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a b s t r a c t

This paper studies the stability of switched systems that are composed of a mixture of stable and
unstable modes with multiple equilibria. The main results of this paper include some sufficient
conditions concerning set convergence of switched nonlinear systems. We show that under suitable
dwell-time and leave-time switching laws, trajectories converge to an initial set and then stay in a
convergent set. Based on these conditions, Linear Matrix Inequality (LMI) conditions are derived that
allow for numerical validation of the practical stability of switched affine systems, which include those
with all unstable modes. Two examples are provided to verify the theoretical results.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Many complex engineering systems operate as finite-state
achines with different modes of operations and functions. These
odes can correspond to the multitude of tasks designed for

hese systems and to the adaptability of these systems in dealing
ith the dynamic environment. In this regard, these systems
an be modeled as switched systems, which have received much
ttention in the past few decades. Some well-known examples of
ngineering systems described by switched systems are aircraft
ystems [1], power electronics [2], and electrical circuits [3].
Typically, a switched system is described by a finite set of

ontinuous-time or discrete-time dynamic subsystems/modes and
switching law/signal that determines which subsystem/mode

s active at any given moment of time. Such switching laws can
epend on particular state values, time events, or an external
tate as a memory.
In the time-dependent switching signal, the dwell-time (DT)

s studied in [4] provides an important notion that gives us
he minimal time where the switched systems must remain in
subsystem before switching to another one. Correspondingly,
significant amount of literature has been directed towards

he stability of switched systems [4–11]. In [5,6] the common
yapunov function and multiple Lyapunov function techniques
re used to analyze the stability of switched systems with all
table subsystems. In recent years, some results have also been
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reported on switched systems with both stable and unstable
subsystems [7,8]. The main idea of these studies is to make the
dwell-time of the stable subsystems long enough while short-
ening the dwell time of the unstable subsystems to offset the
divergent trajectory of the unstable subsystem. This approach of
having a trade-off between stable and unstable subsystems is no
longer applicable when all subsystems are unstable. In [9–11], a
discretized Lyapunov function technique is presented that can be
used to analyze the stability of switched systems with all unstable
subsystems. The switched systems considered in these papers all
share a common equilibrium point and they provide analysis on
the convergence of the trajectories to the common equilibrium.

On the contrary, in some engineering applications, there may
not be a common equilibrium among subsystems. Some well-
known examples are neural networks [12] and bipedal walking
robots [13]. In these systems, it has been shown that the trajec-
tories converge to a set rather than to a specific equilibrium point.
The property of convergent sets has been studied and estimated
in [14–16]. When all subsystems are stable, dwell-time criteria
was investigated in [14] to guarantee that the trajectories con-
verge globally to a superset and remain in such a superset. This
work was extended to switched systems satisfying the input-to-
state stability property with bounded disturbance in [15], and to
switched discrete systems in [15]. Another extension of [14] was
presented in [16], which allows each subsystem to have multiple
stable equilibria. The minimal invariant convergent superset for
switched affine systems is studied in [17]. However, the studies
in [14–17] have not yet considered the case where the switched
systems can contain unstable subsystems.

Inspired by the previous study in [14], we study in this paper
the set convergence property of switched systems with distinct
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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quilibria in a more general case. The switched systems can
ontain both stable and unstable subsystems. Such situations can
e found, for instance, in aeroengine systems [18] or in RLC circuit
ystems [19], where a component failure or external disturbance
an render a subsystem to be unstable. In power systems [20],
oS attacks are aimed at creating a power blackout through
ascading failure by inducing instability in a subsystem. In the
ame theoretic setting [21–23], each game’s Nash equilibria may
e different and unstable.
This paper provides theoretical tools relevant to ensuring set

tability for switched systems with stable and unstable sub-
ystems. Multiple Lyapunov functions techniques are applied to
btain dwell/leave time conditions. With these conditions, the
rajectories of switched systems are ultimately bounded by a
ompact set. Instead of finding multiple Lyapunov functions for
he entire state space as studied recently in [14], we only need to
ind multiple Lyapunov-like functions in the state space outside
ome compact sets, which is less conservative than the former
n [14]. Consequently, we have enlarged the superset of the
quilibria as reported in [14]. The generalization allows us to
onsider switched systems with all unstable subsystems as well.
Related work on the study of switched systems with multiple

quilibria is the practical stability analysis of switched affine
ystems in [17,24–29]. In [17,24–26], time dependent switching
aws are given to guarantee the stability with respect to a set.
n these studies, they analyze switched affine systems with all
table subsystems [24] or with stable switching condition among
ubsystems [25,26]. In [27–29], a stabilization problem is studied
or the switched systems with unstable mode. Quadratic and
on-quadratic Lyapunov functions are used to develop the state
ependent switching laws to compute the domain-of-attraction.
owever, as pointed out in [17], such computation of domain-of-
ttraction does not exist when time dependent switching laws
re applied to such systems. Related to this, we present the
ractical stability analysis for mixed stable–unstable switched
ffine systems with time dependent switching laws. Based on the
btained sufficient conditions for set convergence, we present
numerical construction of such multiple Lyapunov functions
sing time-dependent multiple quadratic Lyapunov functions. It
eads to Linear Matrix Inequality (LMI) conditions that can be
umerically implemented.
The paper is organized as follows. In Section 2, we present

reliminaries and problem formulation. The construction of the
onvergent set and some sufficient conditions for the set conver-
ence property of switched systems are presented in Section 3
long with an example. Application of such sufficient conditions
o the practical stability analysis of switched affine systems that
nclude examples with all unstable subsystems are provided in
ection 4. Finally, we present the conclusions in Section 5.
Notation. The symbols R, R≥0, and N denote the set of real,

on-negative real, and natural numbers, respectively. Correspond-
ngly, the n-dimensional Euclidean space is denoted by Rn. Given
ny matrix A, AT refers to the transpose of A, and λ(A) refers the
igenvalue of A. For symmetric matrices B and C , the inequality
> 0 (or B ≥ 0) means that B is positive definite (or positive

emidefinite) and B < 0 (or B ≤ 0) refers to B being negative
efinite (or negative semidefinite). The inequality B < C (B ≤ C)
eans that B−C < 0 (B−C ≤ 0). The symbol ∥·∥ is the Euclidean
ector norm on Rn. For a given set N , the sets ∂N and N denote
he boundary of N and the complement of N , respectively. Finally,
henever it is clear from the context, the symbol ‘‘∗’’ inside a
atrix stands for the symmetric elements in a symmetric matrix.
2

2. Preliminaries and problem formulation

Consider switched systems in the form of

˙(t) = fσ (t)(x(t), t), x(t0) = x0, (1)

where x(t) ∈ X ⊆ Rn is the state vector, t0 ∈ R is the initial
time and x0 ∈ X is the initial value. Define an index set Q :={
1, 2, . . . ,M

}
, where M is the number of modes. The signal σ :

[t0, ∞) → Q denotes the switching signal, which is assumed to
be a piecewise constant function and continuous from the right.
The vector field fi : X × [t0, ∞) → Rn, i ∈ Q, is continuous
in t and continuously differentiable in x. The switching instants
are expressed by a monotonically increasing sequence S :={
t1, t2, . . . , tk, . . .

