Differential algebraic equations: Mini course 1

Motivation, quasi-Kronecker and quasi-Weierstrass form, regularity

Prof. Dr. Stephan Trenn Jan C. Willems Center for Systems and Control, University of Groningen

VIASM mini course, 2 August 2024

Introduction

Definitions and motivation DAEs vs. ODEs

Equivalence and four types

Equivalence Four types of DAEs The quasi-Kronecker form Quasi-Weierstrass form and regularity

DAE - defintions

General nonlinear DAEs

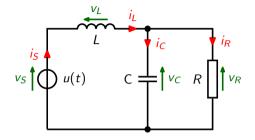
DAE = implicit ODEin semi-linear formin semi-explicit form
$$0 = F(t, w, \dot{w})$$
 $E(w)\dot{w} = f(t, w)$ $\dot{w}_1 = f(t, w_1, w_2)$ $0 = g(t, w_1, w_2)$ $0 = g(t, w_1, w_2)$

Note: implicit ODE can always be rewritten as semi-linear DAE:

$$0 = F(t, w, \dot{w}) \quad \stackrel{w = w_1}{\longleftrightarrow} \quad \begin{cases} \dot{w}_1 = w_2 \\ 0 = F(t, w_1, w_2) \end{cases}$$

Linear DAEshomogeneousinhomogeneouswith inputs and outputs $E\dot{w} = Aw$ $E\dot{x} = Ax + v$ $E\dot{x} = Ax + Bu$
y = Cx + Du

Modeling of electrical circuits



Basic circuit elements

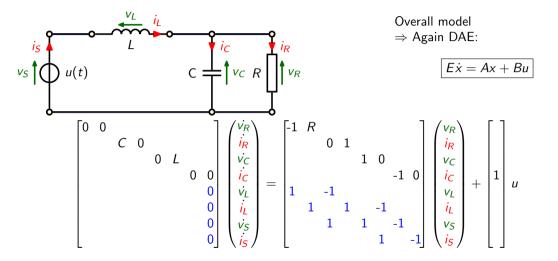
Resistor:	$v_R(t) = R \frac{i_R(t)}{i_R(t)}$
Capacitor :	$i_{C}(t) = C \frac{d}{dt} v_{C}(t)$
Inductor:	$v_L(t) = L \frac{\mathrm{d}}{\mathrm{d}t} i_L(t)$
Voltage source:	$v_S(t) = u(t)$

DAEs

All components are given by a differential-algebraic equation (DAE)

$$E\dot{x} = Ax + Bu$$

Hierarchical model building



Recall (linear) ODEs

Ordinary differential equations (ODEs):

$$\dot{x} = Ax + Bu$$

- Initial values: arbitrary
- Solution uniquely determined by u and x(0)
- ▶ No constraints on *B* and *u*
- Solution formula (variation of constant formula):

$$x(t) = e^{At}x_0 + \int_0^t e^{A(t-s)}Bu(s)\,\mathrm{d}s$$

DAEs are not ODEs

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} x + \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
$$\dot{x}_2 = x_1 + v_1 \xrightarrow{\qquad} x_1 = -v_1 - \dot{v}_2$$
$$0 = x_2 + v_2 \xrightarrow{\qquad} x_2 = -v_2$$
$$0 = v_3 \qquad \text{no restriction on } x_3$$

Key differences to ODEs

- For fixed inhomogeneity, initial values cannot be chosen arbitrarily $(x_1(0) = -v_1(0) \dot{v}_2(0), x_2(0) = v_2(0))$
- For fixed inhomogeneity, solution not uniquely determined by initial value (x_3 free)

Inhomogeneity not arbitrary

- **•** structural restrictions ($v_3 = 0$)
- differentiability restrictions (v₂ must be well defined)

Introduction

Definitions and motivation DAEs vs. ODEs

Equivalence and four types

Equivalence Four types of DAEs The quasi-Kronecker form Quasi-Weierstrass form and regularity

