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Why DAEs?
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Electric circuit modelling

u

L

R C

Physical variables
voltage and current for each circuit element

Defining equations
- element behaviors (voltage-current relation)
- Kirchhoff laws (voltage-loops, current-nodes)

Basic circuit elements:
› Resistors: vR(t) = RiR(t)
› Capacitor: C d

dtvC(t) = iC(t)
› Inductor: L d

dt iL(t) = vL(t)
› Voltage source: vS(t) = u(t) (current iS free)

Kirchhoff laws:
› is = iL

› iL = iR + iC

› vs = vL + vR

› vR = vC

We already have arrived at a DAE model!
With x = (vR, iR, vC , iC , vL, iL, vS , iS) we have Eẋ = Ax+Bu
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Different circuit modeling frameworks

DAE-model:


0 0 0 0 0 0 0 0
0 0 C 0 0 0 0 0
0 0 0 0 0 L 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ẋ =


-1 R 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 -1 0
0 0 0 0 0 -1 0 1
0 -1 0 -1 0 1 0 0
-1 0 0 0 -1 0 1 0
1 0 -1 0 0 0 0 0

x+


0
0
0
1
0
0
0
0

u
y = [ 0 0 0 0 0 0 0 1 ]x

ODE-model:

d
dt

(
iL
vc

)
=
[

0 -1
L

1
C

-R
C

](
iL
vc

)
+
[

1
L

0

]
u

y =
[
1 0

](iL
vc

)

Transfer function: g(s) = R+ Cs

CLs2 + LRs+ 1

Which is the best?
None! All have advantages and disadvantages.
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Pros and Cons of DAE formulation
0 0 0 0 0 0 0 0
0 0 C 0 0 0 0 0
0 0 0 0 0 L 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ẋ =


-1 R 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 -1 0
0 0 0 0 0 -1 0 1
0 -1 0 -1 0 1 0 0
-1 0 0 0 -1 0 1 0
1 0 -1 0 0 0 0 0

x+


0
0
0
1
0
0
0
0

u
DAE-models: Advantages
› Most natural and intuitive way to model (just write down all first-principal equations)
› Inputs do not need to be specified a priori (  Eẋ = Ax with rectangular E,A)
› Connecting two DAE models is trivial (just add new algebraic constraints)
› Sudden structural changes (switches or faults) can be modeled easily

DAE-models: Disadvantages
› Solution theory more complicated
› Not so many standard tools available for numerical solutions, control design, ...
› Harder to work with manually
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DAEs are not ODEs0 1 0
0 0 0
0 0 0

 ẋ =

1 0 0
0 1 0
0 0 0

x+

f1
f2
f3


ẋ2 = x1 + f1 x1 = −f1 − ḟ2

0 = x2 + f2 x2 = −f2

0 = f3 no restriction on x3

Key differences to ODEs
› For fixed inhomogeneity, initial values cannot be chosen arbitrarily

(x1(0) = −f1(0)− ḟ2(0), x2(0) = f2(0))
› For fixed inhomogeneity, solution not uniquely determined by initial value (x3 free)
› Inhomogeneity not arbitrary

• structural restrictions (f3 = 0)
• differentiability restrictions (ḟ2 must be well defined)
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Equivalence of matrix pairs and DAEs
Definition (Equivalence of matrix pairs)
(E1, A1), (E2, A2) are called equivalent :⇐⇒ (E2, A2) = (SE1T, SA1T )

short: (E1, A1) ∼= (E2, A2) or (E1, A1)
S,T∼= (E2, A2)

Equivalence and solution behavior
For (E1, A1) ∼= (E2, A2) and B2 = SB1, C2 = C1T we have:

(x, u, y) solves
{
E1ẋ = A1x+B1u

y = C1x
x=Tz⇐⇒ (z, u, y) solves

{
E2ż = A2z +B2u

y = C2z

Goal: Reveal inner structure of DAEs
Find S and T such that (SET, SAT ) has simple structure
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Four types of DAEs

Definition
› (E,A) is of type ODE :⇐⇒ (E,A) ∼= (I, J)
› (E,A) is of type nDAE :⇐⇒ (E,A) ∼= (N, I), N nilpotent (i.e. Nν = 0)
› (E,A) is of type uDAE :⇐⇒ (E,A) ∼= (diag(E1, . . . , Ek),diag(A1, . . . , Ak)),

where (Ei, Ai) =
([ 1 0. . . . . .

