

faculty of science and engineering bernoulli institute for mathematics, computer science and artificial intelligence

Model reduction for switched DAEs

Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Joint work with my former PhD-student Sumon Hossain, North South University, Dhaka, Bangladesh

Elgersburg Workshop, Ilmenau, 26 February 2024, 10:00-11:00

Switched DAEs

Switched DAE

$$\begin{split} E_{\sigma}\dot{x} &= A_{\sigma}x + B_{\sigma}u, \quad x(t_0^-) = \mathcal{X}_0 \subseteq \mathbb{R}^n, \\ y &= C_{\sigma}x + D_{\sigma}u, \end{split} \tag{swDAE}$$

- > Switching signal: $\sigma : [t_0, t_f) \rightarrow \mathcal{Q} := \{0, 1, \dots, m\}$
-) Modes: $(E_k, A_k, B_k, C_k, D_k)$ for $k \in Q$
-) Singular system: $E_k \in \mathbb{R}^{n \times n}$ usually singular

Motivation

- > Electrical circuits with switches
- > (Linearized) models of water distribution networks with valves
- > Mathematical curiosity

university of Introduction Reduced realization Impulse decoupling Midpoint balanced truncation Summary groningen

Toy Example

Consider (swDAE) given by:

Model reduction task

(Approximately) same input-output behavior with smaller size switched system

For the toy example: possible to reduce to mode-dependent state-dimensions (2, 1, 2):

university of Introduction Reduced realization Impulse decoupling Midpoint balanced truncation Summary groundsen

Key challenges and novelties

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u, \quad x(t_0^-) = \mathcal{X}_0 \subseteq \mathbb{R}^n,$$

$$y = C_{\sigma}x + D_{\sigma}u,$$
(swDAE)

- > Fixed switching signal on fixed finite time interval $[t_0, t_f)$
- > No stability assumption for individual modes
- $\,\,$ No restriction on index of DAE \rightsquigarrow Dirac impulses in state and output
- > Allow non-zero (possibly inconsistent) initial values via subspace \mathcal{X}_0
- > Reduced model should again be a switched system (with same switching signal)
- > Allow mode-dependent reduced state dimension

Stephan Trenn (Jan C. Willems Center, U Groningen)

 Introduction
 Reduced realization
 Impulse decoupling
 Midpoint balanced truncation
 Summary

 Impulse decoupling
 Impulse decoupling

The three main steps

university of groningen

- 1. Reduced realization (always possible, depends only on mode sequence)
 - Via Wong-sequences and Quasi-Weierstrass form rewrite (swDAE) as switched ODE with jumps and impulsive output of same size
 - Calculate extended reachability and restricted unobservability subspaces
 - Calculate weak Kalman decomposition and remove unreachable/unobservable parts
 - Define reduced jump maps, output impulses, initial value space and initial projector
- 2. Impulse decoupling (structural assumption, depends only on mode sequence)
 - Key observation: Dirac impulse = infinite peak
 → do not change states which effect output Diracs
 - Assumption: States evolve in two disjoint invariant (mode-dependent) subspaces
- 3. Midpoint balanced truncation (invertability assumption on Gramians)
 - Solution = Solution for continuous input + Solution for discrete input
 - Calculate midpoint reachability Gramians for continuous and discrete time system
 - Calculate midpoint observability Gramians
 - Apply mode-wise balanced truncation via the midpoint Gramians

Stephan Trenn (Jan C. Willems Center, U Groningen)

Summary

Some DAE fundamentals

$$E\dot{x} = Ax + Bu \tag{DAE}$$

Definition (Regularity)

university of

(E,A) or (DAE) is called regular $:\iff \det(sE-A) \not\equiv 0$

Theorem (Regularity characterizations)

(DAE) is regular

- $\iff \forall u \exists$ solution of (DAE), uniquely determined by $x(t_0)$
- $\iff \forall u \; \forall x_0 \in \mathbb{R}^n \text{ exists unique distributional solution with } x(t_0^-) = x_0$
- $\iff \exists S, T \text{ such that } (SET, SAT) \text{ is in quasi-Weierstrass} \text{ form}$

$$\left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right), \quad N \text{ nilpotent}$$
(QWF)

S,T and (QWF) can be easily obtained via Wong-limits $\mathcal{V}^*, \mathcal{W}^* \subseteq \mathbb{R}^n$

university of Introduction Reduced realization Impulse decoupling Midpoint balanced truncation Summary growingen

