 1a and 1b fulfill (IFC) and (∃Vp),
but only 1b fulfills (LJC)

x1

x2

x1

x2
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Slow switching
Consider the set of switching signals with dwell time τ > 0:

Στ :=

σ : R → {1, . . . , m}

∣∣∣∣∣∣∣
∀ switching times
ti ∈ R, i ∈ Z :
ti+1 − ti ≥ τ

 .

Theorem (Liberzon & Trenn 2009)
∃τ > 0: (IFC) ∧ (∃Vp) =⇒ (swDAE) asymptotically stable ∀σ ∈ Στ

Examples 1a and 1b both fulfill (IFC) and (∃Vp)
⇒ both examples are asymptotically stable for slow switching

Remark
Result also holds for average dwell time.
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Generalization to nonlinear switched DAEs

Previous results can be generalized to nonlinear switched DAEs:

Eσ(x)ẋ = fσ(x)

where (IFC) has to be replaced by suitable nonlinear version, e.g. [Liberzon & Trenn 2012]:

∀p, q ∈{1, . . . , m} ∀x−
0 ∈Cp ∃ unique x+

0 ∈Cq : x+
0 − x−

0 ∈ker Eq(x+
0 )

where Cp is the consistency manifold of Ep(x)ẋ = fp(x)

Problem
Above (IFC) not invariant under nonlinear coordinate transformation!
A proper nonlinear generalization was recently published [Chen & Trenn 2023]
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Commutativity and stability of switched ODEs
Theorem (Narendra and Balakrishnan 1994)
Consider switched ODE
(swODE) ẋ = Aσx

with Ap Hurwitz, p ∈ {1, 2, . . . , m} and commuting Ap, i.e.

[Ap, Aq] := ApAq − AqAp = 0 ∀p, q ∈ {1, 2, . . . , m} (C)

⇒ (swODE) asymptotically stable ∀σ.

Proof idea: Consider switching times t0 < t1 < . . . < tk < t and pi := σ(ti+), then

x(t) = eApk
(t−tk)eApk−1 (tk−tk−1) · · · eAp1 (t2−t1)eAp0 (t1−t0)x0

(C)= eA1∆t1eA2∆t2 · · · eAm∆tmx0

and ∆tp → ∞ for at least one p and t → ∞.
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Generalization to (swDAE)

(swDAE) Eσẋ = Aσx

Generalization - Questions
› Which matrices have to commute?
› What about the jumps?

Example 1a:
(E1, A1) =

([ 0 1
0 0

]
,
[ 0 −1

1 −1
])

(E2, A2) =
([ 0 0

1 1
]

,
[ −1 0

0 −1
])

[A1, A2] = 0, but unstable for fast switching
x1

x2
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The matrix Adiff

Let (E, A) regular with (SET, SAT ) =
([

I 0
0 N

]
,

[
J 0
0 I

])
, N nilpotent

consistency projector: Π(E,A) = T

[
I 0
0 0

]
T −1

Definition (differential “projector”)

Πdiff
(E,A) = T

[
I 0
0 0

]
S

Lemma (Dynamics of DAE, Tanwani & Trenn 2010)
x solves Eẋ = Ax ⇐⇒ ẋ = Πdiff

(E,A)A︸ ︷︷ ︸
=:Adiff

x, x(0) ∈ im Π(E,A)

Note: Adiff = T
[

J 0
0 0

]
T −1, hence Π(E,A)A

diff = Adiff = AdiffΠ(E,A)
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Commutativity condition
(swDAE) Eσẋ = Aσx

Theorem (Liberzon, Trenn & Wirth 2011)
(IFC) ∧ (∃Vp) ∧

[Adiff
p , Adiff

q ] = 0 ∀p, q ∈ {1, 2, . . . , m} (C)

=⇒ (swDAE) is asymptotically stable ∀σ.