1 0

]
,

[ 0 1. . . . . .
0 1

])
underdetermined prototypes

› (E,A) is of type oDAE :⇐⇒ (E,A) ∼= (diag(E1, . . . , Ek),diag(A1, . . . , Ak)),

where (Ei, Ai) =

 0

1
. . .
. . . 0

1

 ,
 1

0
. . .
. . . 1

0

 overdetermined prototypes

Every DAE can be decoupled in these four types!   Quasi-Kronecker form
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Quasi-Kronecker form
Theorem (Quasi-Kronecker Form, Berger & T. ’12,’13)
For any E,A ∈ R`×n, ∃ invertible S ∈ R`×` and invertible T ∈ Rn×n:

(E,A)
S,T∼=





EU

EJ

EN

EO


,



AU

AJ

AN

AO




where
› (EU , AU ) is of type uDAE (underdetermined part)
› (EJ , AJ ) is of type ODE (ODE part)
› (EN , AN ) is of type nDAE (nilpotent part)
› (EO, AO) is of type oDAE (overdetermined part)
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Regularity
Definition
(E,A) is regular :⇐⇒ ` = n and det(sE −A) 6≡ 0

Theorem (Regularity characterizations)
The following statements are equivalent:
› (E,A) is regular

› (E,A) ∼=
([
I 0
0 N

]
,

[
J 0
0 I

])
(quasi-Weierstrass form)

› Eẋ = Ax+Bu has solution for all u and is uniquely determined by x(0)

Regularity means existence and uniqueness of solutions
BUT not for all initial conditions x(0) = x0!

Example:
[
1 0
0 0

]
ẋ =

[
0 0
0 1

]
x+

[
1
0

]
u   regular, but x2(t) = 0 for all t
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Jump and flow

x1

x2

x(t)

x3

x(0+)

x(0−)

Questions
› How to find consistency space?
› What determines the jump x(0−) 7→ x(0+)?

Stephan Trenn (Jan C. Willems Center, U Groningen) Switched differential algebraic equations: Jumps and impulses (11 / 40)



Introduction Solution properties of DAEs Switched DAEs Extension to nonlinear case

Wong-sequences and Wong limits
Definition (Wong sequences)
For E,A ∈ R`×n let

V0 := Rn, Vi+1 := A−1(EVi), i = 0, 1, 2, . . .
W0 := {0}, Wj+1 := E−1(AWj) , j = 0, 1, 2, . . .

Here MS := {Mx |x ∈ S} and M−1S := {x |Mx ∈ S}

Wong limits

V0 ⊃ V1 ⊃ . . . ⊃ Vi∗ = Vi∗+1 = Vi∗+2 = . . .

W0 ⊂W1 ⊂ . . . ⊂Wj∗ = Wj∗+1 = Wj∗+2 = . . .

