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Explicit solution formula for regular DAEs

Eẋ = Ax + Bu (E ,A)
S,T∼=

([
I
N

]
,
[
J
I

])
Definition (Consistency projector, differential/impulsive selector)

Π(E ,A) := T [ I 0
0 0 ]T

−1 Πdiff
(E ,A) := T [ I 0

0 0 ]S Πimp
(E ,A) := T [ 0 0

0 I ] S

Adiff := Πdiff
(E ,A)A Bdiff := Πdiff

(E ,A)B E imp := Πimp
(E ,A)E B imp := Πimp

(E ,A)B

Theorem (Solution formula, cf. Trenn 2012)

(x , u) is a smooth solution of Eẋ = Ax + Bu ⇐⇒

x(t) = eA
diff tΠ(E ,A)x(0) +

∫ t

0

eA
diff (t−s)Bdiffu(s)ds −

ν−1∑
i=0

(E imp)iB impu(i)(t)
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Decomposition of solution

x(t) = eA
diff tΠ(E ,A)x(0) +

∫ t

0

eA
diff (t−s)Bdiffu(s)ds −

ν−1∑
i=0

(E imp)iB impu(i)(t)

Corollary

x solves Eẋ = Ax + Bu ⇐⇒ x = xdiff ⊕ x imp where

ẋdiff = Adiffx + Bdiffu, xdiff(0) ∈ imΠ(E ,A)

E impẋ imp = x imp + B impu

Furthermore xdiff(t) ∈ V∗ and x imp(t) ∈ im[B imp,E impB imp, . . . , (E imp)n−1B imp] ⊆ W∗.

DAEs 2: Distributional solutions, Slide 2/15 Stephan Trenn, Jan C. Willems Center for Systems and Control, University of Groningen





Motivating example

−
+

Lu(·) v

i

t < 0

−
+

Lu(·) v

i

t ≥ 0

inductivity law: L d
dt i = v

switch dependent: 0 = v − u 0 = i

→ switched differential-algebraic equation
; x(0−) not consistent with open-switch DAE
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Motivating example

−
+

Lu(·) v

i

t < 0

−
+

Lu(·) v

i

t ≥ 0

x = [i , v ]⊤[
L 0
0 0

]
ẋ =

[
0 1
0 1

]
x +

[
0
−1

]
u

x = [i , v ]⊤[
L 0
0 0

]
ẋ =

[
0 1
1 0

]
x +

[
0
0

]
u

→ switched differential-algebraic equation
; x(0−) not consistent with open-switch DAE
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Solution of circuit example

t < 0 t ≥ 0

v = u i = 0

L d
dt i = v v = L d

dt i

Solution (assume constant input u):

t

v(t)

0 t

i(t)

0

u

δ
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Dirac impulse is “real”

Dirac impulse

Not just a mathematical artifact!

Drawing: Harry Winfield Secor, public domain Foto: Ralf Schumacher, CC-BY-SA 3.0
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Distribution theory - basic ideas

Distributions - overview

▶ Generalized functions

▶ Arbitrarily often differentiable

▶ Dirac-Impulse δ is “derivative” of Heaviside step function 1[0,∞)

Two different formal approaches

1) Functional analytical: Dual space of the space of test functions
(L. Schwartz 1950)

2) Axiomatic: Space of all “derivatives” of continuous functions
(J. Sebastião e Silva 1954)

DAEs 2: Distributional solutions, Slide 6/15 Stephan Trenn, Jan C. Willems Center for Systems and Control, University of Groningen



Distributions - formal

Definition (Test functions)

C∞
0 := { φ : R → R | φ is smooth with compact support }

Definition (Distributions)

D := { D : C∞
0 → R | D is linear and continuous }

Definition (Regular distributions)

f ∈ L1,loc(R → R): fD : C∞
0 → R, φ 7→

∫
R f (t)φ(t)dt ∈ D

Definition (Derivative)

D ′(φ) := −D(φ′)

Dirac Impulse at t0 ∈ R
δt0 : C∞

0 → R, φ 7→ φ(t0)

(1[0,∞)D)
′(φ) = −

∫
R 1[0,∞)φ

′ = −
∫∞
0

φ′ = −(φ(∞)− φ(0)) = φ(0)
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Distributional DAE and ITPs

Distributional solutions

Distributional DAE: EẊ = AX + BU, X ∈ Dn, U ∈ Dm

▶ Classical solution behavior dense in distributional solution behaavior
; essentially no difference between classical and distributional solutions

▶ No differentiability requirements for U (all distributions are “C∞”)

▶ Initial value problems cannot be formulated, X (0) not defined

Initial trajectory problem (ITP)

Given X 0 ∈ Dn (initial trajectory) and U ∈ Dm find X ∈ Dℓ with

X(−∞,0) = X 0
(−∞,0)

(EẊ )[0,∞) = (AX + BU)[0,∞)

(ITP)

Restriction not well defined, cf. Trenn 2021

Restriction of general distributions to interval not well defined (actually not definable)
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Piecewise-smooth distributions

Dilemma

▶ Examples indicate presence of Dirac impulses in response to inconsistent initial values

▶ Inconsistent initials cannot be considered for distributions

Define a suitable smaller space:

Definition (Piecewise smooth distributions DpwC∞)