Wong-decomposition

Definition (Some matrix definition based on Wong limits)

$$\begin{array}{c} \Pi_{(E,A)} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T^{-1} & \Pi_{(E,A)}^{\mathsf{diff}} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} S & \Pi_{(E,A)}^{\mathsf{imp}} := T \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} S \\ \\ A^{\mathsf{diff}} := \Pi_{(E,A)}^{\mathsf{diff}} A & B^{\mathsf{diff}} := \Pi_{(E,A)}^{\mathsf{diff}} B & E^{\mathsf{imp}} := \Pi_{(E,A)}^{\mathsf{imp}} E & B^{\mathsf{imp}} := \Pi_{(E,A)}^{\mathsf{imp}} B \end{array}$$

Theorem (Solution decomposition) $x \text{ solves (DAE) with } x(t_0^-) = x_0 \iff x = x^{\text{diff}} + x^{\text{imp}} \in \mathcal{V}^* \oplus \mathcal{W}^* \text{ where}$ $\dot{x}^{\text{diff}} = A^{\text{diff}} x^{\text{diff}} + B^{\text{diff}} u, \qquad x^{\text{diff}}(t_0^-) = \Pi_{(E,A)} x_0,$ $E^{\text{imp}} \dot{x}^{\text{imp}} = x^{\text{imp}} + B^{\text{imp}} u, \qquad x^{\text{imp}}(t_0^-) = (I - \Pi_{(E,A)}) x_0.$

Summary

Explicit impulsive solution formula

Lemma

 x^{imp} solves $E^{\text{imp}}\dot{x}^{\text{imp}} = x^{\text{imp}} + B^{\text{imp}}u$, $x^{\text{imp}}(t_0^-) = (I - \Pi)x_0 \iff$

$$\begin{aligned} x^{\mathsf{imp}} &= \mathbf{B}^{\mathsf{imp}} \mathbf{U}^{\nu} \quad on \ (t_0, t_f) \\ x^{\mathsf{imp}}[t_0] &= -\sum_{i=0}^{\nu-2} (E^{\mathsf{imp}})^{i+1} (x_0 - \mathbf{B}^{\mathsf{imp}} \mathbf{U}^{\nu}(t_0^+)) \delta_{t_0}^{(i)}, \end{aligned}$$

where $\nu \in \mathbb{N}$ is the nilpotency index of E^{imp} and

$$\boldsymbol{U}^{\nu} := \left[\boldsymbol{u}^{\top}, \dot{\boldsymbol{u}}^{\top}, \cdots, \boldsymbol{u}^{(\nu-1)^{\top}}\right]^{\top}$$
$$\boldsymbol{B}^{\mathsf{imp}} := -\left[\boldsymbol{B}^{\mathsf{imp}}, \boldsymbol{E}^{\mathsf{imp}} \boldsymbol{B}^{\mathsf{imp}}, \dots, (\boldsymbol{E}^{\mathsf{imp}})^{\nu-1} \boldsymbol{B}^{\mathsf{imp}}\right]$$

Summary

Equivalent switched ODE formulation

Corollary

university of groningen

For each $x_0 \in \mathbb{R}^n$ the input-output behavior of (swDAE) is equal to the one of

$$\begin{split} \dot{z} &= A_k^{\text{diff}} z + B_k^{\text{diff}} u, \quad \text{on } (s_k, s_{k+1}), \quad z(t_0^-) = x_0 \\ z(s_k^+) &= \Pi_k \left[z(s_k^-) + \mathbf{B}_{k-1}^{\text{imp}} \mathbf{U}^{\nu_{k-1}}(s_k^-) \right], \ k \ge 0 \\ y &= C_k z + D_k u + \mathbf{D}_k^{\text{imp}} \mathbf{U}^{\nu_k}, \quad \text{on } (s_k, s_{k+1}) \end{split}$$

$$y[s_k] = \sum_{i=0}^{\nu_k - 2} \left[C_k^i z(s_k^-) + D_{k-1,i}^{\mathsf{imp}-} U^{\nu_{k-1,i}}(s_k^-) - D_k^{\mathsf{imp}+} U^{\nu_k}(s_k^+) \right] \delta_{s_k}^{(i)}$$

$$\begin{array}{lll} \textit{where} \quad {\pmb{B}}_{-1}^{\textit{imp}} := 0, \quad {\pmb{D}}_k^{\textit{imp}} := C_k {\pmb{B}}_k^{\textit{imp}}, \quad C_k^i := -C_k (E_k^{\textit{imp}})^{i+1}, \\ {\pmb{D}}_{k,i}^{\textit{imp-}} := -C_k (E_k^{\textit{imp}})^{i+1} {\pmb{B}}_{k-1}^{\textit{imp}} \quad \textit{and} \quad {\pmb{D}}_{k,i}^{\textit{imp+}} := -C_k (E_k^{\textit{imp}})^{i+1} {\pmb{B}}_k^{\textit{imp}}. \end{array}$$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Toy example - Wong matrices