}
, where tk denotes the kth switching instance.

We assume that (1) is forward complete, which means for each
x0 ∈ X there exists a unique solution of (1) on [t0, ∞) and no
jump occurs in the state at a switching time.

In this paper, we do not assume that there is common equi-
libria for the switched systems (1). In addition, we allow each
subsystem has multiple equilibria. Since the equilibria are dif-
ferent, trajectories will converge to a set rather than a specific
point.

The set convergence problem for switched systems with all
stable modes has attracted considerable attentions. For example,
in [14–16,30], a convergent set is constructed by the level sets of
multiple Lyapunov functions. Then, the trajectories of the systems
converge to the set. However, for unstable subsystems, we cannot
find such multiple Lyapunov functions that limit the application
of results in [14–16,30]. Correspondingly, the main objective of
this paper is to propose a sufficient condition that guarantees
the switched system (1) is set convergent with respect to any
switching law σ (t) satisfying the dwell/leave time constraints,
which includes the case when not all modes of (1) are stable and
when none of the modes are stable.

3. Main result

In this section, the sets construction is introduced and some
sufficient conditions are given to guarantee the set convergence
of the switched system (1).

We denote the subset of modes in Q that compose of unstable
sub-systems by U and its complement (i.e., the stable ones) by
S. Hence, Q = U∪̇S. Consider the switched system (1) under a
certain switching signal σ (t). Suppose that there exists a compact
set K such that for each mode q ∈ Q there exists a continuously
differentiable function Vq : X \ K × [0, τq,max) → R≥0, where
τq,max ∈ R≥0 ∪ {∞} represents the maximal local time, such that
the following inequality holds for all ξ ∈ X \K and τ ∈ [0, τq,max)

V̇q(ξ, τ ) :=
∂Vq(ξ, τ )

∂ξ
fq(ξ, τ ) +

∂Vq(ξ, τ )
∂τ

≤ ηqVq(ξ, τ ), (2)

with ηq ≥ 0 if q ∈ U or ηq < 0 otherwise. This mode-
dependent locally time-varying Lyapunov function provides us
with a means to describe the stability of the compact set K in a
ocal time-interval whenever mode q is activated. For facilitating
the numerical computation later via LMI conditions, we will use
an explicit relation of the compact set K with the Lyapunov
function Vq through a parametrized compact set N(k), where the
arameter k > 0 gives us the degree-of-freedom to check the
yapunov condition.
We introduce this locally time-varying Lyapunov function

n order to relax the requirement of finding a common time-
nvariant Lyapunov function for switched systems, which may be
ard to find. The maximal time of definition τq,max can be ∞ and

we do not exclude the usual time-invariant Vq in this definition
by taking V (ξ, τ ) to be time-invariant for all τ ∈ [0, τ )
q q,max
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ith arbitrary τq,max > 0. As will be clear later, such maximal
ime τq,max must necessarily be greater than the usual required
well-time condition. In our previous work [31], we have shown
he applicability of such locally time-varying Lyapunov functions
n order to set up verifiable LMI conditions for establishing
tability of switched systems comprising (un)stable modes. The
unction constructed in [31] is based on time interpolation of two
ime-invariant quadratic Lyapunov function.

In the following, we will define N(k), Nα(k), L(k), which are a
ubset of X and parametrized by positive constant k > 0. These
ets will be used in our main result to define the attractive in-
ariant set of the switched systems. For a given positive constant
> 0 and for any given mode q ∈ Q, we define Nq(k) as a level
et of Vq(ξ, τ ) given by

q(k) := {ξ ∈ X : Vq(ξ, τ ) ≤ k, ∀τ ∈ [0, τq,max)}. (3)

he superset N(k) is defined by the union of Nq(k) over all modes
∈ Q as follows

(k) :=

⋃
q∈Q

Nq(k). (4)

ince N(k) is generally larger than any of the individual Nq(k), let
s define the maximum range of Vq in N(k) by

q(k) := max
ξ∈N(k)

τ∈[0,τmax)

Vq(ξ, τ ), (5)

nd
(k) := max

q∈Q
αq(k). (6)

or every q ∈ Q, we define a level set Nα
q (k) by

α
q (k) := Nq(α(k)), (7)

here Nq(·) is given by (3). And we define Nα(k) by

α(k) :=

⋂
q∈Q

Nα
q (k). (8)

ote that Nα(k) ̸= N(α(k)) because the former is the intersection,
hile the latter is the union of all Nq(α(k)).
Now, using the above notions of Vq and the sets U, S , and N(k),

e will consider the following locally time-varying Lyapunov
haracterization for establishing the set stability of (1). For each
ode q ∈ Q, we assume that (2) holds for K = N(k), i.e.

˙q(ξ, τ ) ≤ ηqVq(ξ, τ ), ∀ξ ∈ X \ N(k), ∀τ ∈ [0, τq,max) (9)

ith ηq > 0 if q ∈ U or ηq < 0 otherwise, and with τq,max > 0.
dditionally, we assume that the mode-dependent functions Vq
re bounded by each other as follows: there exists 0 < µq < 1 if
∈ U or µq > 1 otherwise, such that

p(ξ, 0) ≤ µqVq(ξ, τ ), ∀ξ ∈ X \ N(k)

p, q ∈ Q, ∀τ ∈ [τq,min, τq,max), (10)

ith τq,min > 0.
Notice that, for a stable subsystem, there exists ηq that satisfies

9) globally. For an unstable subsystem, inequality (9) implies
hat the value of Vq(ξ, τ ) may increase in some time interval
ith a bounded rate ηq > 0. In such case, the divergence can
e compensated by the switched event according to (10) with
< µq < 1.
Finally, let us introduce the set L(k), in which the trajectories

ill eventually remain in. Firstly, we denote for every q ∈ Q

βq(k) := α(k) · max
{

1
µq

, 1
}

, (11)

(k) := {x ∈ X : V (ξ, τ ) ≤ β (k),
q q q

3

Fig. 1. An illustration of the set constructions for two modes.