(IFC) ∧ (∃Vp) ∧ (C) =⇒ ∃ common quadratic Lyapunov function with

V (Πpx) ≤ V (x) ∀x ∀p

Remarkable: No explicit condition on jumps!
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Proof idea and extenstions
Key property:

[Adiff
p , Adiff

q ] = 0 ∀p, q ∈ {1, 2, . . . , m} (C)

implies
[Πp, Adiff

q ] = 0 ∧ [Πp, Πq] = 0.

Consider switching times t0 < t1 < . . . < tk < t and pi := σ(ti+), then

x(t) = e
Adiff

pk
(t−tk)Πpk

e
Adiff

pk−1 (tk−tk−1)Πpk−1 · · · eAdiff
p1 (t2−t1)Πp1eAdiff

p0 (t1−t0)Πp0x0
(C)= eAdiff

1 ∆t1Π1 eAdiff
2 ∆t2Π2 · · · eAdiff

m ∆tmΠmx0

and ∆tp → ∞ for at least one p and t → ∞.

Extension to Lie-algebraic conditions
Commutativity =⇒ jointly diagonalizable ⇐⇒ matrices form solvable Lie-algebra
⇝ recent results available [Raj & Pal 2021,2024]
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Evolution operator
x(t) = eAdiff

k
(t−tk)ΠkeAdiff

k−1(tk−tk−1)Πk−1 · · · eAdiff
1 (t2−t1)Π1eAdiff

0 (t1−t0)Π0︸ ︷︷ ︸
=: Φσ(t, t0)

x(t0−)

Let M :=
{

(Adiff
p , Πp)

∣∣ corresponding to (Ep, Ap), p = 1, . . . , m
}

.

Definition (Set of all evolution matrices with fixed time span t > 0)

St := {Φσ(t, 0) | σ arbitrary switching signal}

=
{

k∏
i=0

eAdiff
i τiΠi

∣∣∣∣∣ (Adiff
i , Πi) ∈ M,

k∑
i=0

τi = ∆t, τi > 0
}

Lemma (Semi group, Trenn & Wirth 2012)
The set S :=

⋃
t>0 St is a semi group with Ss+t = SsSt := {ΦsΦt | Φs ∈ Ss, Φt ∈ St}
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Exponential growth bound
Definition (Exponential growth bound)
For t > 0 the exponential growth bound of Eσẋ = Aσx is

λt(St) := sup
Φt∈St

ln ∥Φt∥
t

∈ R ∪ {−∞, ∞}

Definition implies for all solutions x of Eσẋ = Aσx:

∥x(t)∥ = ∥Φtx(0−)∥ ≤ ∥Φt∥ ∥x(0−)∥ ≤ eλt(St) t∥x(0−)∥

Difference to switched ODEs without jumps
λt(St) = ±∞ is possible!

All jumps are trivial, i.e. Πp = 0 ⇐⇒ λt(St) = −∞
Stephan Trenn (Jan C. Willems Center, U Groningen) Stabilization of switched DAEs via fast switching (24 / 39)
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Infinite exponential growth bound
Example 1a revisited:

(E1, A1) =
([

0 0
0 1

]
,

[
1 −1
0 −1

])
(E2, A2) =

([
0 0
1 1

]
,

[
−1 0
0 −1

])

x1

x2

t

∥x∥

t

∥x∥

For small dwell times: Φt ≈ (Π1Π2)k =
[
1 1
1 1

]k

= 2k−1
[
1 1
1 1

]
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Lyapunov exponent of a switched DAE
Theorem (Boundedness of St, Trenn & Wirth 2012)
St is bounded ⇐⇒ the set of consistency projectors is product bounded

(swDAE) Eσẋ = Aσx

Theorem (Lyapunov exponent well defined, Trenn & Wirth 2012)
Let the consistency projectors be product bounded and not all be trivial,
then the (upper) Lyapunov exponent

λ(S) := lim
t→∞

λt(St) = lim
t→∞

sup
Φt∈St

ln ∥Φt∥
t

of (swDAE) is well defined and finite.