Reduced realization

university of groningen

The matrices $(\Pi_k, A_k^{\rm diff}, B_k^{\rm diff}, E_k^{\rm imp}, B_k^{\rm imp})$ are given by

Impulse decoupling

The corresponding feedthrough terms are then

$$\boldsymbol{D}_{0}^{\mathsf{imp}} = \boldsymbol{0}_{1 \times 0}, \quad \boldsymbol{D}_{1}^{\mathsf{imp}} = \left[\begin{smallmatrix} 0 & -1 \end{smallmatrix}\right], \quad \boldsymbol{D}_{2}^{\mathsf{imp}} = \boldsymbol{0}_{1 \times 1}, \quad \boldsymbol{D}_{1,0}^{\mathsf{imp}+} = \left[\begin{smallmatrix} 1 & 0 \end{smallmatrix}\right], \quad \boldsymbol{D}_{1,0}^{\mathsf{imp}-} = \boldsymbol{0}_{1 \times 0}.$$

Toy example - switched ODE representation

Stephan Trenn (Jan C. Willems Center, U Groningen)

Reduced realization Impulse decoupling Summarv university of groningen Reduced realization - notation reset $\dot{z} = A_k z + B_k u,$ on $(s_k, s_{k+1}), \quad z(t_0^-) = x_0 \in \mathcal{X}_0,$ $z(s_{k}^{+}) = J_{k}^{z} z(s_{k}^{-}) + J_{k}^{v} v_{k},$ $k \geq 0,$ $y = C_k z$, on (s_k, s_{k+1}) , $y[s_k] = \sum^{\rho_k} C^i_k z(s^-_k) \delta^{(i)}_{s_k}, \qquad k \ge 0,$ reduction $\dot{\widehat{z}} = \widehat{A}_{k}\widehat{z} + \widehat{B}_{k}u.$ on $(s_k, s_{k+1}), \quad \widehat{z}(t_0^-) = \widehat{z}_0(x_0),$ $\widehat{z}(s_k^+) = \widehat{J}_k^z \widehat{z}(s_k^-) + \widehat{J}_k^v v_k,$ $k \ge 0,$ $y = \widehat{C}_{k} \widehat{z}.$ on (s_k, s_{k+1}) , $y[s_k] = \sum^{\rho_k} \widehat{C}^i_k \widehat{z}(s_k^-) \delta^{(i)}_{s_k}, \qquad k \ge 0,$

Stephan Trenn (Jan C. Willems Center, U Groningen)

university of Introduction Reduced realization Impulse decoupling Midpoint balanced truncation Summary groningen

Recall: Kalman decomposition

Reachable subspace for $\dot{x} = Ax + Bu$

 $\mathcal{R} := \langle A \mid \operatorname{im} B \rangle := \operatorname{im}[B, AB, ..., A^{n-1}B] \nleftrightarrow \mathsf{smallest} \ A \text{-inv. subspace containing im} B$

Unobservable subspace for $\dot{x} = Ax$, y = Cx

 $\mathcal{U} := \langle \ker C \, | \, A \rangle := \ker [C/CA/ \dots / CA^{n-1}] \rightsquigarrow \text{ largest } A \text{-inv. subspace contained in } \ker C$

Kalman decomposition

Choose coordinate transformation ${\cal Q}=[P^1,P^2,P^3,P^4]$ such that

$$\operatorname{im} P^1 = \mathcal{R} \cap \mathcal{U}, \quad \operatorname{im}[P^1, P^2] = \mathcal{R}, \quad \operatorname{im}[P^1, P^3] = \mathcal{U}$$

then $(Q^{-1}AQ, Q^{-1}B, CQ)$ is a Kalman decomposition:

$$-\left(\begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ 0 & A_{22} & 0 & A_{24} \\ 0 & 0 & A_{33} & A_{34} \\ 0 & 0 & 0 & A_{44} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & C_2 & 0 & C_4 \end{bmatrix}\right)$$

 \nleftrightarrow (A_{22}, B_2, C_2) has same input-output behavior as (A, B, C) for $x_0 \in \mathcal{R}$

university of

Summary

Removing unreachable/unobservable states

Reduced realization: Basic idea

Remove unreachable/unobservable states

 \leadsto reduced system with same input-output behavior

Challenges for switched DAE

- > Structurally unreachable: States evolve within consistency subspace
- > Initial value before switch structurally unreachable for current mode
- > Reachable and unobservable subspaces fully time-varying for switched systems

