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Switched DAEs
Switched DAE

E;x=Aox + Byu, x(ty ) = X C R, (swDAE)
y = GCx+ D,u,

» Switching signal: o : [to, tr) = M:={0,1,...,m}

» Modes: (Ek, Ak, Bk, Ck, Di) for k € M

» Singular system: Ex € R"*" usually singular

Motivation

> Electrical circuits with switches
> (Linearized) models of water distribution networks with valves
» Mathematical curiosity
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Toy Example

Consider (swDAE) given by:

on [to,s1) : on [s1,5) : on [sp, tf) :
0530 0 0100 0 0900 5000
X= 10000 | Xt |1|U]| [00o0|X=XT|1|U]| |0o610|X= |0000|X
0000 0 0010 0 0001 0110
y= y=J[ooo01]x y=J[ooo01]x
3 T T T T JI?AE S\ates T T T 3 T T T T Out‘put T T T
2t / 2t 4
tr é,;\/ 1 r 1
0 0 1
x
1r + A 4
Ty
2t Z3 || 2t 4
T4
3 . 3
0 0.5 1 15 2 25 3 35 4 45 5 0 0.5 1 1.5 2 25 3 3.5 4 45 5
time t time t
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Model reduction

Model reduction task

(Approximately) same input-output behavior with smaller size switched system

For the toy example: possible to reduce to mode-dependent state-dimensions (2,1, 2):
Reduced System States

3 T T T T T T

2 - -

1 - -

0 2171 |
31,2

qF o
22

oL 33,1 i
23,2

_3 1 1 1 1 1 1 1 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time t
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Key challenges and novelties

E,x = Asx+ Bou, x(ty)= X CR",

Y Coxt Do (swDAE)

Fixed switching signal on fixed finite time interval [to, tf)
No stability assumption for individual modes
No restriction on index of DAE ~» Dirac impulses in state and output

>

>

>

» Allow non-zero (possibly inconsistent) initial values via subspace Ap

» Reduced model should again be a switched system (with same switching signal)
>

Allow mode-dependent reduced state dimension
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Overview: reduction approach

E.% = A,x + Byu

QWF

y=Cox+ Dyu

2= A2+ By, on (s, k1)

2(s) = M [2(s)+ B U™ (s,

y=Caz+ + Dy"PU™, on (sk, Sk+1)
ve—2

visd= Y [Clatso) + D ua(s;)

=0

DImPFU(s,

2imp b imp |, Bimp.
XM = APPSR  BimPy,

R(sr) = TR+ 30

y =GR 4

k)

on (k. Skt1)-

midpoint
balanced
truncation

reduced
) realization
Z= /A\ﬂ'"z + Ef'"u. on (sk, Sk+1),
2(st) = Mz(sp)+ LU (sp),
y:@f‘ on (Sk, Sk+1),
=2

Yisd = Y [Clats)

=0

|69,

impulse decoupling

x‘""(
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X (s

7P = AT 4 By,

vlsd = 3 [Gr x50 +

on (Sk, Sk+1)s

on (sk, Skt1),
)= XS + AU ),
)= KA (s0) + U (s,
y= C"“" e | Cimexime 4

XImP = APy imp . gime

o

=0

Stephan

Trenn, Jan C. Willems Center for Systems and Control, University of Groningen



The three main steps

1. Reduced realization (always possible, depends only on mode sequence)
> Via Wong-sequences and Quasi-Weierstrass form rewrite (swDAE) as switched ODE with
jumps and impulsive output of same size
» Calculate extended reachability and restricted unobservability subspaces
> Calculate weak Kalman decomposition and remove unreachable/unobservable parts
» Define reduced jump maps, output impulses, initial value space and initial projector

2. Impulse decoupling (structural assumption, depends only on mode sequence)

» Key observation: Dirac impulse = infinite peak
~» do not change states which effect output Diracs
> Assumption: States evolve in two disjoint invariant (mode-dependent) subspaces

3. Midpoint balanced truncation (invertability assumption on Gramians)

» Solution = Solution for continuous input + Solution for discrete input

» Calculate midpoint reachability Gramians for continuous and discrete time system
» Calculate midpoint observability Gramians

» Apply mode-wise balanced truncation via the midpoint Gramians
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From (swDAE) to switched ODE

2= A2+ By, on (sk, k1)