Solution behavior

$$\begin{aligned} \Xi \dot{x} &= Ax + Bu \\ y &= Cx + Du \end{aligned} \tag{*}$$

Solution behaviors full solution behavior: $\mathfrak{B}_{\text{full}} := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid (*) \text{ holds} \right\}$ external solution behavior (i/o-behavior): $\mathfrak{B}_{i/o} := \left\{ \begin{pmatrix} y \\ y \end{pmatrix} \mid \exists x \text{ s.t. } (*) \text{ holds} \right\}$

Theorem

For given (E, A, B, C, D) and $(\overline{E}, \overline{A}, \overline{B}, \overline{C}, \overline{D})$ with corresponding *i*/o-behaviors $\mathfrak{B}_{i/o}$ and $\overline{\mathfrak{B}}_{i/o}$ assume $\exists S, T$ invertible such that

$$ar{E}=SET, \qquad ar{A}=SAT, \qquad ar{B}=SB, \qquad ar{C}=CT, \qquad ar{D}=D.$$

Then $\mathfrak{B}_{i/o} = \bar{\mathfrak{B}}_{i/o}$.

 $\mathsf{Proof} \quad \hookrightarrow \quad \mathsf{handwritten} \ \mathsf{notes}$

DAEs 1: QKF and QWF, Slide 6/16

Equivalence and four types

Definition (Equivalence of matrix pairs)

 $(E, A), (\bar{E}, \bar{A})$ are called equivalent $:\iff$ $(\bar{E}, \bar{A}) = (SET, SAT)$ short: $(E, A) \cong (\bar{E}, \bar{A})$ or $(E, A) \stackrel{S,T}{\cong} (\bar{E}, \bar{A})$

Definition

- (*E*, *A*) is of type ODE : \iff (*E*, *A*) \cong (*I*, *J*)
- (*E*, *A*) is of type nDAE : \iff (*E*, *A*) \cong (*N*, *I*), *N* nilpotent
- ► (*E*, *A*) is of type uDAE : \iff (*E*, *A*) \cong (diag(*E*₁, ..., *E_k*), diag(*A*₁, ..., *A_k*)), where (*E_i*, *A_i*) = $\left(\begin{bmatrix} 1 & 0 \\ \ddots & \ddots \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ \ddots & \ddots \\ 0 & 1 \end{bmatrix}\right)$ underdetermined prototypes
- (*E*, *A*) is of type oDAE : \iff (*E*, *A*) \cong (diag(*E*₁, ..., *E*_k), diag(*A*₁, ..., *A*_k)), where

$$(E_i, A_i) = \left(\begin{bmatrix} 0 \\ 1 \\ \ddots \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ \ddots \\ 0 \\ 1 \end{bmatrix} \right)$$

overdetermined prototypes

DAEs 1: QKF and QWF, Slide 7/16

Solution properties of four types

$$E\dot{x} = Ax + v$$

- ► **Type ODE** $(E, A) \cong (I, J)$: $E\dot{x} = Ax + v \iff \dot{x} = E^{-1}Ax + E^{-1}v$ \rightarrow existence and uniqueness of solutions for all x_0 and all v
- ► Type nDAE $(E, A) \cong (N, I)$: $E\dot{x} = Ax + v \iff A^{-1}E\dot{x} = x + A^{-1}v$, $A^{-1}E$ nilpotent solutions \hookrightarrow handwritten notes \sim existence and uniqueness of solutions for all smooth v, x(0) fully fixed by v
- **Type uDAE**: Structure and solutions \hookrightarrow handwritten notes \rightsquigarrow existence of solutions for all v and all x_0 , but non-unique
- ► Type oDAE: Structure and solutions → handwritten notes → non-existence of solutions for general v, but if existent, solutions are unique, x(0) fully fixed by v

General DAE can contain arbitrary combination of above four types ... and maybe more?