Note that: (swDAE) uniformly exponentially stable
:⇔ ∃M ≥ 1, µ > 0 : ∥x(t)∥ ≤ Me−µt∥x(0−)∥ ∀t ≥ 0
⇐⇒ λ(S) ≤ −µ < 0
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Converse Lyapunov theorem for switched DAEs
For ε > 0 define “Lyapunov norm”

|||x|||ε := sup
t>0

sup
Φt∈St

e−(λ(S)+ε)t∥Φtx∥

(swDAE) Eσẋ = Aσx

Theorem (Converse Lyapunov theorem, Trenn & Wirth 2012)
(swDAE) is uniformly exponentially stable ∀σ
⇒ V = |||·|||ε is Lyapunov function for sufficiently small ε > 0

In particular: V (Πx) ≤ V (x) for all consistency projectors Π

Non-smooth Lyapunov function
|||·|||ε in general non-smooth.
“Smoothification” as in [Yin, Sontag & Wang 1996] might violate jump condition!
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Control task
Switched System Σσ

State variable x
σ

Goal: Stabilization
Find σ such that x(t) → 0 as t → ∞.

Usual approach
State-depending switching x 7→ σ(x)

Problems
› No solution theory available for state-dependent switched DAEs!
› State x may not be available for feedback control

→ observer with estimation x̂
→ non-matching switching signals σ(x) ̸= σ(x̂), NO seperation principle

Alternative approach
Time-dependent switching t 7→ σ(t)

Stephan Trenn (Jan C. Willems Center, U Groningen) Stabilization of switched DAEs via fast switching (29 / 39)
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Example: Stabilization of switched ODEs

ẋ = Aσx, A1 =
[
−2 1
0 1

]
, A2 =

[
1 −1
1 −2

]

Unstable modes

x1

x2

0

Periodic switching signal:
t

σ(t)

1
2

1 2 3

=⇒ Stability:

x1

x2

0
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Why does the example work?
Convex combination

1
2A1 + 1

2A2 = 1
2

[
−1 0
1 −1

]
Hurwitz!

Classical averaging result
For switched ODE ẋ = Aσx any convex combination

ẋ = Aavx, Aav :=
m∑

k=1
dkAk, d1, d2, . . . , dm ∈ [0, 1],

m∑
k=1

dk = 1,

can be approximated arbitrarily well by sufficiently fast (periodic) switching.

Corollary
∃ Hurwitz convex combination =⇒ Stabilizable by fast (time-dependent) switching
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The Mironchenko-Wirth-Wulff Approach
Key observation

eAdifftΠ ≈ eAεt with Aε := T

[
J 0
0 −1

ε I

]
T −1 hence Eσẋ = Aσx ≈ ẋ = Aε

σx

Theorem (Mironchenko, Wirth & Wulff 2013)
σ stabilizes ẋ = Aε

σx ∀ε ∈ (0, ε0) =⇒ σ stabilizes Eσẋ = Aσx

Overall stabilization strategy

swDAE(σ) swODE(σ, ε) ODE(ε, d1, . . . , dm)
Approximation

Aε
p, ε > 0 small

Averaging

Fast switching

stabilization with suitable d1, . . . , dm and sufficiently high switching frequency
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Discussion of the MWW-approach
No further assumptions needed for individual approximations

swDAE(σ) swODE(σ, ε) xσ,p(t−) − xε
σ,p(t) → 0 as ε → 0

swODE(σ, ε) ODE(ε, d1, . . . , dm) xε
σ,p(t) − xε

av(t) → 0 as p → 0

Problem
For fixed ε > 0 it is possible that xσ,p(t−) − xε

σ,p(t) → ∞ as p → 0

Underlying problem
Consistency projectors not explicitly considered:
› Destabilizing effect for fast switching
› Non-existence of averaged model
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Direct approach
Directly utilize averaging approach for switched DAEs

Eσẋ = Aσx ODE(d1, . . . , dm)
Averaging

Fast switching

Assumptions
› (Ek, Ak) regular and index-1 with Πk, Adiff

k

› σ : R → {1, 2, . . . , m} periodic with
• period p > 0
• duty cycles d1, . . . , dm ∈ (0, 1) for fixed (periodic) mode sequence (1, 2, . . . , m)

Existence of averaged ODE
When can (swDAE) be approximated by averaged ODE ẋav = Aavxav?