∀τ ∈ [0, τq,max)}, (12)

Accordingly, we define L(k) by

L(k) :=

⋃
q∈Q

Mq(k). (13)

or an unstable sub-system, it follows from (11) that βq(k) =
1
µq

α(k) ≥ α(k) which implies that Nα
q (k) ⊆ Mq(k).

In the following, the relations among the above defined sets
re discussed and illustrated. For every ξ ∈ N(k), according to
3)–(6), we have Vq(ξ, τ ) ≤ α(k), for every q ∈ Q. Then, by the
efinition of Nα

q (k) in (7), for every q ∈ Q, we have ξ ∈ Nα
q (k),

.e., ξ ∈
⋂

q∈Q Nα
q (k). Combining this with the definition of Nα(k)

n (8), we can conclude that N(k) ⊆ Nα(k). In addition, for every
∈ Nα(k), i.e., Vq(ξ, τ ) ≤ α(k), according to (11), (12), we have

q(ξ, τ ) ≤ βq(k), i.e., ξ ∈
⋃

q∈Q Mq(k). In combination with
he definition of L(k) in (13), we conclude that Nα(k) ⊆ L(k).
ence, we have that N(k) ⊆ Nα(k) ⊆ L(k). An illustration of
his construction for two modes can be seen in Fig. 1. In this
llustration, N1(k) and N2(k) are disconnected; however, they can
lso be connected as shown later in Example 3.

emark 3.1. There are two main differences between our results
nd those in [14,15]. Firstly, the results in this paper can include
nstable subsystems; moreover, we do not exclude the case of
ll unstable subsystems. To cater for the presence of unstable
ubsystems, we use piecewise time-varying Lyapunov functions
nstead of time-invariant Lyapunov functions as used in [14,15]
ith the restriction of (10). Secondly, the time-varying Lyapunov
haracterization of the sub-systems are applied outside a compact
et N(k) instead of the whole state space X as assumed in [14,15].
t will be shown later in Example 1 that checking these Lyapunov
onditions outside a compact set in (9) is easier that checking the
ounterparts in the whole state space X .

Before we present our main result, we introduce the following
efinition of the mode dependent dwell (leave) time.

efinition 3.2. A constant τp > 0 is called mode dependent dwell
leave) time for stable (unstable) mode p ∈ Q of a switching
ignal σ : [t0, ∞) → Q if the time interval between two
onsecutive switches or jumps being no smaller (or larger) than
.
p
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We present now the main result of this section for the set
convergence of switched systems (1).

Theorem 3.3. Suppose that for every q ∈ Q there exists Vq :

X × [0, τq,max) → R+ satisfying (9) and (10) with a given ηq, µq
and k > 0. Then, for every switching signal σ : R+ → Q satisfying
the following dwell and leave time condition

τq > max
{
−

lnµq
ηq

, τq,min

}
∀q ∈ S, and

τq < min
{
−

lnµq
ηq

, τq,max

}
, ∀q ∈ U .

⎫⎬⎭ (14)

he following properties hold for the state trajectory of the switched
ystem (1):

(i) there exists T = T (x0) > 0 such that x(T ) ∈ N(k);
(ii) for any time t ∈ [T , +∞), the trajectory will stay in L(k),

i.e. x(t) ∈ L(k);
iii) for all starting points x0 ∈ Nα(k), the trajectory of switched

system (1) remains in the set L(k), i.e. x(t) ∈ L(k).

roof. Let us consider a given switching signal σ satisfying the
ypotheses of the theorem with the switching time {t0, t1, t2, . . .}.
or such switching signal σ , we can construct a piecewise time-
arying Lyapunov function, by piecing all Vq together, as follows

(x(t), t) = Vq(x(t), t − ti),

here ti is the latest switching moment before time t and q is the
urrent mode.

roof of part (i). Trivially, if x0 ∈ N(k) then T = 0. Let us
ow consider x0 ∈ X \ N(k). In the following, we will show that
nder the condition (14), the function V (x(t), t) will converge to

an arbitrarily small constant. This implies that there exists a time
T > 0 s.t. at which the trajectory enters N(k), i.e. V (x(T ), T ) ≤ k.

Firstly, for any t ∈ [ti, ti+1) and q := σ (ti), according to (2), we
have
d
dt

V (x(t), t) =
d
dt

Vq(x(t), t − ti) t ∈ [ti, ti+1)

=
∂Vq(x(t), τ )

∂x
fq(x(t)) +

∂Vq(x(t), τ )
∂τ

τ ∈ [0, ti+1 − ti)

≤ ηqVq(x(t), τ )

here we have introduced a time transformation of τ = t − ti in
the second equality. The comparison lemma implies

V (x(t), t) ≤ eηq(t−ti)V (x(ti), ti) (15)

for all t ∈ [ti, ti+1). Using (9) and (10), and by denoting now
p := σ (ti) and q := σ (ti−1),

V (x(ti), ti) = Vp(x(ti), 0)
≤ µqVq(x(t), t − ti−1) t ∈ [ti−1 + τp,min, ti)

≤ µqeηq(ti−ti−1)Vq(x(ti−1), 0),

here the last inequality follows a similar line as in (15). By
ecursively computing the inequality bound down to t0, for t =

i+1 we arrive at the following inequality

(x(ti+1), ti+1) = Vσ (ti+1)(x(ti+1), 0)

≤ Vσ (t0)(x(t0), 0)
i∏

j=0

µσ (tj) exp
(
ησ (tj)(tj+1 − tj)

)
= Vσ (t0)(x(t0), 0)

i∏
j=0

exp
(
ησ (tj)(tj+1 − tj) + lnµσ (tj)

)
.