Example to illustrate time-varying nature of reachable space:

$$\begin{split} \dot{x} &= \begin{bmatrix} 1\\0\\0 \end{bmatrix} u \text{ on } [t_0, s_1), \qquad \qquad \dot{x} = \begin{bmatrix} 0 & -1 & 0\\1 & 0 & 0\\0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0\\0\\1 \end{bmatrix} u \text{ on } [s_1, t_f) \\ \mathcal{R}_{[t_0, t)} &= \operatorname{im} \begin{bmatrix} 1\\0\\0 \end{bmatrix} \text{ for } t \in (t_0, t_1], \qquad \mathcal{R}_{[t_0, t)} = \operatorname{im} \begin{bmatrix} \cos(t-s_1) & 0\\\sin(t-s_1) & 0\\0 & 1 \end{bmatrix} \text{ for } t \in (s_1, t_f) \end{split}$$

Summary

Weak Kalman decomposition

Definition

university of

-) $\overline{\mathcal{R}} \subseteq \mathbb{R}^n$ is called extended reachable subspace
 - $:\iff \overline{\mathcal{R}} ext{ is } A ext{-invariant and contains im } B ext{ (and hence } \mathcal{R})$
- → $\underline{\mathcal{U}} \subseteq \mathbb{R}^n$ is called restricted unobservable subspace : $\iff \underline{\mathcal{U}}$ is A-invariant and is contained in ker C (and hence in \mathcal{U})

Weak Kalman decomposition

Choose coordinate transformation ${\cal Q}=[P^1,P^2,P^3,P^4]$ such that

$$\operatorname{im} P^1 = \overline{\mathcal{R}} \cap \underline{\mathcal{U}}, \quad \operatorname{im}[P^1, P^2] = \overline{\mathcal{R}}, \quad \operatorname{im}[P^1, P^3] = \underline{\mathcal{U}}$$

then $(Q^{-1}AQ,Q^{-1}B,CQ)$ is a Weak Kalman decomposition:

$$\begin{pmatrix} \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ 0 & A_{22} & 0 & A_{24} \\ 0 & 0 & A_{33} & A_{34} \\ 0 & 0 & 0 & A_{44} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & C_2 & 0 & C_4 \end{bmatrix} \end{pmatrix}$$
$$(A_{22}, B_2, C_2) \text{ has same input-output behavior as } (A, B, C) \text{ for } x_0 \in \overline{\mathcal{R}}$$

~

university of Introduction Introduction Reduced realization Impulse decoupling Midpoint balanced truncation Summary of the second secon

Sequence of ext. reach./restr. unobs. subspaces

Back to switched ODE with jumps and Diracs:

$$z = A_k z + B_k u, \quad z(t_0) = x_0 \in \mathcal{X}_0,$$

$$z(s_k^+) = J_k^z z(s_k^-) + J_k^v v_k$$

$$y = C_k z, \quad y[s_k] = \sum_{i=0}^{\rho_k} C_k^i z(s_k^-) \delta_{s_k}^{(i)}$$

Lemma (Exact reachable/unobsersable subspaces) $\mathcal{M}_{k}^{\sigma} := \mathcal{R}_{[t_{0},s_{k+1})}^{\sigma} \text{ and } \mathcal{N}_{k}^{\sigma} := \mathcal{U}_{(s_{k},t_{f})}^{\sigma} \text{ are recursively given by:}$ $\mathcal{M}_{-1}^{\sigma} = \mathcal{X}_{0}, \quad \mathcal{M}_{k}^{\sigma} := \mathcal{R}_{k} + e^{A_{k}\tau_{k}}(J_{k}^{x}\mathcal{M}_{k-1}^{\sigma} + \operatorname{im} J_{k}^{v}), \quad k = 0, 1, \dots \mathrm{m},$ $\mathcal{N}_{\mathrm{m}}^{\sigma} = \mathcal{U}_{m}, \quad \mathcal{N}_{k}^{\sigma} = \mathcal{U}_{k} \cap e^{-A_{k}\tau_{k}}(((J_{k}^{x})^{-1}\mathcal{N}_{k+1}^{\sigma}) \cap \mathcal{U}_{k+1}^{\mathrm{imp}}), \quad k = \mathrm{m} - 1, \dots, 0,$

Key fact

For any subspace $\mathcal{V} \subseteq \mathbb{R}^n$ and any $A \in \mathbb{R}^{n \times n}$: $\langle \mathcal{V} \mid A \rangle \subseteq e^{At} \mathcal{V} \subseteq \langle A \mid \mathcal{V} \rangle$

Stephan Trenn (Jan C. Willems Center, U Groningen)

...

university of groningen Introduction Reduced realization Impulse decoupling Midpoint balanced truncation Summary