Ex—Ax+Bu| QWF [#0-m [2s0)+ B[ U s))

y = Cox + Dyu Yo e D e (s 7 reducesl .
T vlsd = Y [Clals) + DiTp U (s0) = DU (s)] o) realization
\ =0 -
\
\
\ Z = Az 4 B, (ks Sks1)
\ 2(s) = Miz(s )+ U7 (s;)
\ Overall reduction yoaat o on (s s,
1 yls] = [Ckl(Sk) 1 ]”g)
\ i=0
\
\ . .
' impulse decoupling
‘ . -
— midpoint —
R = AMPEIMP L BTy on (i, Skr1)s KB — AT 4 By on (sy, Ski1),
bala nced Xm0 = ATPX™P 4+ By, on (s, Sk1),
FR(st) = T ) + U s ). truncation |y = 5T (s0) + U ),
XB(s) = IR (s ) + U (s )
y =GR 4 y = CITPX™P 4 CImPximP
Vs = 3 [Greixme(s;) + 169,
i=0
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Reminder: Solution decoupling based on Wong limits
Ex=Ax+Bu  with QWF (SET,SAT) = ([} 9],[2°]) (DAE)

Definition (Some matrix definition based on Wong limits and QWF)

n(E,A) = T[(IJg]T_l H?ETA) =T3S n'(?,)A) = T[gclj]s
diff . diff diff . diff imp . im imp . im
AT =TI{E p)A B =g 4B E'™P .= I‘I(E?A)E B™P .= I‘I(E[’A)B

Theorem (Solution decomposition)

x solves (DAE) with x(ty ) = xo <= x = x4 4 xIMP € V* ¢ W* where

XdifF — AdiffXdifF + Bdiffu, Xdiff(ta) _ rI(E,A)XO»

Eimpgimp — ximp | pgimp,, X" (t57) = (I — Ng,4))%0-
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Explicit impulsive solution formula

Lemma

X™P solves EMPXIMP = xIMP 4 BIMPy, xR (1) = (I — M)xo <=

xMP = B™PUY  on (to, tr)
v—2
XmP[to] = = Y (E™) (x0 — BTPUY (1))
i=0

where v € N is the nilpotency index of E™P and

: e
U? = |:UT,UT7... 7u(’/ 1)

Bimp = — [Bimp’ EimpBimp’ o (Eimp)u—lBimp] .
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Equivalent switched ODE formulation

Corollary

For each xg € R" the input-output behavior of (swDAE) is equal to the one of

z= AzifFZ I Bgiffu, on (Sk,SkJrl), Z(l’(;) = Xo

2(s¢) = M [2(s)+ B U™ ()], k=0

y = CkZ Dilznpuyk7 on (Sk, Sk+1)

v—2

visd = 3 [Ciats) 30
i=0

e B0 DI G [ G (EML
Dy"P = —G(E™) B, and DT = —Gi(E™) B
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Toy example - Wong matrices

1000 0100 070000 07
k=0: 0100 0010 00000 0
=Y 0010[>|0000(>|1|]0000]|+|0] />
0001 0000 ol Looool Lol
1000 0000 07 [00007 [O]
k=1-: ([0100} [0000] {0} 0000 0)
=4 0000|0000 |0|>[0000]|>|1] />
0000 0000 ol Looiol Lol
0000 0000 07 [00007 [O]
k=2- 0100 0000 0 0000 0
=<4 0010(>|0000(|>|0|>[0000]|>|0]]"
0001 0110 ol Looool Lol
The corresponding feedthrough terms are then
im im im |m+ imp—
Dopzolxo, DlF’:[O—l]7 szzolxl, p —[10] D p —01><0.
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Toy example - switched ODE representation

on (sp,s1) : on (s1,%):
03081 18], [ *°

z:{oooo}z+[1]” . 1000 ~

B8ESTT L) ey = [$488] )
z(sy) = X0 0000
y=0 y=[ooo01]z+[0-1](})
ylso] =0 ylsi] = ([o0-10] 2(s7)
3 ‘ ‘ Swit‘ched [?AEStflles ‘ ‘
5|

T
-1+ 5
2+ T3
Ty
3 . I I I I I . . n
0 0.5 1 15 2 25 3 3.5 4 4.5
time t
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—

Stephan Trenn, Jan C. Willems Center for Systems and Control, University of Groningen