(16)

It follows from the dwell and leave time condition (14) that
for all q ∈ S ∪ U , the inequality lnµ + η τ =: d < 0
q q q q

4

holds. This implies immediately for d := maxq dq < 0 that
exp

(
ησ (tj)(tj+1 − tj) + lnµσ (tj)

)
≤ ed < 1. If σ has infinitely many

switches, it therefore follows from (16) that V (x(ti), ti) converges
to zero for i → ∞. Together with (15), we conclude that for t ∈

[ti, ti+1) either V (x(t), t) ≤ V (x(ti), ti) if σ (ti) ∈ S or V (x(t), t) ≤

eηmaxτmaxV (x(ti), ti) if σ (ti) ∈ U and where ηmax := maxq∈U ηq,
τmax := maxq∈U τq,max. Consequently, t ↦→ V (x(t), t) converges
also to zero as t → ∞. In the case that σ only has finitely
many switches, the last mode most be a stable mode (because
each unstable mode has a maximal leave time by assumption),
hence (15) considered for the last (stable) mode also implies that
t ↦→ V (x(t), t) converges to zero.

Particularly, for any given k > 0, there exists T > 0 and q such
hat V (x(T ), T ) = Vq(x(T ), T ) ≤ k.

Proof of part (ii). The proof is decomposed in two steps. In
the first step, we show that once the trajectory enters N(k),
.e. V (x(T ), T ) ≤ k with the switch time ti ≤ T , it stays in
(k) before the next switch at ti+1, i.e. V (x(t), t) ≤ β(k) for all
≤ t < ti+1. Thereafter it stays in Nα(k) after the next switch

ime ti+1, i.e. V (x(ti+1), ti+1) ≤ α(k). In the second step, we show
hat when the trajectory starts in Nα(k), it stays in L(k) for all
orward time.

First step: Let us consider the time interval [ti, ti+1), and T ∈

ti, ti+1), i.e. the trajectory enters N(k) in [ti, ti+1). Let us first
how that during the subsequent switch time ti+1, we have
(x(ti+1), ti+1) ≤ α(k). It follows from (5) and (6) that when the
rajectory enters N(k) at time T , we have V (x(T ), T ) ≤ ασ (ti)(k) ≤

(k).
We first show for a stable mode, by means of contradiction,

hat once the trajectory enters N(k) at time T , it will stay in
(k) in the time interval [T , ti+1). Let us assume there exists
′′ > T such that x(T ′′) /∈ N(k). According to the continuity
f the trajectory, there exists T ′ > T such that T < T ′ <
′′ and x(T ′) ∈ ∂N(k). According to (9), outside N(k), we have
(x(T ′′), T ′′) = Vq(x(T ′′), T ′′

− ti) ≤ eηq(T ′′
−T ′)Vq(x(T ′), T ′

− ti).
sing (14) and T ′′

− T ′
≤ τq, we have eηq(T ′′

−T ′)Vq(x(T ′), T ′
− ti) ≤

ηqτqVq(x(T ′), T ′
−ti) ≤ eln

1
µq Vq(x(T ′), T ′

−ti) =
1
µq

Vq(x(T ′), T ′
−ti).

Since we are in a stable mode with µq > 1, it follows that
Vq(x(T ′′), T ′′

− ti) < Vq(x(T ′), T ′
− ti). In other words, x(T ′′) ∈ N(k),

which is a contradiction. Since x(t) ∈ N(k), for all t ∈ [T , ti+1), it
follows from (5) and (6) that in the subsequent switch time ti+1,
we have V (x(ti+1), ti+1) = Vσ (ti+1)(x(ti+1), 0) ≤ ασ (ti+1)(k) ≤ α(k).
his means that the trajectory stays in Nα(k) at the subsequent
witch time ti+1.
Now let us consider the other case when an unstable mode is

ctive during the time interval [T , ti+1). For this situation, there
re two further possible cases: x(ti+1) ∈ N(k) and x(ti+1) /∈ N(k).
For the first case, with x(ti+1) ∈ N(k), we will show that x(t) ∈

(k) for all t ∈ [T , ti+1) and x(ti+1) ∈ Nα(k). Since it is an unstable
ode, in the time interval [T , ti+1), there can be a moment T ′ > T
uch that x(T ′) /∈ N(k). It follows from (9), (14), and T ′

− T < τq
hat V (x(T ′), T ′) = Vq(x(T ′), T ′

− ti) ≤ eηq(T ′
−T )Vq(x(T ), T − ti) <

ηqτqVq(x(T ), T − ti) < 1
µq

Vq(x(T ), T − ti) < 1
µq

αq(k) ≤ βq(k).
This inequality implies that x(T ′) ∈ L(k), ∀T ′

∈ [T , ti+1). Since
x(ti+1) ∈ N(k), according to (5) and (6), after the switching at ti+1
e have V (x(ti+1), ti+1) = Vσ (ti+1)(x(ti+1), 0) ≤ αq(k) ≤ α(k).
For the second case, with x(ti+1) /∈ N(k), following the same

rguments as in the first case, we have that x(t) ∈ L(k), for all
∈ [T , ti+1). Accordingly, at ti+1, with x(ti+1) /∈ N(k), p := σ (ti+1)
nd q := σ (ti), we can apply (9)–(10), which gives us

(x(ti+1), ti+1) = Vp(x(ti+1), 0)
≤ Vq(x(ti+1), ti+1 − ti)

≤ elnµq+ηq(ti+1−T )V (x(T ), T − t ).
q i
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sing (14), it follows that lnµq < −ηq(ti+1 − ti). Hence the above
inequality can be further upper-bounded by

V (x(ti+1), ti+1) < e−ηq(ti+1−ti)+ηq(ti+1−T )Vq(x(T ), T − ti)

= eηq(ti−T )Vq(x(T ), T − ti).

Since ti ≤ T and ηq > 0, we have V (x(ti+1), ti+1) < Vq(x(T ), T −

ti) ≤ αq(k) ≤ α(k). This implies that the trajectory remains in
Nα(k).

In summary, for all t ∈ [T , ti+1), the trajectory always stays in
L(k), and at ti+1, the trajectory remains in Nα(k).