Sequence of ext. reach./restr. unobs. subspaces

Back to switched ODE with jumps and Diracs:

$$z = A_k z + B_k u, \quad z(t_0) = x_0 \in \mathcal{X}_0,$$

$$z(s_k^+) = J_k^z z(s_k^-) + J_k^v v_k$$

$$y = C_k z, \quad y[s_k] = \sum_{i=0}^{\rho_k} C_k^i z(s_k^-) \delta_{s_k}^{(i)}$$

$$\begin{split} & \textbf{Definition (extended reach./restricted unobs. subspaces)} \\ & \overline{\mathcal{R}}_k \subseteq \mathcal{R}^{\sigma}_{[t_0,s_{k+1})} \text{ and } \underline{\mathcal{U}}_k \subseteq \mathcal{U}^{\sigma}_{(s_k,t_f)} \text{ are recursively given by:} \\ & \overline{\mathcal{R}}_{-1} := \mathcal{X}_0, \quad \overline{\mathcal{R}}_k := \mathcal{R}_k + \langle A_k \mid J_k^x \overline{\mathcal{R}}_{k-1} + \operatorname{im} J_k^v \rangle, \quad k = 0, 1, \dots \mathrm{m}, \\ & \underline{\mathcal{U}}_{\mathtt{m}} := \mathcal{U}_m, \quad \underline{\mathcal{U}}_k := \mathcal{U}_k \cap \langle ((J_k^x)^{-1} \underline{\mathcal{U}}_{k+1}) \cap \mathcal{U}_{k+1}^{\mathsf{imp}} \mid A_k \rangle, \quad k = \mathtt{m} - 1, \dots, 0, \end{split}$$

Key fact

For any subspace $\mathcal{V} \subseteq \mathbb{R}^n$ and any $A \in \mathbb{R}^{n \times n}$: $\langle \mathcal{V} \mid A \rangle \subseteq e^{At} \mathcal{V} \subseteq \langle A \mid \mathcal{V} \rangle$

/	university of	Introduction	Reduced realization	Impulse decoupling	Midpoint balanced truncation	Summary
	groningen					

Reduced realization via weak Kalman decomposition

For each mode k: $\overline{\mathcal{R}}_k$, $\underline{\mathcal{U}}_k \rightsquigarrow$ weak Kalman decomposition:

$$\begin{bmatrix} * \\ W_k \\ * \\ * \end{bmatrix} A_k \begin{bmatrix} * V_k & * \end{bmatrix} = \begin{bmatrix} * & * & * & * \\ 0 & \widehat{A}_k & 0 & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{bmatrix}, \quad \begin{bmatrix} * \\ W_k \\ * \\ * \end{bmatrix} B_k = \begin{bmatrix} * \\ \widehat{B}_k \\ 0 \\ 0 \end{bmatrix}$$
$$C_k \begin{bmatrix} * V_k & * & * \end{bmatrix} = \begin{bmatrix} 0 \ \widehat{C}_k & 0 & * \end{bmatrix}$$
$$\widehat{C}_k^i := C_k^i V_{k-1}, \qquad \widehat{J}_k^z := W_k J_k^z V_{k-1}, \qquad \widehat{J}_k^v := W_k J_k^v$$

Reduced sw. ODE with jumps and Diracs:

$$\begin{split} \hat{z} &= \widehat{A}_k \widehat{z} + \widehat{B}_k u, \quad \widehat{z}(t_0^-) = \Pi^{\mathcal{X}_0} x_0 \in \widehat{\mathcal{X}}_0\\ \widehat{z}(s_k^+) &= \widehat{J}_k^z \widehat{z}(s_k^-) + \widehat{J}_k^y v_k\\ y &= \widehat{C}_k z, \quad y[s_k] = \sum_{i=0}^{\rho_k} \widehat{C}_k^i \widehat{z}(s_k^-) \delta_{s_k}^{(i)} \end{split}$$

,	university of groningen	Introduction	Reduced realization	Impulse decoupling	Midpoint balanced truncation	Summary
/						
<u> </u>	00					

Toy example - reduced realization

on (s_0,s_1) :	on (s_1,s_2) :	on (s_2,s_3) :
$\begin{split} \dot{z} &= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} z + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u \\ z(s_0^+) &= x_0 \\ y &= 0 \\ y[s_0] &= 0 \end{split}$	$\begin{aligned} \dot{z} &= 0\\ z(s_1^+) &= \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} z(s_1^-)\\ y &= \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} z + \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{pmatrix} u\\ \dot{u} \end{pmatrix}\\ y[s_1] &= \left(\begin{bmatrix} 0 & 0 & -1 & 0 \end{bmatrix} z(s_1^-) - \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{pmatrix} u(s_1^+)\\ \dot{u}(s_1^+) \end{pmatrix} \right) \delta_{s_1} \end{aligned}$	$\begin{split} \dot{z} &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} z \\ z(s_2^+) &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} z(s_2^-) - \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} u(s_1^-) \\ \dot{u}(s_1^-) \end{pmatrix} \\ y &= \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} z \\ y[s_2] &= 0 \end{split}$
$\overline{\mathcal{R}}_0 = \operatorname{im} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$\overline{\mathcal{R}}_1 = \operatorname{im} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\overline{\mathcal{R}}_2 = \operatorname{im} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$\underline{\mathcal{U}}_0 = \operatorname{im} \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$\underline{\mathcal{U}}_1 = \operatorname{im} \begin{bmatrix} 1 & 0\\ 0 & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix}$	$\underline{\mathcal{U}}_2 = \operatorname{im} \begin{bmatrix} 1 & 0\\ 0 & -1\\ 0 & 1\\ 0 & 0 \end{bmatrix}$