Simple check for types

Theorem

- (E, A) is of type ODE $\iff \lambda = \infty$: rank $(\lambda E A) = n = \ell$
- ► (*E*, *A*) is of type $nDAE \iff \forall \lambda \in \mathbb{C}$: $rank(\lambda E A) = n = \ell$
- ► (*E*, *A*) is of type uDAE $\iff \forall \lambda \in \mathbb{C} \cup \{\infty\}$: rank $(\lambda E A) = \ell$
- ► (*E*, *A*) is of type oDAE $\iff \forall \lambda \in \mathbb{C} \cup \{\infty\}$: rank $(\lambda E A) = n$

$$\mathrm{rank}(\lambda E-A)=\mathrm{rank}(E-rac{1}{\lambda}A) \ \ o \ \ \ \mathrm{rank}(\infty E-A):=\mathrm{rank}(E-rac{1}{\infty}A)=\mathrm{rank}(E)$$

Example revisited

Consider again the DAE

$$egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix} \dot{x} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix} x + egin{pmatrix} v_1 \ v_2 \ v_3 \end{pmatrix}$$

Is this DAE of any of the above four types?

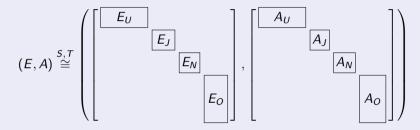
NO, neither E nor A have full rank

DAEs 1: QKF and QWF, Slide 9/16

The quasi-Kronecker form

Theorem (Quasi-Kronecker Form, Berger & TRENN 2012,2013)

For any $E, A \in \mathbb{R}^{\ell \times m}$, \exists invertible $S \in \mathbb{R}^{\ell \times \ell}$ and invertible $T \in \mathbb{R}^{n \times n}$:



where

- (E_U, A_U) is of type uDAE (underdetermined part)
- (E_J, A_J) is of type ODE (ODE part)
- (E_N, A_N) is of type nDAE (nilpotent part)
- ► (E₀, A₀) is of type oDAE (overdetermined part)

QKF for simple example

Example revisited

Consider again the DAE

$$egin{array}{cccc} 0 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight|\dot{x} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix} x + egin{pmatrix} v_1 \ v_2 \ v_3 \end{pmatrix}$$

What is the QKF for this DAE?

imple column permutation gives:
$$(E, A) \simeq \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$

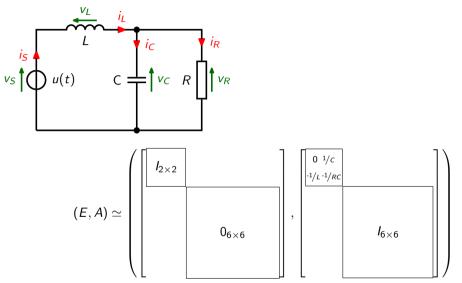
QKF consists of: 1 uDAE (0×1), no ODE, 1 nDAE (2×2), 1 oDAE (1×0)

Solution properties: one free variable, one differentiability and one structural constraint on v

DAEs 1: QKF and QWF, Slide 11/16

s

Circuit example revisited

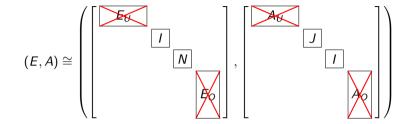


One more example

 $(E,A) = \begin{pmatrix} \begin{bmatrix} 0 & 0 & -2 & 1 & 3 & -4 & 2 & -5 \\ -1 & -2 & -5 & 2 & 6 & -5 & 3 & -8 \\ -2 & -3 & -3 & 0 & 1 & 0 & 0 & -3 \\ 0 & -2 & -4 & 4 & 7 & -3 & 1 & -6 \\ -1 & -1 & -1 & -1 & 0 & 0 & 1 & -1 \\ -2 & -1 & -3 & -2 & 4 & 1 & 4 \\ 0 & 1 & 5 & -4 & -7 & 8 & -2 & 11 \\ -1 & -1 & -1 & 0 & 5 & 10 & -17 & 4 & -25 \end{bmatrix}, \begin{bmatrix} 0 & -1 & 1 & 2 & 0 & -1 & -3 & -4 \\ -1 & -3 & -1 & 3 & 1 & -2 & -4 & -9 \\ 1 & 0 & -1 & 4 & 6 & -2 & 0 & -5 \\ -5 & -4 & -5 & -8 & -10 & 0 & 1 & -2 \\ 3 & 1 & 4 & 7 & 8 & 2 & -3 & -1 \\ 3 & 1 & 4 & 7 & 8 & 2 & -3 & -1 \\ 3 & 1 & 4 & 7 & 8 & 2 & -3 & -1 \\ 0 & 3 & 4 & 4 & 0 & 7 & -15 & -6 & -27 \end{bmatrix} \end{pmatrix}$