Second step: Let us now consider the subsequent time interval
[ti+1, ti+2). Following the previous step, we have established that
V (x(ti+1), ti+1) ≤ α(k). We will now show that also x(t) ∈ L(k),
for all t ∈ [ti+1, ti+2). On the one hand, if the active mode in
[ti+1, ti+2) is a stable one, the maximal value of V (x(t), t) occurs
at ti+1 since V (x(t), t) is non-increasing in [ti+1, ti+2). In this case,
we have V (x(t), t) ≤ V (x(ti+1), ti+1) ≤ α(k).

On the other hand, if the active mode in [ti+1, ti+2) is an
unstable one then the upper bound of V (x(t), t) occurs at ti+2. By
denoting q := σ (ti+1) then for all t ∈ [ti+1, ti+2)

V (x(t), t) = Vq(x(t), t − ti+1)

≤ Vq(x(ti+2), ti+2 − ti+1)eηq(t−ti+1)

≤
1
µq

Vq(x(ti+2), ti+2 − ti+1)

≤
1
µq

α(k) ≤ βq(k),

here we have used (14) in the second inequality above to

stablish that eηq(t−ti+1) < eηq
− lnµq

ηq =
1
µq

for all t ≤ ti+2 <

i+1 + τq.
It follows from (12) and (13) that x(t) ∈ L(k), ∀t ∈ [ti+1, ti+2).
Finally, let us consider the trajectory at the switch-time ti+2.

When x(ti+2) ∈ N(k), it immediately holds that V (x(ti+2), ti+2) ≤

α(k). Otherwise, using (9), (10) and (14) and by denoting p :=

σ (ti+2), we have

V (x(ti+2), ti+2) = Vp(x(ti+2), 0)

≤
1
µq

Vq(x(ti+2), ti+2 − ti+1)

≤ e− lnµq+ηq(ti+2−ti+1)Vq(x(ti+1), 0)

≤ e− lnµq+ηqτqVq(x(ti+1), 0)
< Vq(x(ti+1), 0) ≤ α(k).

hus the trajectory x(t) remains in Nα(k) at ti+2.
By computing recursively for the subsequent time intervals,

e can conclude that the trajectory x(t) remains in L(k) for all
t ≥ T .

Proof of part (iii). The proof of part (iii) follows directly from the
second step of the proof of part (ii). □

Remark 3.4. The results presented in [14], which deals with all
stable modes, can be considered as a particular case of our results.
In particular, if we assume that the subsystems in Theorem 3.3
are all stable, i.e. Q = S , the trajectory of switched nonlinear
system (1) is in L(k) after time T for any switching signals satis-
fying τq > −

lnµq
ηq

. In this regards, part (i) and (ii) of Theorem 3.3
oincide with [14, Theorem 1] with a common µ = maxµq and a
ommon η = max ηq. For part (iii) of the theorem, we established
hat for all trajectories starting in Nα(k), which is larger than N(k)
sed in [14, Corollary 2], will stay in the same level set L(k). This
hows that our result is less conservative.
5

For switched system (1), if all subsystems are unstable, which
epresents the worst case scenario, the trajectories will not con-
erge to any of the modes and the divergence can only be com-
ensated by the switching events as shown in the following
orollary.

orollary 3.5. Assume that Q = U (i.e., all modes are unsta-
le). Suppose that for every q ∈ Q there exists Vq(ξ, τ ) : X ×

0, τq,max) → R+ satisfying (9) and (10) with a given ηq and
q. Then for any trajectory of switched nonlinear system (1) with
witching signals σ satisfying

q < min
{
−

lnµq

ηq
, τq,max

}
, ∀q ∈ U, (17)

there exists T > 0 such that x(t) remains in L(k) for all t ≥ T .

From (17), the term −
lnµq
ηq

gets closer to 0 as ηq gets larger,
in which case the unstable mode must switch sufficiently fast.
Alternatively, it can be compensated by having a small µq, which
increases the difficulty of designing the Lyapunov function. From
this point of view, it is desirable to have a small ηq.

Example 1. Let us consider a switched system (1) composed of
two scalar subsystems as follows

q = 1 : ẋ = x + 4,

q = 2 : ẋ = −x(1 + x)2.
(18)

The mode q=1 is an unstable system and the mode q=2 is a
stable system with multiple equilibria. Both systems do not have
common equilibria. For these sub-systems, we can define V1 and
V2 that satisfy (9) and (10). Indeed, by using V1(x(t), t) = 2x2 and
V2(x(t), t) =

1
2x

2, we have µ1 =
V2(x(t),t)
V1(x(t),t)

=
1
4 and µ2 =

V1(x(t),t)
V2(x(t),t)

=

; thus (10) is satisfied globally.
Let us fix k = 2 in (3) so that N1(2) = (−1, 1), N2(2) = (−2, 2),

(2) = (−2, 2), and X \N(2) = (−∞, −2]
⋃

[2, +∞). In X \N(2),
ne can obtain that (9) holds with η1 = 6 and η2 = −2. Following
he computation in (5), we have α(2) = 8 in N(2). Subsequently,
sing (11), we can obtain that β1 = 32 and β2 = 8. Consequently,
1(2) = [−4, 4], M2(2) = [−4, 4], so that L(2) = [−4, 4]. Thus

N(α) = N(k) = [−2, 2], L(k) = [−4, 4]. According to the main
well-time condition (14) in Theorem 3.3, the dwell-time for each
ubsystem is given by τ1 ≤ 0.231, τ2 ≥ 0.693.
For numerical simulation, we consider τ1 = 0.231 and τ2 =

0.693, and the switched system is initialized at two different
position: x(0) = −6, which is outside L(2), and x(0) = 2, which is
on the boundary of Nα(k). Fig. 2 shows the resulting trajectories
where the blue line gives the trajectory initialized at −6 while
the red one is the trajectory initialized at 2. According to part
(i) and part (ii) in Theorem 3.3, there exists T > 0 such that
the trajectory will enter N(k) and remains in L(k) for all t ≥ T .
As shown in Fig. 2, the trajectory that starts at -6 enters N(k) at
T = 0.52 s, and remains in L(k) afterwards. On the other hand,
when the state is initialized at 2, which is in Nα(k), the trajectory
will remain in L(k) for all t ≥ 0.

