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DAE - defintions

General nonlinear DAEs

DAE = implicit ODE in semi-linear form in semi-explicit form

0 = F (t,w , ẇ) E (w)ẇ = f (t,w)
ẇ1 = f (t,w1,w2)

0 = g(t,w1,w2)

Note: implicit ODE can always be rewritten as semi-linear DAE:

0 = F (t,w , ẇ)
w=w1⇐⇒

{
ẇ1 = w2

0 = F (t,w1,w2)

Linear DAEs

homogeneous inhomogeneous with inputs and outputs

Eẇ = Aw Eẋ = Ax + v
E ẋ = Ax + Bu

y = Cx + Du
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Modeling of electrical circuits

vS u(t)

iS

vL

L

iL

iC

vCC

iR

vRR

Basic circuit elements

Resistor: vR(t) = R iR(t)

Capacitor: iC (t) = C d
dt vC (t)

Inductor: vL(t) = L d
dt iL(t)

Voltage source: vS(t) = u(t)

DAEs

All components are given by a differential-algebraic equation (DAE)

Eẋ = Ax + Bu
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Hierarchical model building

vS u(t)

iS

vL

L

iL

iC

vCC

iR

vRR

Overall model
⇒ Again DAE:

Eẋ = Ax + Bu



0 0
C 0

0 L
0 0

0
0
0
0





v̇R
˙iR
˙vC
˙iC
v̇L
˙iL
v̇S
˙iS


=



-1 R
0 1

1 0
-1 0

1 -1
1 1 -1

1 1 -1
1 -1





vR
iR
vC
iC
vL
iL
vS
iS


+


1


u
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Recall (linear) ODEs

Ordinary differential equations (ODEs):

ẋ = Ax + Bu

▶ Initial values: arbitrary

▶ Solution uniquely determined by u and x(0)

▶ No constraints on B and u

▶ Solution formula (variation of constant formula):

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s) ds
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DAEs are not ODEs 0 1 0
0 0 0
0 0 0

 ẋ =

1 0 0
0 1 0
0 0 0

 x +

v1
v2
v3


ẋ2 = x1 + v1 x1 = −v1 − v̇2

0 = x2 + v2 x2 = −v2

0 = v3 no restriction on x3

Key differences to ODEs

▶ For fixed inhomogeneity, initial values cannot be chosen arbitrarily
(x1(0) = −v1(0)− v̇2(0), x2(0) = v2(0))

▶ For fixed inhomogeneity, solution not uniquely determined by initial value (x3 free)

▶ Inhomogeneity not arbitrary
▶ structural restrictions (v3 = 0)
▶ differentiability restrictions (v̇2 must be well defined)
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Solution behavior

Eẋ = Ax + Bu

y = Cx + Du
(∗)

Solution behaviors

full solution behavior: Bfull :=
{ ( x

u
y

) ∣∣∣ (∗) holds }
external solution behavior (i/o-behavior): Bi/o := { ( uy ) | ∃x s.t. (∗) holds }

Theorem

For given (E ,A,B,C ,D) and (Ē , Ā, B̄, C̄ , D̄) with corresponding i/o-behaviors Bi/o and B̄i/o

assume ∃S ,T invertible such that

Ē = SET , Ā = SAT , B̄ = SB, C̄ = CT , D̄ = D.

Then Bi/o = B̄i/o.

Proof ↪→ handwritten notes
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Equivalence and four types

Definition (Equivalence of matrix pairs)

(E ,A), (Ē , Ā) are called equivalent :⇐⇒ (Ē , Ā) = (SET ,SAT )

short: (E ,A) ∼= (Ē , Ā) or (E ,A)
S,T∼= (Ē , Ā)

Definition

▶ (E ,A) is of type ODE :⇐⇒ (E ,A) ∼= (I , J)

▶ (E ,A) is of type nDAE :⇐⇒ (E ,A) ∼= (N, I ), N nilpotent

▶ (E ,A) is of type uDAE :⇐⇒ (E ,A) ∼= (diag(E1, . . . ,Ek), diag(A1, . . . ,Ak)), where

(Ei ,Ai ) =

([
1 0
. . .