Reduced realization of switched ODE

E,x=Ax+Bu| QWF

y=Cox+ Dyu

2= A2+ By, on (sk, k1)
2(s}) = My [2(5)+ B U7 (s
y=Caz+ + Dy"PU™, on (sk. Sks1)

-2

vsd=Y [c;z(sk )+ D" U (s, ) — DIMP*

=0

reduced
U (sl realization

\
' Overall reduction

\
\
\
\

\
Y

midpoint

Zmp  Simpimp . Smp
X =A™ + B™u,  on (sk Skr1):

TET () U (s,

(s ) =

y =GR 4

balanced
truncation

7= Al £ B, on (sk,sks1),
2(s}) = Mez(sp )+ U (s7)s

y=Cz+ on (sk, Ski1)s
Yisd = Y [Clats) oy,

=0

impulse decoupling

Limp imp_imp imp.
XM = ATPXP 4 B on (S, Skr1)
XM = APXIMP - By on (s, Ske1)

XT(s) = B X (se) + U (s)),
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i
XMP(s) = X (5 ) + U (s),
¥ = CPx™ 4 CImxime 4

Vsl =3 [cims;) +

=0

};m,

i
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Reduced realization - notation reset

z = Axz + Byu, on (Sk, Sk+1)s

z(s7) = Siz(sp )+ Fvie, k>0,

y = Cyz, on (Sk, Sk+1),

yls] = chz 5000, k>0,

i=0
lreduction
Z = Az + Byu, on (Sk, Sk+1),
2(s7) = Jiz(sy )+ v, k>0,
y = Ek/z\a on (Sk7sk+1)7
Pk =R
Y[Sk] = li/Z\( )6(1)7 k >0,

Il
o
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Z(to_) = xp € Xy,

Z(ty) = 20(x0),
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Recall: Kalman decomposition
Reachable subspace for x = Ax + Bu
R = (A|imB) :=im[B, AB, ..., A""1B] ~» smallest A-inv. subspace containing im B

Unobservable subspace for x = Ax, y = Cx
U= (ker C|A):=ker[C/CA/.../CA" 1] ~s largest A-inv. subspace contained in ker C

Kalman decomposition

Choose coordinate transformation P = [P, P2, P3 P*#] such that
imP=RNU, im[P,P=R, imPLP]=U

then (P~1AP, P~1B, CP) is a Kalman decomposition:

A&1 212 A63 :214 B,
B
0 ‘& A At ,{&],[0@0&]
0 0 0 Ay 0
~> (Ag2, Ba, () has same input-output behavior as (A, B, C) for x € R
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Removing unreachable/unobservable states

Reduced realization: Basic idea

Remove unreachable/unobservable states
~» reduced system with same input-output behavior

Challenges for switched DAE

» Structurally unreachable: States evolve within consistency subspace
> Initial value before switch structurally unreachable for current mode

» Reachable and unobservable subspaces fully time-varying for switched systems

Example to illustrate time-varying nature of reachable space:

X—O-x—&—[(l)}uon[t s1) X—[?_olg}x—i—[g}uon[s tr)
o 0 0,21/; “looo 1 1o

. 1 . cos(t—s;) O
Rity,r) = im {g] for t € (to, s1], Rity,1) = im sin(to—sl) cl) for t € (s1, tf)
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Weak Kalman decomposition
Definition

> R C R" is called extended reachable subspace
<= R is A-invariant and contains im B (and hence R)

» U/ C R" is called restricted unobservable subspace
<= U is A-invariant and is contained in ker C (and hence in Uf)

Weak Kalman decomposition
Choose coordinate transformation P = [51,52,ﬁ3,ﬁ4] such that

imP =RnNU, imP,P]=R, imP,P|=U
then (P~ AP, P B, CP) is a Weak Kalman decomposition:

A61 ﬁlz A63 ::14 B
B
g 52A33A§: ’|:02]7[0C20C4]
0 0 0 Ay 0
~ (A, By, G5) has same input-output behavior as (A, B, C) for xo € R
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Sequence of extended reachable / restricted unobservable subspaces
z = Axz + Byu, Z(t(;):XO € Xy,

2(sf) = Jiz(s)) + Kwe

Back to switched ODE with jumps and Diracs: o
y=Caz, yls]= Z CLZ(S;:)&:)
i=0

Lemma (Exact reachable / unobsersable subspaces)
(sk-tr

M7 = tho,sm) and N7 :=UL ) are recursively given by:

Mo =Xy, MG :=Ri+ (KM +im))), k=0,1,...m,
NE =Um, N =UeN e (SN NUT), k=m—1,...,0,

Key fact

For any subspace V C R” and any A € R™": (V| A) C e’V C (A | V)
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Sequence of extended reachable / restricted unobservable subspaces
z = Axz + Byu, Z(to_):XoGXo,

2(s)) = Jiz(sp) + Kwe

Back to switched ODE with jumps and Diracs: o
y =Gz, ylsd =) Ciz(s; )P
i=0

Definition (extended reachable / restricted unobservable subspaces)

Ry C Riy sy and Uy SUL, ) are recursively given by:

ﬁ_l = X, ﬁk = Rk—|—<Ak |J,fﬁk_1—|—imJ,‘(’>, k=0,1,...m,
Uy = Um, Up=Ue 0 (B U) U T AD, k=m—1,...,0,

Key fact

For any subspace V C R” and any A € R™": (V| A) C eV C (A | V)
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Reduced realization via weak Kalman decomposition

For each mode k: Ry, U, ~ weak Kalman decomposition:

ES

*
A

* * * k
AR A R
* 0 0 0 =« * 0
Ck[* Vi * *}:[OE;(O*}
Cl = ClVi_1, J7 = Wi JZ Vi, Il = Wiy

Reduced sw. ODE with jumps and Diracs:

DAEs 3: Model reduction, Slide 19/34 Stephan Trenn, Jan C. Willems Center for Systems and Control, University of Groningen



Toy example - reduced realization

on (so, 51) on (s1, ) on (51, 53)
0000
B 1] 0 - [{#4)-
z= 0000}24‘[1}11 1000 -
0000 0 2(s7)=193839 | z(s1) 2(s5) = gogo 2(s5) 09 <u(s;))
2(s5) = x 0000 X 0100 5 091 (o)
° ’ y*[0001]z+[o,1]('!) 0001 01 1
y=20 . (=) y=J[oo001]z
— uls;
Vlso] = Y[SI]:([O"‘lO]Z(Sl)’[”](u(s})))&sl yls] =0
__ 1?0 . 1? o &)80
Ro=im 051 Ry =im |85 Ro=1im [ §99
000 00 001
1 10 10
Up =im | Uy =im |99 Uy =im [0
0 00 00

DAEs 3: Model reduction, Slide 20/34
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Toy example - reduced realization

on (sp, 51) : on (s1,%): on (s, s3) :
Z=0 z=[98]z
Z=[337+181u | 2(s)) = [10)2(s) 2(s) = (81 2(s) - 1591 (142
y=0 y=Tlo1](§) y=[01]z
ylso] =0 vlsil = ([o412(s7) — [10] (43))) 4 yls2] =0

= 0io| | & 01 = 100
Ro—lm 001 Rlzlm 00 Rzzlm 010
000 00 001
; 88 49
Uy =im |7 Uy =im | g7 Uy =im |57
0 00 00
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Impulse decoupling

2= A"z 4+ By, on (sk,sks1)

Es=Ax+Bu| QWF |z0-n [2s0)+BIm U (s
y = Cox + Dyu v G DI en (s reducesl .
T yisd = 3 [Cla(s0) + DI U () — DU () o) realization
1 i=0
\
\ — —
\ Z=Af2 + By, on (sk.ske1).
“ 2(st) = Me2(sp )+ LU (s7)s
' Overall reduction yoaet on (s Sz,
' Yisd = Y [Clats) oy,
\ |
\ 0
\ . .
' impulse decoupling
‘ . -
Y midpoint ————
£ _ AR L B on (se, sesa), XM — AL L BIPYon (s, 541),
balanced M0 AT L B on (50560,
FR(s5) = 7R (s, )+Jk TUe(s)). truncation X (s) W(s )+jk "YU sy ),
() = A ) AU ),
5, G | oo
ylsd =3 [ ime(s;) + 159,
i=0
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Approximation of Dirac impulses?
Assume output Dirac is given by y[si] = CPz(s, )ds,
~> model reduction y[s,] = C2Z(s; )ds,
~ error € 1= CQz(s, ) — 6,??(5;) leads to output error y[sp] — y[so] = €05,
~ arbitrarily small approximation error leads to infinite error peak