Stephan Trenn (Jan C. Willems Center, U Groningen) Stabilization of switched DAEs via fast switching (34 / 39)



Introduction Stability Stabilization via fast switching

Existence of an averaged model
Definition (Averaged model)
We call ẋav = Aavxav an averaged model of Eσẋ = Aσx
:⇔ ∀T > 0 ∀x0 ∀ε > 0 ∃xav

0 ∃p > 0 ∃C > 0

∀p ∈ (0, p) : ∥xσ,p(t±) − xav(t)∥ ≤ Cp ∀t ∈ [p, T ]

Problem
Averaged model does not always exist
(even for exponentially stable (swDAE)!

Example 1b revisited:

(E1, A1) =
([ 0 0

0 1
]

,
[ 1 −1

0 −1
])

(E2, A2) =
([ 0 0

0 1
]

,
[ 1 0

0 −1
])

x1

x2
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Underlying problem
Although {Π1, Π2} is product bounded, jumps in xσ,p do not converge to zero as p → 0
BUT: xσ,p → xav requires vanishing jumps because xav is always continuous!

In which space would xav evolve?
xσ,p((t + p)−) = eAdiff

m dmpΠm · · · eAdiff
2 d2pΠ2 · eAdiff

1 d1pΠ1xσ,p(t−) for t = kp
If averaged model exists then

xav(t) = lim
p→0

xσ,p((t + p)−) = Πm · · · Π2Π1︸ ︷︷ ︸
=: Π∩

xav(t)

⇝ xav(t) ∈ im Π∩

Condition for vanishing jumps

∀k ∈ {1, 2, . . . , m} : Πk · · · Π2Π1Π∩ = Π∩ and Π∩Πm · · · Πk+1Πk = Π∩

⇐⇒ ∀k ∈ {1, 2, . . . , m} : im Πk ⊇ im Π∩ and ker Πk ⊆ ker Π∩ (PA)
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Averaged model
For Eσẋ = Aσx, x(0−) = x0, define averaged system:

ẋav = Π∩Adiff
av Π∩xav, xav(0) = Π∩x0 (Σav)

where Adiff
av :=

∑m
k=1 dkAdiff

k and Π∩ = Πm . . . Π2Π1 with projector assumption
∀k ∈ {1, 2, . . . , m} : im Πk ⊇ im Π∩ and ker Πk ⊆ ker Π∩ (PA)

Theorem (Mostacciuolo, Trenn & Vasca 2017)
If (PA) then (Σav) is an averaged system for (swDAE), i.e.

∥xσ,p − xav∥∞ = O(p)
on every compact interval in (0, ∞)

Remarks on (PA) condition
› (PA) =⇒ Π∩ is a projector (converse is not true in general)
› (PA) depends on order of modes ⇝ existence of averaged system depends on mode sequence
› ΠiΠj = ΠjΠi =⇒ (PA) (converse not true in general)
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Stabilization via fast switching
Corollary
∃ mode sequence satisfying (PA) and d1, . . . , dm such that (Σav) is exponentially stable
=⇒ ∃p > 0 sufficiently small: Eσẋ = Aσx exponentially stable

Key steps of proof:
1. Chose T > 0 and c < 1 such that

∥xav(T )∥ < c∥xav(T/2)∥

2. Chose p > 0 sufficiently small such that

xσ,p(T −) ≈ xav(T ) and xσ,p(T/2−) ≈ xav(T/2)

so that we can conclude for some c̃ ∈ (c, 1)

∥xσ,p(T −)∥ < c̃∥xσ,p(T/2−)∥

3. Conclude exponential stability.
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Summary

Eσẋ = Aσx (swDAE)

› Stability
• Impulse freeness
• Lyapunov jump condition for arbitrary switching
• Stability under slow switching
• Generalization to nonlinear case
• Commutativity and stability
• Converse Lyapuynov Theorem

› Stabilization by fast switching
• MWW approach
• Averaging approach
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