瀫

/	✓ university of groningen	Introduction	Reduced realization	Impulse decoupling	Midpoint balanced truncation	Summary

Toy example - reduced realization

on (s_0,s_1) :	on (s_1, s_2) :	on (s_2,s_3) :
$ \hat{\hat{z}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \hat{z} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u $ $ y = 0 $ $ y[s_0] = 0 $	$\begin{aligned} \dot{\hat{z}} &= 0\\ \hat{z}(s_1^+) &= [1 \ 0] \ \hat{z}(s_1^-)\\ y &= [0 \ -1] \left(\begin{matrix} u\\ u \end{matrix} \right)\\ y[s_1] &= \left([0 \ -1] \ \hat{z}(s_1^-) - [1 \ 0] \left(\begin{matrix} u(s_1^+)\\ \dot{u}(s_1^+) \end{matrix} \right) \right) \delta_{s_1} \end{aligned}$	$\begin{aligned} \dot{\hat{z}} &= \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \hat{z} \\ \hat{z}(s_2^+) &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} z(s_2^-) - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} u(s_2^-) \\ \dot{u}(s_2^-) \end{pmatrix} \\ y &= \begin{bmatrix} 0 & 1 \end{bmatrix} \hat{z} \\ y[s_2] &= 0 \end{aligned}$
$\overline{\mathcal{R}}_0 = \operatorname{im} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$\overline{\mathcal{R}}_1 = \operatorname{im} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\overline{\mathcal{R}}_2 = \operatorname{im} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$\underline{\mathcal{U}}_0 = \operatorname{im} \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$\underline{\mathcal{U}}_1 = \operatorname{im} \begin{bmatrix} 1 & 0\\ 0 & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix}$	$\underline{\mathcal{U}}_2 = \operatorname{im} \begin{bmatrix} 1 & 0\\ 0 & -1\\ 0 & 1\\ 0 & 0 \end{bmatrix}$

語い

Stephan Trenn (Jan C. Willems Center, U Groningen)

niversity of	Introduction	Reduced realization	Impulse decoupling	Midpoint balanced truncation	Summary
roningen					

Approximation of Dirac impulses?

Assume output Dirac is given by $y[s_k] = C_k^0 z(s_k^-) \delta_{s_k}$

 \rightsquigarrow model reduction $\widehat{y}[s_k] = \widehat{C}_k^0 \widehat{z}(s_k^-) \delta_{s_k}$

*****/*

••• error $\varepsilon := C_k^0 z(s_k^-) - \widehat{C}_k^0 \widehat{z}(s_k^-)$ leads to output error $y[s_0] - \widehat{y}[s_0] = \varepsilon \delta_{s_0}$ ••• arbitrarily small approximation error leads to infinite error peak

Conclusion for model reduction

Unclear how to quantify error in Dirac impulses (especially for higher order Diracs) w do not reduce parts of states which effect output Diracs

 \leadsto apply further model reduction only on the impulse-unobservable part of the state

Impulse decoupling assumption

For each mode there exists a state decomposition $\mathbb{R}^{n_k} = \mathcal{X}_k^{\mathsf{imp}} \oplus \mathcal{X}_k^{\mathsf{imp}}$ s.t.:

- 1. $\mathcal{X}_{k-1}^{\operatorname{imp}} \subseteq \ker[\underline{C}_k^0/\underline{C}_k^1/\dots/\underline{C}_k^{\nu_k-2}]$
- 2. $\mathcal{X}_k^{\mathsf{imp}}$ and $\mathcal{X}_k^{\mathsf{imp}}$ are A_k -invariant
- 3. $J_k^z \mathcal{X}_{k-1}^{\mathsf{imp}} \subseteq \mathcal{X}_k^{\mathsf{imp}} \text{ and } J_k^z \mathcal{X}_{k-1}^{\mathsf{imp}} \subseteq \mathcal{X}_k^{\mathsf{imp}}$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Notation reset