DpwC∞ :=

{
fD +

∑
t∈T

Dt

∣∣∣∣∣ f ∈ C∞
pw, T ⊆ R locally finite,

∀t ∈ T : Dt =
∑nt

i=0 a
t
i δ

(i)
t

}

fD

ti−1

Dti−1

ti

Dti

ti+1

Dti+1
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Properties of DpwC∞

▶ C∞
pw “⊆” DpwC∞

▶ Closed under differentiation, i.e. D ∈ DpwC∞ ⇒ D ′ ∈ DpwC∞

▶ Well definded restriction DpwC∞ → DpwC∞

D = fD +
∑
t∈T

Dt 7→ DM := (fM)D +
∑

t∈T∩M

Dt

▶ Multiplication well defined (Fuchssteiner multiplication)

▶ Evaluation at t ∈ R: D(t−) := f (t−), D(t+) := f (t+)

▶ Impulses at t ∈ R: D[t] :=

{
Dt , t ∈ T

0, t ̸∈ T

▶ Well defined unique antiderivative G =
∫
0−

F , i.e. G (0−) = 0 and G ′ = F

Examples:

δ[0,∞) = δ, δ[0] = δ δ(t±) = 0 ∀t
δ(0,∞) = 0, δ[t] = 0 ∀t ̸= 0 δ2 = 0

∫
0−

δ = (1[0,∞))D
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ITP-solutions

Theorem (cf. Trenn 2012)

Let (E ,A), then ∀X 0 ∈ Dn
pwC∞ and ∀U ∈ Dm

pwC∞ there is a unique X ∈ Dn
pwC∞ satisfying

X(−∞,0) = X 0
(−∞,0)

(EẊ )[0,∞) = (AX + BU)[0,∞)

(ITP)

Explicit solution formula

X (t+) = eA
diff tΠ(E ,A)X

0(0−) + eA
diff t

∫ t+

0−
e−Adiff ·BdiffU −

ν−1∑
i=0

(E imp)iB impU(i)(t+)

and for U = 0 (or B = 0)

X (0+) = Π(E ,A)X
0(0−) X [0] =

ν−2∑
i=0

(E imp)i+1X 0(0−)δ(i)
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Unique jump

Eẋ = Ax , x(t−0 ) = x0 ∈ Rn

Unique jump

x(t−0 ) 7→ x(t+0 ) = Π(E ,A)x(t
−
0 )

Why no other jump rule? ↪→ handwritten notes ...

Equivalent jump rules, cf. Costantini, Trenn & Vasca 2013; Frasca et al. 2010

The following jump rules are equivalent:

▶ Consistency projector based on Wong sequences and QWF (Trenn 2012)

▶ Passivity based energy minimization (Frasca et al. 2010)

▶ Conservation of charge/flux (Seshu & Balabanian 1964)

▶ Laplace transform approach (Opal & Vlach 1990)
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Index of a regular DAE and solution properties

Eẋ = Ax + Bu, (E ,A) ≃
([

I
N

]
,
[
J
I

])
Definition (Index)

Index of regular (E ,A) := nilpotency index of N in QWF

Theorem (Index and Diracs)

∃x0 ∈ Rn such that x [t0] ̸= 0 ⇐⇒ index of (E ,A) > 1

Reminder: x [t0] = −
ν−2∑
i=0

(E imp)i+1x0δ
(i)
t0 , E imp = T

[
0 0
0 N

]
T−1

Remark (Index and input derivatives)

Solution x depends on derivatives of u =⇒ index > 1
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Index 1

Conclusion

Index 1 =⇒ no Diracs in response to inconsistent initial values and discontinuous inputs

Index 1:
Eẋ = Ax + Bu
y = Cx + Du

⇐⇒ ẋ = Adiffx + Bdiffu
y = Cx + (D − CB imp)u

x(0+) ∈ imΠ(E ,A)

Theorem (Index 1 characterization)

(E ,A) with singular and square E is index 1 (i.e. N = 0 in QWF)

⇐⇒ V1 ∩W1 = A−1(imE ) ∩ ker E = {0}
⇐⇒ V1 ⊕W1 = Rn

⇐⇒ deg det(sE − A) = rankE

⇐⇒ A22 is invertible where (E ,A) ≃
([

I 0
0 0

]
,

[
A11 A12

A21 A22

])
⇐⇒

[
E1

A2

]
is invertible, where (E ,A) ≃

([
E1

0

]
,

[
A1

A2

])
with E1 full row rank
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Summary

Eẋ = Ax + Bu, x(t−0 ) = x0

▶ Smooth solutions
▶ Explicit solution formula:

x(t) = eA
diff (t−t0)Π(E ,A)x0 +

∫ t

t0
eA

diff (t−s)Bdiffu(s)ds −
∑ν−1

i=0 (E imp)iB impu(i)(t)

▶ Solution decomposition according to V∗ ⊕W∗: x = xdiff ⊕ x imp with
ẋdiff = Adiffxdiff + Bdiffu and E impẋ imp = x imp + B impu

▶ Inconsistent initial values
▶ Real world applications motivate presence of Dirac delta
▶ Standard distributional solutions not suitable for ITP
▶ Piecewise-smooth distributions are suitable

▶ Distributional solution theory
▶ Existence and uniqueness for ITP
▶ Unique jump rule for inconsistent initial values
▶ Index and solution properties
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