. . .
1 0

]
,

[
0 1
. . .

. . .
0 1

])
underdetermined prototypes

▶ (E ,A) is of type oDAE :⇐⇒ (E ,A) ∼= (diag(E1, . . . ,Ek), diag(A1, . . . ,Ak)), where

(Ei ,Ai ) =

 0

1
. . .
. . . 0

1

 ,

 1

0
. . .
. . . 1

0

 overdetermined prototypes
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Solution properties of four types

Eẋ = Ax + v

▶ Type ODE (E ,A) ∼= (I , J): Eẋ = Ax + v ⇐⇒ ẋ = E−1Ax + E−1v
; existence and uniqueness of solutions for all x0 and all v

▶ Type nDAE (E ,A) ∼= (N, I ): Eẋ = Ax + v ⇐⇒ A−1Eẋ = x + A−1v , A−1E nilpotent
solutions ↪→ handwritten notes
; existence and uniqueness of solutions for all smooth v , x(0) fully fixed by v

▶ Type uDAE: Structure and solutions ↪→ handwritten notes
; existence of solutions for all v and all x0, but non-unique

▶ Type oDAE: Structure and solutions ↪→ handwritten notes
; non-existence of solutions for general v , but if existent, solutions are unique, x(0) fully
fixed by v

General DAE can contain arbitrary combination of above four types ... and maybe more?
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Simple check for types

Theorem

▶ (E ,A) is of type ODE ⇐⇒ λ = ∞ : rank(λE − A) = n = ℓ

▶ (E ,A) is of type nDAE ⇐⇒ ∀λ ∈ C : rank(λE − A) = n = ℓ

▶ (E ,A) is of type uDAE ⇐⇒ ∀λ ∈ C ∪ {∞} : rank(λE − A) = ℓ

▶ (E ,A) is of type oDAE ⇐⇒ ∀λ ∈ C ∪ {∞} : rank(λE − A) = n

rank(λE − A) = rank(E − 1
λA) ; rank(∞E − A) := rank(E − 1

∞A) = rank(E )

Example revisited

Consider again the DAE 0 1 0
0 0 0
0 0 0

 ẋ =

1 0 0
0 1 0
0 0 0

 x +

v1
v2
v3


Is this DAE of any of the above four types? NO, neither E nor A have full rank
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The quasi-Kronecker form

Theorem (Quasi-Kronecker Form , Berger & Trenn 2012,2013)

For any E ,A ∈ Rℓ×m, ∃ invertible S ∈ Rℓ×ℓ and invertible T ∈ Rn×n:

(E ,A)
S,T∼=





EU

EJ

EN

EO


,



AU

AJ

AN

AO




where

▶ (EU ,AU) is of type uDAE (underdetermined part)

▶ (EJ ,AJ) is of type ODE (ODE part)

▶ (EN ,AN) is of type nDAE (nilpotent part)

▶ (EO ,AO) is of type oDAE (overdetermined part)
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QKF for simple example

Example revisited

Consider again the DAE 0 1 0
0 0 0
0 0 0

 ẋ =

1 0 0
0 1 0
0 0 0

 x +

v1
v2
v3


What is the QKF for this DAE?

simple column permutation gives: (E ,A) ≃


 0 1

0 0

 ,

 1 0
0 1




QKF consists of: 1 uDAE (0×1), no ODE, 1 nDAE (2×2), 1 oDAE (1×0)

Solution properties: one free variable, one differentiability and one structural constraint on v
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Circuit example revisited

vS u(t)

iS

vL

L

iL

iC

vCC

iR

vRR

(E ,A) ≃





I2×2

06×6


,



0 1/C

-1/L -1/RC

I6×6




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One more example

(E ,A) =




0 0 -2 1 3 -4 2 -5
-1 -2 -5 2 6 -5 3 -8
-2 -3 -3 0 1 0 0 -3
0 -2 -4 4 7 -3 1 -6
-1 -1 -1 -1 0 0 1 -1
-2 -2 -1 -3 -2 4 1 4
0 1 5 -4 -7 8 -2 11
-1 -1 -1 -1 0 0 1 -1
-2 -3 -10 5 10 -17 4 -25