Then we can define: V∗ :=
⋂
i∈N Vi = Vi∗ and W∗ :=

⋃
j∈NWj = Wj∗
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Motivation of first Wong sequence
Definition (Consistency space)
The consistency space of Eẋ = Ax is

C(E,A) := {x0 ∈ Rn | ∃ sol. x of Eẋ = Ax with x(0) = x0}

Inductive refinement of consistency space
› Initially no knowledge   V0 = Rn ⊇ C(E,A)   trivial constraint ẋ ∈ V0

› Eẋ = Ax constraints x to x ∈ A−1{Eẋ} ⊆ A−1(EV0) =: V1 ⊇ C(E,A)

› ẋ(t) := limh→0
x(t+h)−x(t)

h ∈ V1

› Eẋ = Ax constraints x to x ∈ A−1{Eẋ} ⊆ A−1(EV1) =: V2 ⊇ C(E,A)

› ẋ ∈ V2   x ∈ A−1(EV2) =: V3 ⊆ C(E,A) ...
› V∗ ⊇ C(E,A), in fact, it turns out that V∗ = C(E,A)
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Regularity and Wong limits
Theorem (Ilchmann et al. 2012)
› (E,A) is regular ⇐⇒ V∗ ⊕W∗ = Rn and EV∗ ⊕AW∗ = R`

› T := [V,W ], S = [EV,AW ]−1 where imV = V∗ and imW = W∗ gives QWF

(SET, SAT ) =
([
I 0
0 N
]
,
[
J 0
0 I

])
Definition (Index, consistency projector and diff./imp. selectors)
› Index of regular (E,A) := nilpotency index of N (hence: index one ⇐⇒ N = 0)

› Consistency projector Π(E,A) := T

[
I 0
0 0

]
T−1

› Differential selector Πdiff
(E,A) := T

[
I 0
0 0

]
S

› Impulse selector Πimp
(E,A) := T

[
0 0
0 I

]
S
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Explicit solution formula for regular DAEs

Eẋ = Ax+Bu (E,A)
S,T∼=
([
I
N

]
,
[
J
I

])
Adiff := Πdiff

(E,A)A, Bdiff := Πdiff
(E,A)B, Eimp := Πimp

(E,A), Bimp := Πimp
(E,A)B

Theorem (Solution formula, T. 2012)
(x, u) is a smooth solution of Eẋ = Ax+Bu ⇐⇒

x(t) = eA
difftΠ(E,A)x(0) +

∫ t

0
eA

diff(t−s)Bdiffu(s)ds−
ν−1∑
i=0

(Eimp)iBimpu(i)(t)

⇐⇒ x = xdiff ⊕ ximp where

ẋdiff = Adiffx+Bdiffu, xdiff(0) ∈ im Π(E,A), xdiff(t) ∈ V∗

Eimpẋimp = ximp +Bimpu, ximp(t) ∈W∗

Stephan Trenn (Jan C. Willems Center, U Groningen) Switched differential algebraic equations: Jumps and impulses (15 / 40)



Introduction Solution properties of DAEs Switched DAEs Extension to nonlinear case

Consistency projector

“Corollary” (Response to inconsistent initial value)
For u = 0 we have

x(0+) = Π(E,A)x(0−), Π(E,A) = T
[
I 0
0 0
]
T−1 = ΠW∗

V∗

Index 1: Jump uniquely determined by x(0+) ∈ V∗ and x(0+)−x(0−) ∈ kerE = W∗

Other jump rules
Wong-sequence based jump rule coincides with (Costantini et al. 2013):

› passivity based energy minimization jump rule (Frasca et al. 2010)
› Conservation of charge/flux (Liou 1972)
› Laplace transform approach (Opal & Vlach 1990)
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Motivating example

−
+

Lu(·) v

i

t < 0

−
+

Lu(·) v

i

t ≥ 0

inductivity law: L d
dt i = v

switch dependent: 0 = v − u 0 = i

→ switched differential-algebraic equation
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Motivating example

−
+

Lu(·) v

i

t < 0

−
+

Lu(·) v

i

t ≥ 0

x = [i, v]>[
L 0
0 0

]
ẋ =

[
0 1
0 1

]
x+

[
0
−1

]
u

x = [i, v]>[
L 0
0 0

]
ẋ =

[
0 1
1 0

]
x+

[
0
0

]
u

→ switched differential-algebraic equation
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Motivating example