Conclusion for model reduction

Unclear how to quantify error in Dirac impulses (especially for higher order Diracs)
~» do not reduce parts of states which effect output Diracs
~» apply further model reduction only on the impulse-unobservable part of the state

Impulse decoupling assumption

For each mode there exists a state decomposition R™ = X, @ X:Tp s.t.:
1. XI™ C ker[CO/CL/.../Cl?
2. X,i(mp and X,i(m_p are Aj-invariant
3. JZX™ C ™ and JZX™ C P

k—1
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Midpoint balanced truncation

E,x=Ax+Bu| QWF

y=Cox+ Dyu

2= A"z 4+ By, on (sk,sks1)

(s5) = My [2(s)+ B U7 (s;)]

y=Caz+ D{"PUY, on (sk, Sk+1) reduced
v o
T yisd = 3 [Cla(s0) + DI U () — DU () o) realization
1 i=0
\
1
\ Fo AT 1B, on (s0 ),
\ 2(s) = (s )+ U (s;)
' Overall reduction y=aer on (eosica)
1 Vsl = Y [Gats0) o).
\ i=0
1
\ . .
' impulse decoupling
‘ . .
— — midpoint —————
X = AMPEIMP L BTy on (i, Skr1)s XmP — AWTPimP y pimP on (k. Ski1)s
balanced P T CAP
F(st) = R (s) + U (), truncation (s = S50+ U (5]
() = A )+ AU )
5 - e = T 4 o |
vlsd = 3 [Grxme(s) +

159,
i=0
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Notation reset

X = AkX + Bku7 on (sk7sk+1)7

x(s7) = Iix(s ) + K, k>0,
y = Gex, on (s, Sk+1),
reduction
X = //Akj(\ —+ Eku, on (Sk, Sk+1),
() = IR(sy )+ vk, k>0,

DAEs 3: Model reduction, Slide 24/34

<
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o

£

on (Sk, Sk+1),

X(t(;) = Xp € Xo,

X(ty ) = Xo(x0),
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Challenge: Two types of inputs

X = Akx + Byu, on (sk,sk+1),  x(tg) = x0 € Xp,
x(s¢) = Jix(s )+ Hvi, k=0, (swODE)
y = CkX, on (Sk, Sk+1),

Two types of input

» Continuous input u: Effects x = Agx + Byu on (Sk, Sk+1)
> Discrete input vi: Effects x(s;7) = Jix(s, ) + JY vk at switching times s,

Lemma (Input decoupling)

x solves (swODE) :<= x = x, + x, where
» x, solves (swODE) with vy = 0 and x,(t; ) =0
> x, solves (swODE) with u =0 and x,(t; ) = xo
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Continuous-time Gramians
Definition (Local time-dependent Gramians)
Local reachability Gramian: Py(t) := fsi eAk(T_Sk)BkB,jeAkT(T_sk)dT
Local observability Gramian: Qi (t) := [ e (51=7) CT G eArlsin =)
Definition (Global time-varying Gramians)
> Global reachability Gramian:
P7(t) := Py(t) for t € (to, s1)
PO (t) 1= M=) Jxp (s )(JF) TeM (7% 4 P (t) for t € (sk, Sit1)
> Global observability Gramian:

Q7(t) := Qu(t) for t € (su, tr)
Q7(t) 1= e =D PYTQ (s, ) Jre™ (=D 1 Qu(t) for t € (si, Skr1)
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Energy interpretation Gramians

Theorem (Reachability Gramian and input energy)

Consider (swODE) with v, = 0 and xo = 0 and assume that P{(t~) and Py(t) are positive
definite for all t € (to, tr). Then for all x; € R™:

u s.t.
u
0—x;

min/t u() T u(r) dr = xT (P7(¢7)) " xe

Theorem (Observability Gramian)

Consider (swODE) with zero input. Then for all t € (to, tf)

/t y(n)Ty(r) dr = x(t9)TQE(eH)x(t")
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Midpoint Gramians
Definition
> Midpoint reachability Gramian: P}, := P7(%t%1)
> Midpoint observability Gramian: Qj := QU (%F2k1)

Intuition/Assumption

States which are difficult to reach and observe at midpoint of interval (sk, sk+1) (quantified by
P, and Q) are also difficult to reach and observe on the whole (finite) time interval.

