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System class
Discrete-time Inhomogeneous Linear Switched Singular Systems

Eσ(k)x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k)

Why?
› Dynamic and time-variant Leontief model, cf. Luenberger 1977,1978
› Discretization of switched DAEs e.g. from electrical circuits with switches
› Mathematical curiosity

Challenges
› Solution theory (existence, uniqueness, causality)
› Controllability / reachability notions and characterizations
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Solvability issues
No canonical solvability definition
Classical “∀x0 ∈ Rn and ∀u(·) there exists a unique x(·)” is too restrictive and
causality is not addressed!

Example (non-switched): Non-causality and non-existence[ 0 1
0 0
]
x(k + 1) = x(k)−

[ 0
1
]
u(k) has (unique!) solution: x(k) =

(
u(k + 1)
u(k)

)
› Solution not causal w.r.t. input!
› Initial value x(0) cannot be chosen independently from input
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Solvability issues
No canonical solvability definition
Classical “∀x0 ∈ Rn and ∀u(·) there exists a unique x(·)” is too restrictive and
causality is not addressed!

Example (homogeneous): Non-existence due to switching
Mode 1: x(k + 1) = x(k) active on [0, ks) with arbitrary initial value x0
Mode 2: 0 · x(k + 1) = x(k) active on [ks,∞) for some ks > 0

› Each mode has a regular matrix pair (Ei, Ai), i.e. existence and uniqueness of
solutions of non-switched system is guaranteed (for consistent initial values)

› When switching from mode 1 to 2 at k = ks there is no solution for any
(consistent) initial value x0 6= 0, because
• Mode 1 at k = ks − 1 yields x(ks) = x(ks − 1) = x0 6= 0
• Mode 2 at k = ks yields 0 = x(ks)
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Solvability definition

Eσ(k)x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k)

Define: Ŝi := A−1
i (im[Ei, Bi]) = {ξ ∈ Rn : Aiξ ∈ im[Ei, Bi]}

Definition (Solvability for arbitrary switching signals)
An InhSLSS is solvable ⇐⇒ ∀k0, k1 ∈ N, k1 > k0, ∀xk0 ∈ Ŝσ(k0),

∀(u(k0), u(k0 + 1), ..., u(k1 − 1)), and ∀σ,
∃! a solution on [k0, k1] with x(k0) = xk0 .

Remarks
› Local solutions: Solvability on any interval [k0, k1] is required
› Consistent initial value: All values in Ŝσ(k0) are considered as initial values
› Strict causality: x(k1) is not allowed to depend on u(k1)
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Solvability characterization
Theorem (Necessary and Sufficient Condition for Solvability)
An InhSLSS is solvable ⇐⇒

E+
j Aj Ŝj + imE+

j Bj ⊆ kerEj ⊕ Ŝi ∀i, j ∈ {0, 1, ..., p}

If solvable, all solutions are also solutions of the surrogate system

x(k + 1) = Φ̂σ(k+1),σ(k)x(k) + Θ̂σ(k+1),σ(k)u(k)

where
› Φ̂i,j = ΠkerEj

Ŝi

E+
j Aj and Θ̂i,j = ΠkerEj

Ŝi

E+
j Bj

› ΠkerEj

Ŝi

is the canonical projector from kerEj ⊕ Ŝi to Ŝi.

In particular, x(k) ∈ Ŝσ(k) for all k ∈ N.
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Non-solvable example
Example A
Consider an InhSLSS composed of:

(E0, A0, B0) =
([ 1 0

0 0
]
,
[ 1 0

0 1
]
,
[ 1

0
])

(E1, A1, B1) =
([ 0 0

0 1
]
,
[ 1 0

0 1
]
,
[ 0

1
])

Geometric computations provide

kerE0 = span
( 0

1
)

kerE1 = span
( 1

0
)

Ŝ0 = span
( 1

0
)

Ŝ1 = span
( 0

1
)

› E+
i AiŜi + im[E+

i Bi] ⊆ kerEi ⊕ Ŝi, ∀i = 0, 1
  individual modes (non-switched) are solvable

› Ŝ1 ∩ kerE0 6= {0} and also Ŝ0 ∩ kerE1 6= {0}
  switched system is not solvable
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Solvable example
Example B