DAEs 1: QKF and QWF, Slide 13/16

$\mathsf{QKF} \to \mathsf{Quasi-Weierstrass} \text{ form}$



Corollary (Quasi-Weierstrass-Form (QWF))

Regularity

Theorem (cf. Kunkel & Mehrmann 2006; Berger, Ilchmann & Trenn 2012)

$$(E, A)$$
 is regular, i.e. det $(sE - A) \neq 0$

$$\iff QWF: (E, A) \simeq \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right)$$

- $\iff \exists ! \text{ subspaces } \mathcal{V}, \mathcal{W} \in \mathbb{R}^n : \quad A\mathcal{V} \subseteq E\mathcal{V}, E\mathcal{W} \subseteq A\mathcal{W}, \mathcal{V} \oplus \mathcal{W} = \mathbb{R}^n, E\mathcal{V} \oplus A\mathcal{W} = \mathbb{R}^n \\ \text{ and any bases } V, W \text{ of } \mathcal{V}, \mathcal{W} \text{ lead to } QWF \text{ with } T = [V, W] \text{ and } S = [EV, AW]^{-1} \end{cases}$
- \iff the Wong limits \mathcal{V}_* and \mathcal{W}_* satisfy $\mathcal{V}^* \oplus \mathcal{W}^* = \mathbb{R}^n$ and $\mathcal{EV}^* \oplus \mathcal{AW}^* = \mathbb{R}^n$, where

$$\mathcal{V}_0 = \mathbb{R}^n, \quad \mathcal{V}_{i+1} = A^{-1}(E\mathcal{V}_i), \quad \mathcal{V}_* := \bigcap_i \mathcal{V}_i$$

 $\mathcal{W}_0 = \{0\}, \quad \mathcal{W}_{j+1} = E^{-1}(A\mathcal{W}_j), \quad \mathcal{W}_* := \bigcup_i \mathcal{W}_j$

 $\iff E\dot{x} = Ax + Bu \text{ is solvable for all } B \text{ and all smooth } u$ and each solution is uniquely determined by x(0)

 $\iff E\dot{x} = Ax, x(0) = 0$ has only the trivial solution (and E, A square)

DAEs 1: QKF and QWF, Slide 15/16

Summary

- Different forms of DAEs (nonlinear, semi-linear, semi-explicit, linear (homogeneous, inhom., with inputs/outputs))
- DAEs are not ODEs
 - non-existence of solutions
 - non-uniqueness of solutions
 - differentiability requirements on inhomogeneities

Equivalence

- Four basic types of linear DAEs $E\dot{x} = Ax + v$
 - type ODE (square and E invertible)
 - **type nilpotent DAE** (square, A invertible and $A^{-1}E$ nilpotent)
 - **type underdetermined DAE** (full row rank of $\lambda E A$)
 - **type overdetermined DAE** (full column rank of $\lambda E A$)
- Quasi-Kronecker form for general linear DAEs $E\dot{x} = Ax + v$
 - $\blacktriangleright\,$ Any DAE can be decoupled into above four types $\rightsquigarrow\,$ QKF
 - ▶ Quasi-Weierstrass form: no uDAE and oDAE parts → regularity
 - Regularity characterizations