Midpoint balanced truncation

Use classical balanced truncation for each mode w.r.t. midpoint Gramians

Problem

Effect of discrete input vx not yet considered!
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Discrete time midpoint dynamics

X = AkX, on (Sk, Sk+1), x(ty) = x € Ay,

N e , (swODE)
x(s) = Jix(s ) + i, k>0,

Lemma (Solutions at midpoints)

The sequence x| := x(2 21 of solution midpoints of (swODE) satisfy the linear

(rectangular) discrete-time system:
Xy = ATX + BV

where
AT = T2 freMm1Ti-1/2 ¢ RMXM-1  apd BT = MTk/2 JY
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Overall midpoint reachability Gramians

Definition (Discrete-time reachability Gramians)

P :=~XX, and PP =ATPI A" +BIBPT

where Xj is an orthogonal basis matrix of Xj.
Definition (Overall midpoint reachability Gramian)
P} =P, + \P?

Role of parameters v and A

» ~: How difficult is it to reach the initial value?

> \: Cost relation between discrete input v, and continuous input vy
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Model reduction based on midpoint Gramians

X = Axx + Byu, on (5k75k+1); X(t(;) = Xp € Xy,
x(s58) = ix(s) + v, k=0, (swODE)
y = Can on (sk7sk+l)a

Midpoint Gramians for each mode interval (s, sk11): Pi‘ and Q
Balanced truncation w.r.t. midpoint Gramians

1. Find modewise coordinate transformation T such that Gramians are equal and diagonal:

1
Tk

TP T T = =T/ Q,Tx (Hankel singular values)

n
Tk

2. Choose reduction size ry such that o}* sufficiently small
3. Left and right projector matrices Ty = [Vk, %] and Tk_1 = [WiT, %] T
4. Reduced system: A, = Wi Ay Vi, By = WiBr, Ck = Wi Ci, I = WiedZ Vi1, JY = Wi Jy
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Medium size academic example
> (swODE) state dimensions: ny = 50, n; = 60, n, = 40

» Coefficient matrices randomly chosen, single input and single output
» Discrete input vx = (u(sk), i(sk))
» Initial values subspace: Xy = R
» Reachability Gramian paramters: v =0.1and A =1
» Hankel singular values threshold: ¢g = g7 = g5 = 0.001
» Reduced system state dimensions: ng = 8, n; = 10, n, = 6
Output comparison Relative output error
1000 ‘ ‘ ‘ ; ; 0.015 ; ‘ ‘ :
—y ly—9]
= —_— |
yl
- - _
500 y ] 0.01 | 4
o ] 0.005 |
- \
-500 : : : : : 0 ] : : ‘
0 1 2 3 4 5 6 0 1 2 3 4 5 6
time t time t
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Summary: Model reduction for switched DAEs

1. Reduced realization (always possible, depends only on mode sequence)
> Via Wong-sequences and Quasi-Weierstrass form rewrite (swDAE) as switched ODE with
jumps and impulsive output of same size
» Calculate extended reachability and restricted unobservability subspaces
> Calculate weak Kalman decomposition and remove unreachable/unobservable parts
» Define reduced jump maps, output impulses, initial value space and initial projector

2. Impulse decoupling (structural assumption, depends only on mode sequence)

» Key observation: Dirac impulse = infinite peak
~» do not change states which effect output Diracs
> Assumption: States evolve in two disjoint invariant (mode-dependent) subspaces

3. Midpoint balanced truncation (invertability assumption on Gramians)

» Solution = Solution for continuous input + Solution for discrete input

» Calculate midpoint reachability Gramians for continuous and discrete time system
» Calculate midpoint observability Gramians

» Apply mode-wise balanced truncation via the midpoint Gramians
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Remaining challenges and literature

Remaining challenges

» Precise rank decisions required for reduced realization

» Impulse decoupling assumption not constructive

» Large-scale matrix-exponentials are required for midpoint balanced truncation
» Switching signal must be known a-priori

» Error bounds for midpoint balanced truncation

References:

» Hossain & T. (2024): Model reduction for switched differential-algebraic equations with known switching
signal, submitted to DAE-Panel

> Hossain & T. (2023): Reduced realization for switched linear systems with known mode sequence,
Automatica

> Hossain & T. (2024): Midpoint based balanced truncation for switched linear systems with known
switching signal, IEEE TAC
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