(E0, A0, B0) = (E1, A1, B1) =([−1 1 0
1 −1 −1
0 0 0

]
,
[ 1 −1 1

0 1 1
0 −1 0

]
,
[−1

0
0

]) ([−1 0 1
1 −1 0
0 0 0

]
,

[
0 0 −1
0 −1 0
1 1 −1

]
,
[ 1

−1
0

])
E+
j Aj Ŝj + im[E+

j Bj ] ⊆ kerEj ⊕ Ŝi, ∀i, j = 0, 1   switched system is solvable

Surrogate system matrices:

Φ̂0,0 =
[−1 1 −1

0 0 0
−1 0 −2

]
, Φ̂1,0 =

[
−1 1

2 − 3
2

0 − 1
2 − 1

2
−1 0 −2

]
, Φ̂0,1 =

[ 0 −1 0
0 0 0
0 −1 −1

]
, Φ̂1,1 =

[
0 −1 −1
0 0 −1
0 −1 −2

]
,

Θ̂0,0 =
[ 1

0
1

]
, Θ̂1,0 =

[ 1
0
1

]
, Θ̂0,1 =

[−1
0
0

]
, Θ̂1,1 =

[ 0
1
1

]
.
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Solvability for general time-varying system

Consider time-varying singular system:

Ekx(k + 1) = Akx(k) +Bku(k) (tvLSS)

Corollary
(tvLSS) is solvable ⇐⇒ E+

k AkŜk + imE+
k Bk ⊆ kerEk ⊕ Ŝk+1 ∀k

Solvability and regularity of (Ek, Ak)
Regularity of (Ek, Ak) is neither necessary nor sufficient for solvability!
  crucial difference to the continuous time case
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Reachability
Single Switch Switching Signal:

σ(k) =
{

0, 0 ≤ k < ks,

1, ks ≤ k ≤ K. k

σ(k)
(E0, A0, B0)

(E1, A1, B1)

ks−1 ks K0

P0 := Ŝ0 ∩R0(ks − 1)

P1 := Ŝ1 ∩
(

Φ̂K−ks

1 Φ̂1,0P0 + im Φ̂K−ks

1,0 Θ̂1,0 + R1(K − ks)
)

where Ri(k) = imRi(k) = im
[
Θ̂i, Φ̂iΘ̂i, · · · , Φ̂k−1

i Θ̂i

]
, i = 0, 1.

Theorem (Necessary and Sufficient Condition for Reachability)
Let Rσ

[0,K] be the reachable subspace on [0,K] w.r.t. σ of a solvable InhSLSS. Then

P1 = Rσ
[0,K]

In particular, the system is reachable ⇐⇒ P1 = Ŝ1.
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Controllability
Single Switch Switching Signal:

σ(k) =
{

0, 0 ≤ k < ks,

1, ks ≤ k ≤ K. k

σ(k)
(E0, A0, B0)

(E1, A1, B1)

ks−1 ks K0

Q1 := Ŝ1 ∩
[
Φ̂K−ks

1

]−1
R1(K − ks)

Q0 := Ŝ0 ∩
[
Φ̂1,0Φ̂k

s−1
0

]−1 [
Q1 + Φ̂1,0R0(ks − 1) + im Θ̂1,0

]
Theorem (Controllability space)
Let Cσ[0,K] be the controllable subspace on [0,K] w.r.t. σ of a solvable InhSLSS. Then

Cσ[0,K] = Q0

In particular, the system is controllable (to zero) ⇐⇒ Q0 = Ŝ0.

Stephan Trenn (Jan C. Willems Center, U Groningen) Inhomogeneous Singular Linear Switched Systems (9 / 10)



Introduction Solution Theory Reachability and Controllability Summary

Summary

Inhomogeneous switched linear singular systems in discrete time

Eσ(k)x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k)

› Novel solution characterization for arbitrary switching signals
› Solvable system   surrogate system

x(k + 1) = Φ̂σ(k+1),σ(k)x(k) + Θ̂σ(k+1),σ(k)u(k)

› For fixed switching signal (or general time-varying case):
Regularity (and index 1) of (Ei, Ai) neither necessary nor sufficient!

› Surrogate system can be utilized to characterize reachability and controllability
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