−
+

Lu(·) v

i

t < 0

−
+

Lu(·) v

i

t ≥ 0

E1ẋ = A1x+B1u
on (−∞, 0)

E2ẋ = A2x+B2u
on [0,∞)

→ switched differential-algebraic equation
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Solution of circuit example
t < 0 t ≥ 0

v = u i = 0
L d
dt i = v v = L d

dt i

Solution (assume constant input u):

t

v(t)

0 t

i(t)

0

u

δ
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Observations

−
+

Lu(·) v

i

t < 0

−
+

Lu(·) v

i

t ≥ 0

Observations
› x(0−) 6= 0 inconsistent for E2ẋ = A2x+B2u

› unique jump from x(0−) to x(0+)
› derivative of jump = Dirac impulse appears in solution
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Dirac impulse is “real”

Dirac impulse
Not just a mathematical artifact!

Drawing: Harry Winfield Secor, public domain Foto: Ralf Schumacher, CC-BY-SA 3.0
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Definition
Switch → Different DAE models (=modes)

depending on time-varying position of switch

Definition (Switched DAE)
Switching signal σ : R→ {1, . . . , N} picks mode at each time t ∈ R:

Eσ(t)ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t)
y(t) = Cσ(t)x(t) +Dσ(t)u(t)

(swDAE)

Attention
Each mode might have different consistency spaces
⇒ inconsistent initial values at each switch
⇒ Dirac impulses, in particular distributional solutions
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Definition (Switched DAE)
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Distribution theory - basic ideas

Distributions - overview
› Generalized functions
› Arbitrarily often differentiable
› Dirac-Impulse δ is “derivative” of Heaviside step function 1[0,∞)

Two different formal approaches
1) Functional analytical: Dual space of the space of test functions

(L. Schwartz 1950)
2) Axiomatic: Space of all “derivatives” of continuous functions

(J. Sebastião e Silva 1954)

Stephan Trenn (Jan C. Willems Center, U Groningen) Switched differential algebraic equations: Jumps and impulses (23 / 40)



Introduction Solution properties of DAEs Switched DAEs Extension to nonlinear case

Distributions - formal
Definition (Test functions)
C∞0 := {ϕ : R→ R |ϕ is smooth with compact support}

Definition (Distributions)
D := {D : C∞0 → R |D is linear and continuous}

Definition (Regular distributions)
f ∈ L1,loc(R→ R): fD : C∞0 → R, ϕ 7→

∫
R f(t)ϕ(t)dt ∈ D

Definition (Derivative)
D′(ϕ) := −D(ϕ′)

Dirac Impulse at t0 ∈ R
δt0 : C∞0 → R, ϕ 7→ ϕ(t0)

(1[0,∞)D)′(ϕ) = −
∫
R 1[0,∞)ϕ

′ = −
∫∞

0 ϕ′ = −(ϕ(∞)− ϕ(0)) = ϕ(0)
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Multiplication with functions
Definition (Multiplication with smooth functions)
α ∈ C∞ : (αD)(ϕ) := D(αϕ)

Eσẋ = Aσx+Bσu

y = Cσx+Dσu
(swDAE)

Coefficients not smooth
Problem: Eσ, Aσ, Cσ /∈ C∞

Observation, for σ[ti,ti+1) ≡ pi, i ∈ Z:
Eσẋ = Aσx+Bσu

y = Cσx+Dσu
⇔ ∀i ∈ Z :

(Epi ẋ)[ti,ti+1) = (Apix+Bpiu)[ti,ti+1)

y[ti,ti+1) = (Cpix+Dpiu)[ti,ti+1)

BUT: Distributional restriction impossible to define (T. 2022)
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Dilemma

Switched DAEs
› Examples: distributional solutions
› Multiplication with non-smooth

coefficients
› Or: Restriction on intervals

Distributions
› Distributional restriction not possible
› Multiplication with non-smooth

coefficients not possible
› Initial value problems cannot be

formulated

Underlying problem
Space of distributions too big.
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Piecewise smooth distributions
Define a suitable smaller space:

Definition (Piecewise smooth distributions DpwC∞ , T. 2009)

DpwC∞ :=

fD +
∑
t∈T

Dt

∣∣∣∣∣∣
f ∈ C∞pw,
T ⊆ R locally finite,
∀t ∈ T : Dt =

∑nt
i=0 a

t
iδ

(i)
t


fD

ti−1

Dti−1

ti

Dti

ti+1

Dti+1
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Properties of DpwC∞

› C∞pw “⊆” DpwC∞ and D ∈ DpwC∞ ⇒ D′ ∈ DpwC∞
› Well definded restriction DpwC∞ → DpwC∞

D = fD +
∑
t∈T

Dt 7→ DM := (fM )D +
∑

t∈T∩M
Dt

› Multiplication with α =
∑
i∈Z αi[ti,ti+1) ∈ C∞pw well defined:

αD :=
∑
i∈Z

αiD[ti,ti+1)

› Evaluation at t ∈ R: D(t−) := f(t−), D(t+) := f(t+)

› Impulses at t ∈ R: D[t] :=
{
Dt, t ∈ T
0, t 6∈ T

Application to (swDAE)
(x, u) solves (swDAE) :⇔ (swDAE) holds in DpwC∞
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Relevant questions

Eσẋ = Aσx+Bσu

y = Cσx+Dσu
(swDAE)

Piecewise-smooth distributional solution framework
x ∈ DnpwC∞ , u ∈ DmpwC∞ , y ∈ DppwC∞

› Existence and uniqueness of solutions?
› Jumps and impulses in solutions?
› Conditions for impulse free solutions?
› Control theoretical questions

• Stability and stabilization
• Observability and observer design
• Controllability and controller design
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Existence and uniqueness of solutions for (swDAE)

Eσẋ = Aσx+Bσu (swDAE)

Basic assumptions

› σ ∈ Σ0 :=
{
σ : R→ {1, . . . , N}

∣∣∣∣∣σ is piecewise constant and
σ
∣∣
(−∞,0) is constant

}
.

› (Ep, Ap) is regular ∀p ∈ {1, . . . , N}, i.e. det(sEp −Ap) 6≡ 0

Theorem (T. 2009)
Consider (swDAE) satisfying the basic assumptions.Then

∀ u ∈ DmpwC∞ ∀ σ ∈ Σ0 ∃ solution x ∈ DnpwC∞

and x(0−) uniquely determines x.
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Inconsistent initial values
Eẋ = Ax+Bu, x(0) = x0 ∈ Rn

Initial trajectory problem = special switched DAE

x(−∞,0) = x0
(−∞,0)

(Eẋ)[0,∞) = (Ax+Bu)[0,∞)
(ITP)

Corollary (Consistency projector and Dirac impulses)
Unique jumps and impulses for ITP, in particular, for u = 0,

x(0+) = Π(E,A)x
0(0−)

x[0] = −
ν−2∑
i=0

(Eimp)i+1x0(0−)δ(i)
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Sufficient conditions for impulse-freeness

Question
When are all solutions of homogenous (swDAE) Eσẋ = Aσx impulse free?

Note: Jumps are OK.

Lemma (Sufficient conditions)
› (Ep, Ap) all have index one (i.e. (sEp −Ap)−1 is proper)
⇒ (swDAE) impulse free

› all consistency spaces of (Ep, Ap) coincide
⇒ (swDAE) impulse free
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Characterization of impulse-freeness

Theorem (Impulse-freeness, T. 2009)
The switched DAE Eσẋ = Aσx is impulse free ∀σ ∈ Σ0

⇔ Eq(I −Πq)Πp = 0 ∀p, q ∈ {1, . . . , N}

where Πp := Π(Ep,Ap), p ∈ {1, . . . , N} is the p-th consistency projector.