The analysis tools provided by Theorem 3.3 only require us
to get Lyapunov characterization for each sub-system outside a
given compact set. For instance, the Lyapunov inequality (9) does
not need to be fulfilled in the neighborhood of the equilibria. In
the example above, one can check for the second subsystem that
by using the given Lyapunov function V2(x(t), t) =

1
2x

2, we have
˙2(x(t), t) = −x2(1+ x)2 ≤ 0. However, it is not possible to fulfill
he inequality (9) for all R. By letting k = 2, −2(1 + x)2 ≤ −2
olds for all x in (−∞, −2)

⋃
(2, +∞) (which is a state domain

utside the compact interval [−2, 2]). Thus, in this domain, we
have V̇2(x(t), t) ≤ −2V2(x(t), t) fulfilling (9) with the dissipation
rate η2 = −2.
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Fig. 2. The plot of trajectories of switched system in Example 1 initialized at
x(0) = −6, x(0) = 2, and using a periodic switching signal with τ1 = 0.231 and
2 = 0.693, x(t) : x(0) = −6 enters N(k) at 0.52 s.

. Practical stability for the switched affine systems

In this section, we focus on the application of Theorem 3.3 in
he practical stability analysis of switched affine systems with
ixed stable–unstable subsystems. Let us consider a switched
ffine system in the form of

˙(t) = Aqx(t) + Bq, ∀q ∈ Q, (19)

here x(t) and σ (t) are as in (1). Here we do not restrict Aq to
e stable matrices, nor they have stable matrix combination as
ursued in [25,26].
Following [24], the switched affine system (19) is said to be

ractically stable with respect to the sets Ω1 ⊆ X and Ω2 ⊆ X
Ω1 ⊆ Ω2) for any switching signal σ (t) from the given class, if
he implication x(t0) ∈ Ω1 ⇒ x(t) ∈ Ω2 holds for all t ≥ 0.

In Theorem 3.3, it is assumed that there exist multiple Lya-
unov functions Vq(ξ, τ ) in X \ N(k) × [0, τq,max) satisfying (9)
nd (10). In general, checking the existence of such Lyapunov
unctions is not trivial. In the following lemma, we present a
ufficient condition that can simplify the construction of such
yapunov functions.

emma 4.1. Suppose that for each mode q ∈ Q there exists a
ontinuously differentiable function Vq : X × [0, τq,max) → R≥0
uch that the following inequalities

˙q(ξ, τ ) ≤ ηqVq(ξ, τ ) + γq

(
k − Vq(ξ, τ )

)
,

∀ξ ∈ X , ∀τ ∈ [0, τq,max)
(20)

p(ξ, 0) ≤ µqVq(ξ, τ ) + γ ′

q

(
k − Vq(ξ, τ )

)
,

∀ξ ∈ X , ∀p, q ∈ Q, ∀τ ∈ [τq,min, τq,max),
(21)

old with 0 < τq,min < τq,max, where γq ≥ 0, γ ′
q ≥ 0,

and the constant k is as used before in (3). Then the statements
of Theorem 3.3(i), (ii) and (iii) hold for any switching signals σ

atisfying (14).

roof. It follows from (20) and (21) that Vq(ξ, τ ) > k ⇒

˙q(ξ, τ ) ≤ ηqVq(ξ, τ ) and Vp(ξ, 0) ≤ µqVq(ξ, τ ). This implies that
q(ξ, τ ) and Vp(ξ, 0) as given in (20) and (21) satisfy (9) and (10)
utside the compact set N(k), i.e. in the set

⋂
q∈Q{ξ ∈ X | Vq(ξ ) ≥

}. In this case, all hypotheses of Theorem 3.3 are satisfied and
ence the claim of the lemma follows immediately. Moreover, it
olds globally if k = 0. □
6

For switched linear systems, it is common to use a quadratic
yapunov function Vq(ξ, τ ) = ξ⊤Rqξ , where Rq is a positive defi-
ite matrix. The use of such quadratic form may not be suitable,
articularly when the systems switch consecutively between un-
table modes. For instance, when the system switches from an
nstable mode q to another unstable mode p and then back to
ode q again, for constant matrices Rq and Rp, (10) becomes
p ≤ µqRq ≤ µqµpRp with 0 < µq < 1, 0 < µp < 1,
hich cannot be satisfied. This shows that the matrix Rq cannot
e a constant matrix when switching between unstable modes
re admitted, such as the switched systems considered in our
ain result above. In order to compensate the conservativity
rought by the affine term Bq, we construct a shifted time-varying
uadratic Lyapunov function given by

q(ξ, τ ) = (ξ − x⋆)⊤Rq(τ )(ξ − x⋆), ∀q ∈ Q, (22)

here x⋆
∈ Rn is the centroid of the level set Vq. By defining

x̃(t) = x(t) − x⋆, we can rewrite (19) as

˙̃x(t) = Aqx̃(t) + Lq, ∀q ∈ Q, (23)

here Lq = Aqx⋆
+ Bq. Note that for estimating the domain-

of-attraction, it is desirable to have ∥Lq∥ as small as possible.
Otherwise, the LMI conditions, which we will present later in
Lemma 4.2, may not be feasible, i.e., the determinant Ξq,i +

γqkPqLqLTqPq in (24)–(25) may not be negative for large Lq. By
tuning x⋆, we can obtain a minimal value of Lq by minimizing the
cost function

∑
p,q∈Q ∥Lq∥. In other words, x⋆ can be determined

as x⋆
:= argmin

x∈X ,p,q∈Q

∑
∥Aqx + Bq∥.

For the time-varying matrix Rq(τ ), the inequality (10) is not
trivial to solve. A well-known technique to solve such problem
is the discretized Lyapunov function technique, which is widely
used in the stabilization of linear switched systems [9–11]. The
basic idea of the discretized Lyapunov function technique is to
linearize Rq(τ ) into the form of τ

τq,min
Pq + (1 −

τ
τq,min

)Qq for all
τ ∈ [0, τq,min), and Rq(τ ) = Pq elsewhere. In the following, we
transform Lemma 4.1 into LMI conditions by using the discretized
Lyapunov function technique and coordinate transformation.