$$\begin{split} \dot{x} &= A_k x + B_k u, & \text{on } (s_k, s_{k+1}), & x(t_0^-) = x_0 \in \mathcal{X}_0, \\ x(s_k^+) &= J_k^x x(s_k^-) + J_k^v v_k, & k \ge 0, \\ y &= C_k x, & \text{on } (s_k, s_{k+1}), \\ & & & \\ \dot{x} &= \hat{A}_k \hat{x} + \hat{B}_k u, & \text{on } (s_k, s_{k+1}), \\ \hat{x}(s_k^+) &= \hat{J}_k^x \hat{x}(s_k^-) + \hat{J}_k^v v_k, & k \ge 0, \\ y &= \hat{C}_k \hat{x}, & \text{on } (s_k, s_{k+1}), \end{split}$$

university of groningen	Introduction	Reduced realization	Impulse decoupling	Midpoint balanced truncation	Summary

Challenge: Two types of inputs

$$\begin{split} \dot{x} &= A_k x + B_k u, & \text{on } (s_k, s_{k+1}), & x(t_0^-) = x_0 \in \mathcal{X}_0, \\ x(s_k^+) &= J_k^x x(s_k^-) + J_k^v v_k, & k \ge 0, \\ y &= C_k x, & \text{on } (s_k, s_{k+1}), \end{split}$$
 (swODE)

Two types of input

- > Continuous input *u*: Effects $\dot{x} = A_k x + B_k u$ on (s_k, s_{k+1})
- > Discrete input v_k : Effects $x(s_k^+) = J_k^x x(s_k^-) + J_k^v v_k$ at switching times s_k

Lemma (Input decoupling)

$$x \text{ solves (swODE)} :\iff x = x_u + x_v \text{ where }$$

-) x_u solves (swODE) with $v_k = 0$ and $x_u(t_0^-) = 0$
-) x_v solves (swODE) with u = 0 and $x_v(t_0^-) = x_0$

 Reduced realization
 Impulse decoupling
 Midpoint balanced truncation

Continuous-time Gramians

Definition (Local time-dependent Gramians)

Local reachability Gramian: $P_k(t) := \int_{s_k}^t e^{A_k(\tau-s_k)} B_k B_k^\top e^{A_k^\top(\tau-s_k)} d\tau$ Local observability Gramian: $Q_k(t) := \int_t^{s_{k+1}} e^{A_k^\top(s_{k+1}-\tau)} C_k^\top C_k e^{A_k(s_{k+1}-\tau)}$

Definition (Global time-varying Gramians)

> Global reachability Gramian:

university of

 $P_0^{\sigma}(t) := P_0(t)$ for $t \in (t_0, s_1)$

 $P_{k}^{\sigma}(t) := e^{A_{k}(t-s_{k})} J_{k}^{x} P_{k-1}^{\sigma}(s_{k}^{-}) (J_{k}^{x})^{\top} e^{A_{k}^{\top}(t-s_{k})} + P_{k}(t) \text{ for } t \in (s_{k}, s_{k+1})$

> Global observability Gramian:

$$\begin{split} \boldsymbol{Q}_{\mathtt{m}}^{\sigma}(t) &:= \boldsymbol{Q}_{\mathtt{m}}(t) \text{ for } t \in (s_{\mathtt{m}}, t_{f}) \\ \boldsymbol{Q}_{k}^{\sigma} &:= e^{A_{k}^{\top}(s_{k+1}-t)} (J_{k}^{x})^{\top} \boldsymbol{Q}_{k+1}^{\sigma} J_{k}^{x} e^{A_{k}^{\top}(s_{k+1}-t)} + \boldsymbol{Q}_{k}(t) \text{ for } t \in (s_{k}, s_{k+1}) \end{split}$$

Summarv

Energy interpretation Gramians

Theorem (Reachability Gramian and input energy)

Consider (swODE) with $v_k = 0$ and $x_0 = 0$ and assume that $\mathbf{P}_k^{\sigma}(t^-)$ and $P_k(t)$ are positive definite for all $t \in (t_0, t_f)$. Then for all $x_t \in \mathbb{R}^{n_k}$:

$$\min_{\substack{u \text{ s.t.} \\ 0 \to x_t}} \int_{t_0}^t u(\tau)^\top u(\tau) \, \mathrm{d}\tau = x_t^\top (\boldsymbol{P}_k^{\sigma}(t^-))^{-1} x_t$$

Theorem (Observability Gramian)

Consider (swODE) with zero input. Then for all $t \in (t_0, t_f)$

$$\int_{t}^{t_f} y(\tau)^{\top} y(\tau) \,\mathrm{d}\tau = x(t^+)^{\top} \boldsymbol{Q}_k^{\sigma}(t^+) x(t^+)$$

Midpoint Gramians

Definition

- > Midpoint reachability Gramian: $\overline{P}_k^\sigma := P_k^\sigma(rac{s_k+s_{k+1}}{2})$
- > Midpoint observability Gramian: $\overline{{m Q}}_k^\sigma:={m Q}_k^\sigma(\frac{s_k+s_{k+1}}{2})$

Intuition/Assumption

States which are difficult to reach and observe at midpoint of interval (s_k, s_{k+1}) (quantified by \overline{P}_k^{σ} and \overline{Q}_k^{σ}) are also difficult to reach and observe on the whole (finite) time interval.