Remark
› Index-1-case ⇒ Eq(I −Πq) = 0 ∀q
› Consistency spaces equal ⇒ (I −Πq)Πp = 0 ∀p, q
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Nonlinear Wong-sequence and geometric index
Nonlinear DAE: E(x)ẋ = F (x), x ∈ X

Definition (Nonlinear Wong-sequence)
› M c

0 := X or M c
0 := U0 open neighborhood of some xp ∈ X (initial submanifold)

› Mk :=
{
x ∈M c

k−1
∣∣F (x) ∈ E(x)TxM c

k−1
}
, where TxM c

k−1 denotes the
tangent-space of M c

k−1 at x
› Choose M c

k ⊆Mk to be smooth connected submanifold (of same dimension)

Theorem (Chen & T. 2021)
Under some local constant rank assumptions:
› ∃ minimal k∗ ∈ N : M c

k∗ = M c
k∗+1 (geometric index)

› k∗ equals the well-known differential index (Gear 1988)
› M c

k∗ equals locally the set of consistent initial values
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Impulse free jumps
E(x)ẋ = F (x), x ∈ X with consistency space Sc ⊂ X,

Definition (Impulse free jump)
Let x0 ∈ X \ Sc (inconsistent initial value).
A C1 curve J : [0, a]→ X is called impulse-free jump path ⇐⇒

J(0) = x0, J(a) ∈ Sc, ∀τ ∈ [0, a] : d
dτ J(τ) ∈ kerE(J(τ))

Atttention
τ is not a time-paramter, but a path-parameter,
in particular, a > 0 doesn’t have to be small!
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Index one and impusle-free jump path

Theorem (Index one end unique jump map, Chen &T. 22)
Assume index one, some local constant rank assumption and a reachability
assumption, then

∀x−0 ∈ U \ Sc ∃ impulse-free jump-path J : [0, a]→ U

Furthermore the following statements are equivalent:
1. The map x−0 7→ x+

0 is unique (non-linear consistency “projector”)
2. kerE is involutive
3. The system is equivalent to an index one nonlinear Weierstrass form:[

I 0
0 0

](
v̇
ẇ

)
=
(
f(v)
w

)
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Some comments on jump path
Unique consistency projector vs. nonunique jump-path
Although the map x−0 7→ x+

0 is unique, the jump-path J : [0, a]→ U connection both
is not unique!
  Normalize via e.g. shortest path and

∣∣∣ d
dτ J(τ)

∣∣∣ = 1 (future research)
or: limit of singular perturbation system (Chen & T. 22)

Jump-map invariant under coordinate transfmation
Jump map “invariant” under coordinate transformation z = ψ(x) and left
multiplication with Q(x), i.e.

x−0 7→ x+
0 ⇐⇒ z−0 = ψ(x−0 ) 7→ z+

0 = ψ(x+
0 )

Major advantage compared to existing approaches, e.g. in Matlab’s decic and in
Liberzon & T. 12.
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Next steps: sliding jumps in PWA-DAEs

Jump paths for linear DAEs
=⇒ straight lines

Consider piecewise-affine DAEs:

Eiẋ = Aix+ bi, x ∈ Xi

where
⋃
iXi = Rn

Question
What happens if jump path wants
to leave active region?
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Summary
› Linear DAEs: Structural analysis

• Wong sequences and Quasi-Kronecker form
• Regularity ⇐⇒ Existence and uniqueness of solutions

› Inconsistent initial values
• Piecwise-smooth distributions as solution space
• Jumps and Dirac impulses

› Switched DAEs (time-dependent)
• Existence and uniqueness of solutions
• Impulse-freeness condition

› Nonlinear DAEs
• Nonlinear Wong-sequence =⇒ geometric index
• Jump-path (coordinate free definition)
• Index one =⇒ unique jump-map
• Outlook: State-dependent switched DAEs
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