 ,


0 -1 1 2 0 -1 -3 -4
-1 -3 -1 3 1 -2 -4 -9
1 0 -1 4 6 -2 0 -5
-5 -4 -5 -8 -10 0 1 -2
3 1 4 7 8 2 -3 -1
3 1 3 7 9 2 -2 -1
4 5 8 0 3 11 2 19
3 1 4 7 8 2 -3 -1
0 -3 -4 10 7 -15 -6 -27




QKF: (SET ,SAT ) =





- 12 - 72 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 - 32 3 0 0 0 0

0 0 0 0 65
2 0 15

4 0

0 0 0 0 - 132 0 - 34 0

0 0 0 0 - 1172 0 - 274 0

0 0 0 0 0 0 0 - 5237
0 0 0 0 0 0 0 - 8037
0 0 0 0 0 0 0 92

37


,



0 1 0 0 0 0 0 0

0 0 6 6 0 0 0 0

0 0 -12 -12 0 0 0 0

0 0 0 0 - 1412 10 - 94 0

0 0 0 0 19 -2 0 0

0 0 0 0 519
4 -18 33

8 0

0 0 0 0 0 0 0 - 1237
0 0 0 0 0 0 0 - 6437
0 0 0 0 0 0 0 44

37




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QKF → Quasi-Weierstrass form

(E ,A) ∼=





EU

I

N

EO


,



AU

J

I

AO




Corollary (Quasi-Weierstrass-Form (QWF))

Eẋ = Ax + f has solution x for any sufficiently smooth f and each solution x is uniquely
determined by x(0) and f

⇔ (E ,A) ∼=
([

I 0
0 N

]
,

[
J 0
0 I

])
quasi-Weierstrass form
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Regularity

Theorem (cf. Kunkel & Mehrmann 2006; Berger, Ilchmann & Trenn 2012)

(E ,A) is regular, i.e. det(sE − A) ̸≡ 0

⇐⇒ QWF: (E ,A) ≃
([

I 0
0 N

]
,
[
J 0
0 I

])
⇐⇒ ∃! subspaces V,W ∈ Rn : AV ⊆ EV,EW ⊆ AW,V ⊕W = Rn,EV ⊕ AW = Rn

and any bases V ,W of V,W lead to QWF with T = [V ,W ] and S = [EV ,AW ]−1

⇐⇒ the Wong limits V∗ and W∗ satisfy V∗ ⊕W∗ = Rn and EV∗ ⊕ AW∗ = Rn, where

V0 = Rn, Vi+1 = A−1(EVi ), V∗ :=
⋂

i
Vi

W0 = {0}, Wj+1 = E−1(AWj), W∗ :=
⋃

j
Wj

⇐⇒ Eẋ = Ax + Bu is solvable for all B and all smooth u
and each solution is uniquely determined by x(0)

⇐⇒ Eẋ = Ax , x(0) = 0 has only the trivial solution (and E ,A square)
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Summary

▶ Different forms of DAEs (nonlinear, semi-linear, semi-explicit, linear (homogeneous,
inhom., with inputs/outputs))

▶ DAEs are not ODEs
▶ non-existence of solutions
▶ non-uniqueness of solutions
▶ differentiability requirements on inhomogeneities

▶ Equivalence

▶ Four basic types of linear DAEs Eẋ = Ax + v
▶ type ODE (square and E invertible)
▶ type nilpotent DAE (square, A invertible and A−1E nilpotent)
▶ type underdetermined DAE (full row rank of λE − A)
▶ type overdetermined DAE (full column rank of λE − A)

▶ Quasi-Kronecker form for general linear DAEs Eẋ = Ax + v
▶ Any DAE can be decoupled into above four types ; QKF
▶ Quasi-Weierstrass form: no uDAE and oDAE parts ; regularity
▶ Regularity characterizations
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