Lemma 4.2. Suppose that for each mode q ∈ Q there exist positive
symmetric matrices Pq, Qq, and constants µq > 0, γq > 0, γ ′

q > 0,
τq,min > 0, and ηq ̸= 0, such that the following inequalities[
Ξq,1 PqLq
∗ −γqk

]
≤ 0, ∀q ∈ Q,

[
Ξq,2 QqLq
∗ −γqk

]
≤ 0, ∀q ∈ Q,

(24)

[
Ξq,3 PqLq
∗ −γqk

]
≤ 0, ∀q ∈ Q, (25)

Qp ≤ (µq − γ ′

q)Pq, ∀q ∈ Q (26)

hold, where Ξq,1 = A⊤
q Pq + PqAq +

1
τq,min

(Pq − Qq) + (γq − ηq)Pq,
Ξq,2 = A⊤

q Qq + QqAq −
1

τq,min
(Pq − Qq) + (γq − ηq)Qq, and Ξq,3 =

⊤
q Pq + PqAq + (γq − ηq)Pq. Then the statements of Theorem 3.3(i),

(ii) and (iii) hold for any switching signals σ satisfying (14).

Proof. We will prove the lemma by constructing the matrix Rq(τ )
used in (22) such that Vq(ξ, τ ) in (22) satisfies the hypotheses in
Theorem 3.3. Let us define Rq(τ ) by

q(τ ) =

{ τ
τq,min

Pq + (1 −
τ

τq,min
)Qq ∀τ ∈ [0, τq,min)

, (27)

Pq otherwise,
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o that Rq(0) = Qq and Rq(τq,min) = Pq. For τ ≥ τq,min, (20) is
uaranteed according to (25). Now, let us consider Rq(τ ) in the
nterval [0, τq,min) where the time-derivative of Rq(τ ) satisfies

dRq(τ )
dτ

=
1

τq,min
(Pq − Qq). (28)

orrespondingly, using (23), (20), (27) and (28) we can compute
he time-derivative of Vq in (22) on [0, τq,min] as follows

˙q(x, τ ) − ηqVq(x, τ ) − γq

(
k − Vq(x, τ )

)
=

τ

τq,min

[
x̃⊤Ξq,1x̃ + x̃⊤PqLq + L⊤

q Pqx̃−

γqk
]

+

(
1 −

τ

τq,min

) [
x̃⊤Ξq,2x̃ + x̃⊤QqLq

+ L⊤

q Qqx̃ − γqk
]
,

(29)

where we have used the relation x̃ = x−x⋆ in Vq(x, τ ) above. The
right-hand side of (29) can be written compactly as

τ

τq,min

[
x̃⊤ 1

] [
Ξq,1 PqLq
∗ −γqk

][
x̃
1

]
+(

1 −
τ

τq,min

) [
x̃⊤ 1

] [
Ξq,2 QqLq
∗ −γqk

][
x̃
1

]
.

(30)

orrespondingly, using (24) and (30), it follows that

˙q(x, τ ) − ηqVq(x, τ ) − γq

(
k − Vq(x, τ )

)
≤ 0, (31)

for all τ ∈ [0, τq,min). According to (26), it implies that

Vq(x, τ ) ≤ (µq − γ ′

q)Vq(x, τ )

≤ µqVq(x, τ ) + γ ′

q

(
k − Vq(x, τ )

)
.

(32)

Similarly, for all τ ≥ τq,min, V̇q(x, τ )−ηqVq(x, τ )−γq(k−Vq(x, τ )) is
negative definite according to (25). Consequently, in combination
with (14) and (26), all hypotheses in Theorem 3.3 are satisfied and
the claim of the lemma follows immediately. □

In general switched affine systems, Lq in (23) is not equal to
zero and may not be identical among the different modes q when
each mode has a different equilibrium point. The possibility of
admitting a different equilibrium point for every mode makes it
impossible to find a global quadratic common Lyapunov function
given by (22).

Remark 4.3. Since Rq is a convex combination of Pq and Qq, then
for any given k > 0, α(k) in (6) can be upperbounded by

α(k) ≤ α(k) :=
λmax

λmin
k, (33)

here λmax = max{λ(Pq), λ(Qq)}, and
λmin = min{λ(Pq), λ(Qq)}, ∀q ∈ Q.

Equipped with the LMI conditions in Lemma 4.2, the following
heorem provides sufficient conditions for practical stability of
he switched affine system (19).

heorem 4.4 (Practical Stability). Let the sets Ω1 = Nα(k) and
Ω2 = L(k) (Ω1 ⊂ Ω2). Suppose that the hypotheses in Lemma 4.2
hold. Then for all initial states in Ω1, i.e. x(t0) ∈ Nα(k), the trajec-
tories of switched system (19) remain in the set Ω2, i.e. x(t) ∈ L(k),
or every switching signals σ (t) satisfying (14).

Similar to Corollary 3.5, if all subsystems of (19) are unstable,
he results in Lemma 4.2 can be used to establish the following
emark.
7

Remark 4.5. Suppose that the hypotheses in Lemma 4.2 hold
with Q = U . Then the trajectories of switched affine system (23)
will remain in L(k) after time T > 0 for any switching signals
atisfying (17). In addition, if Pq > Qq then Ω1 and Ω2 can be
stimated by

⋂
q∈Q{x̃q | x̃⊤

q Qqx̃q ≤ α(k)} and
⋃

q∈Q{x̃q | x̃⊤
q Qqx̃q ≤

q(k)}, respectively. Since the LMI may have multiple solutions,
here may be different Ω1 and Ω2 with the same parameter
setting. To reduce the region of Ω1 and Ω2, we can use some
positive matrices ciI to bound Qi and Pi, thus enlarging the terms
in Qi.

Let us illustrate the applicability of the LMI conditions in
Lemma 4.2. By a direct application of Lemma 4.2, we establish
the stability of a switched system with stable and unstable sub-
systems in Example 2 below, and it is followed by the stability of
a switched system with all unstable subsystems in Example 3.

Example 2. Let us consider the switched system (19) composed
of both unstable (q = 1) and stable (q = 2) subsystems as follows

q = 1 : ẋ =

[
−2 0.5
0.5 0

]
x +

[
1.4

−0.4

]
,

q = 2 : ẋ =

[
0 1

−0.5 −2

]
x +

[
−0.9
2.4

]
,

(34)

and we set the parameter k = 2. Then by applying Lemma 4.2
to this switched affine system, where we fix x⋆

=
[
1 1

]⊤,
γ1 = γ2 = 0.05, η1 = 0.34, η2 = −0.24, µ1 = 0.5, µ2 = 2, γ ′

1 =

γ ′

2 = 0, it can be checked that using the following symmetric
constant matrices

Pi :

[
0.9160 −0.0841

−0.0841 0.3847

]
,

[
0.0788 0.0296
0.0296 0.1767

]
,

Qi :

[
0.1350 0.0624
0.0624 0.3511

]
,

[
0.1596 0.0186
0.0186 0.1789

]
,

(35)

the LMI problem given by (24)–(26) is feasible. Correspondingly,
we have τ1,min = 2, τ1,max = 2.04, τ2,min = 2.89. An upper bound
of α(2) is given by (33) as α(2) = 26.3546 and λmax

λmin
= 13.1773.