Midpoint balanced truncation

Use classical balanced truncation for each mode w.r.t. midpoint Gramians

Problem

Effect of discrete input v_k not yet considered!

Discrete time midpoint dynamics

$$\dot{x} = A_k x, \qquad \text{on } (s_k, s_{k+1}), \qquad x(t_0^-) = x_0 \in \mathcal{X}_0, \\ x(s_k^+) = J_k^x x(s_k^-) + J_k^v v_k, \qquad k \ge 0,$$
 (swODE)

Lemma (Solutions at midpoints)

The sequence $x_k^m := x(\frac{s_k+s_{k+1}}{2})$ of solution midpoints of (swODE) satisfy the linear (rectangular) discrete-time system:

$$x_{k+1}^m = A_k^m x_k^m + B_k^m v_k$$

where

$$A_k^m := e^{A_k \tau_k/2} J_k^x e^{A_{k-1} \tau_{k-1}/2} \in \mathbb{R}^{n_k \times n_{k-1}} \quad \text{ and } \quad B_k^m := e^{A_k \tau_k/2} J_k^v$$

Overall midpoint reachability Gramians

Definition (Discrete-time reachability Gramians)

$$\boldsymbol{P}_{-1}^m := \gamma X_0 X_0^\top \quad \text{ and } \quad \boldsymbol{P}_k^m = A_k^m \boldsymbol{P}_{k-1}^m A_k^m^\top + B_k^m B_k^m^\top$$

where X_0 is an orthogonal basis matrix of \mathcal{X}_0 .

Definition (Overall midpoint reachability Gramian)

$$\boldsymbol{P}_k^{\lambda} := \overline{\boldsymbol{P}}_k^{\sigma} + \lambda \boldsymbol{P}_k^m$$

Role of parameters γ and λ

- > γ : How difficult is it to reach the initial value?
- λ : Cost relation between discrete input v_k and continuous input v_k

Medium size academic example

-) (swODE) state dimensions: $n_0 = 50$, $n_1 = 60$, $n_2 = 40$
- > Coefficient matrices randomly chosen, single input and single output
- > Discrete input $v_k = (u(s_k), \dot{u}(s_k))$
-) Initial values subspace: $\mathcal{X}_0 = \mathbb{R}^5$
- > Reachability Gramian paramters: $\gamma=0.1$ and $\lambda=1$
- > Hankel singular values threshold: $\varepsilon_0 = \varepsilon_1 = \varepsilon_2 = 0.001$
- > Reduced system state dimensions: $\widehat{n}_0=8,\,\widehat{n}_1=10,\,\widehat{n}_2=6$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Summary: Model reduction for switched DAEs

- 1. Reduced realization (always possible, depends only on mode sequence)
 - Via Wong-sequences and Quasi-Weierstrass form rewrite (swDAE) as switched ODE with jumps and impulsive output of same size
 - Calculate extended reachability and restricted unobservability subspaces
 - Calculate weak Kalman decomposition and remove unreachable/unobservable parts
 - Define reduced jump maps, output impulses, initial value space and initial projector
- 2. Impulse decoupling (structural assumption, depends only on mode sequence)
 - Key observation: Dirac impulse = infinite peak
 do not change states which effect output Diracs
 - Assumption: States evolve in two disjoint invariant (mode-dependent) subspaces
- 3. Midpoint balanced truncation (invertability assumption on Gramians)
 - Solution = Solution for continuous input + Solution for discrete input
 - Calculate midpoint reachability Gramians for continuous and discrete time system
 - Calculate midpoint observability Gramians
 - Apply mode-wise balanced truncation via the midpoint Gramians

university of groningen

Remaining challenges and literature

Remaining challenges

- > Precise rank decisions required for reduced realization
- > Impulse decoupling assumption not constructive
- > Large-scale matrix-exponentials are required for midpoint balanced truncation
- > Switching signal must be known a-priori

References:

university of groningen

- Hossain & T. (2024): Model reduction for switched differential-algebraic equations with known switching signal, submitted to DAE-Panel
- $\,\,$ $\,$ Hossain & T. (2023): Reduced realization for switched linear systems with known mode sequence, Automatica
- Hossain & T. (2024): Midpoint based balanced truncation for switched linear systems with known switching signal, IEEE TAC