According to (11), β1 = 52.7092, β2 = 26.3546. Then, we have,

N(2) =

{
x1, x2 :

[
x1 − 1
x2 − 1

]⊤

Q1

[
x1 − 1
x2 − 1

]
≤ 2

}
∪

{
x1, x2 :[

x1 − 1
x2 − 1

]⊤

P2

[
x1 − 1
x2 − 1

]
≤ 2

}
,

Nα(2) ⊆ Nα(2) =

{
x1, x2 :

[
x1 − 1
x2 − 1

]⊤

Q1

[
x1 − 1
x2 − 1

]
≤

26.3546
}

∩

{
x1, x2 :

[
x1 − 1
x2 − 1

]⊤

P2

[
x1 − 1
x2 − 1

]
≤ 26.3546

}
;

L(2) =

{
x1, x2 :

[
x1 − 1
x2 − 1

]⊤

Q1

[
x1 − 1
x2 − 1

]
≤ 52.7092

}
∪

{
x1, x2 :[

x1 − 1
x2 − 1

]⊤

P2

[
x1 − 1
x2 − 1

]
≤ 26.3546

}
.

Fig. 3 shows the trajectories of switched system (34) with a
periodic switching signal σ satisfying τ1 = 2, τ2 = 3 and with

four different initial conditions
[
2.584
−7.86

]
,
[
−0.056
9.848

]
,
[
−13.432

4.92

]
,[

15.608
−2.36

]
.
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Fig. 3. The plot of trajectories of switched system in Example 3 initialized

t
[
2.584
−7.86

]
,
[
−0.056
9.848

]
,
[
−13.432

4.92

]
,
[
15.608
−2.36

]
, and using a periodic switching

ignal with τ1 = 2, τ2 = 3, the green solid line is L(k), the red solid line is
α(k), the orange line is N(k). (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

xample 3. Let us consider the switched system (19) composed
f two unstable subsystems as follows

= 1 : ẋ =

[
−1.9 0.6
0.6 −0.1

]
x +

[
1.4

−0.6

]
,

= 2 : ẋ =

[
0.1 −0.9
0.1 −1.4

]
x +

[
0.7
1.4

]
,

(36)

nd let us set k = 5. Then by applying Lemma 4.2 to this switched
ffine system, where we fix x⋆

=
[
1 1

]⊤, γ1 = γ2 = 0.06,
1 = η2 = 0.34, µ1 = µ2 = 0.5, γ ′

1 = γ ′

2 = 0, it can be checked
hat using the following symmetric constant matrices

i :

[
6.6543 −1.0418

−1.0418 3.7555

]
,

[
2.0998 −0.6941

−0.6941 6.8937

]
,

i :

[
1.0475 −0.3351

−0.3351 3.3797

]
,

[
2.0716 −0.9015

−0.9015 1.7611

]
,

(37)

he LMI problem given by (24)–(26) is feasible. Correspondingly,
e have τ1,min = τ2,min = 2, τ1,max = τ2,max = 2.04. An
pper bound for α(5) is given by (33) as α(5) = 34.95 and

λmax
λmin

= 6.99. According to (11), β1 = β2 = 69.9. According to

emark 4.5, N(5) =

{
x1, x2 :

[
x1 − 1
x2 − 1

]⊤

Q1

[
x1 − 1
x2 − 1

]
≤ 5

}
∪{

x1, x2 :

[
x1 − 1
x2 − 1

]⊤

Q2

[
x1 − 1
x2 − 1

]
≤ 5

}
; Nα(5) ⊆ Nα(5) =

{
x1, x2 :[

x1 − 1
x2 − 1

]⊤

Q1

[
x1 − 1
x2 − 1

]
≤ 34.95

}
∩

{
x1, x2 :

[
x1 − 1
x2 − 1

]⊤

Q2[
x1 − 1
x2 − 1

]
≤ 34.95

}
; L(5) =

{
x1, x2 :

[
x1 − 1
x2 − 1

]⊤

Q1

[
x1 − 1
x2 − 1

]
≤

69.9
}

∪

{
x1, x2 :

[
x1 − 1
x2 − 1

]⊤

Q2

[
x1 − 1
x2 − 1

]
≤ 69.9

}
. Fig. 4 shows

the plot of trajectories of the switched system with periodic
switching signal σ satisfying τ1 = τ2 = 2 and with four different

initial conditions
[
−3.3
0.49

]
,
[
5.35
1.58

]
,
[
−0.37
−2.26

]
,
[
1.65
4.26

]
. The figure

shows that when the trajectory starts on the boundary of N(α),
the trajectory stays in L(k) for all time. We note that the first

switching moment in the trajectory, which starts from
[
1.65

]
,
4.26

8

Fig. 4. The plot of trajectories of switched system in Example 3 initialized at[
−3.3
0.49

]
,
[
5.35
1.58

]
,
[
−0.37
−2.26

]
,
[
1.65
4.26

]
, and using a periodic switching signal with

1 = τ2 = 2, the green solid line is L(k), the red solid line is Nα(k), the orange
ine is N(k). (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

llustrates the second case of step one in the proof of Theorem 3.3,
.e. for an unstable system, the trajectory can go into N(k) and
ater escape from N(k) on the next switching moment.

. Conclusion

In this paper, the set convergence properties of switched
ystems with mixed stable–unstable modes have been studied.
ased on the dwell-time and leave-time property of the switching
ignals, multiple Lyapunov functions are defined and used to
haracterize the set of initial conditions that admits an attractive
et, to which all trajectories will converge to. Based on these
ufficient conditions, LMI conditions are presented that allow for
umerical validation on the practical stability of switched affine
ystems with computable dwell-time.
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