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Abstract

We propose a novel learning-based tracking controller for nonlinear systems of arbitrary relative degree. Here, we use
sample-and-hold input signals and derive a bound on the required sampling frequency. While the controller guarantees
tracking within prescribed, possibly time-varying bounds on the error signal, system data is collected at runtime to
continuously improve the controller performance. Furthermore, a safe region is defined, in which the control signal can
even be used to (persistently) excite the system and, thus, to enhance the learning outcome. A particular strength
is the flexibility to incorporate different learning paradigms, e.g., reinforcement learning or non-parametric predictive
controllers based on Willems et al.’s so-called fundamental lemma, which is demonstrated by numerical simulations.
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1. Introduction

In the rapidly evolving field of control systems, the grow-
ing complexity and the deluge of collected data have given
rise to an increasing application of data-driven approaches
and learning techniques. While learning-based controllers
often exhibit superior performance compared to classical
designs, their applicability in safety-critical domains such
as medical applications and human-robot interaction is im-
peded by a critical deficiency in ensuring rigorous con-
straint satisfaction, see e.g. [1]. We refer to [2] and [3] for
an overview of the challenges employing learning-based ap-
proaches to safety-critical systems.

To address the challenge of ensuring constraint satisfac-
tion while leveraging the benefits of learning-based con-
trol, the field of safe learning has gained prominence. Sev-
eral safety frameworks have been proposed [4, 5], employ-
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ing various approaches like control barrier functions [6],
Hamilton-Jacobi reachability analysis [7], Model Predic-
tive Control (MPC) [8], and Lyapunov stability [9]. Pre-
dictive safety filters, as exemplified in [10, 11], verify con-
trol input signals against a model to ensure compliance
with prescribed constraints. In [12], a feedback controller
is proposed to compensate for model inaccuracies. A key
feature is that the model can be updated (or even replaced)
at runtime while being employed in an MPC algorithm.
In this paper, we introduce a novel output-feedback con-
troller designed to safeguard online learning through the
incorporation of a Zero-order Hold (ZoH) sampled-data
controller. The proposed controller rigorously ensures out-
put tracking of a given reference signal within prescribed,
possibly time-varying performance bounds – at every time
instant meaning that also the intersampling behavior is
fully taken into account. At the core of our work is the
utilization of the adaptive high-gain control methodol-
ogy known as funnel control, see the recent survey [13]
and the references therein. This model-free adaptive con-
troller guarantees the satisfaction of output constraints,
yet its assumption of continuous availability of the sys-
tem output are challenged by the discrete nature of mea-
surements prevalent in practical applications with digital
measurement devices. We address this disparity, present-
ing a two-component sampled-data controller with ZoH.
The controller ensures the sustained adherence to pre-
scribed output constraints over an infinite time horizon
while the learning component of the controller enhances
its performance dynamically, as illustrated through exam-
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ples involving data-driven MPC and Reinforcement Learn-
ing (RL).

Although funnel control has been successfully imple-
mented in a sampled-data system with Zero-order Hold
for a sufficiently small sampling time in [14], we are not
aware of any results rigorously showing that the output
signal stays within the prescribed boundaries for ZoH fun-
nel control. Navigating the delicate balance between the
need for a sufficiently large feedback gain for output track-
ing and avoidance of overshooting (that could violate error
boundaries within one sampling period), we derive uniform
bounds on sampling rates and control inputs that are suffi-
cient to meet output constraints within closed-loop scenar-
ios based on some knowledge (bounds on the dynamics)
about the system. To the best of our knowledge, in funnel
control uniform bounds on the input signal are only known
if the region of feasible initial values is further restricted
and the dynamics are known [15]. While there have been
several attempts to deal with the closely related issue of
input saturation [16, 17, 18] and bang-bang controller de-
signs [19] exhibiting similarities to our approach, an anal-
ysis of combining a ZoH with funnel control has not been
conducted.

The controller proposed in this article includes an “acti-
vation threshold” to set the input to zero for small track-
ing errors when operating without a learning component,
akin to approaches in [20] and in [21] using an activa-
tion function, the λ-tracker [22], or more broadly event-
and self-triggered controller designs, see e.g. [23] and ref-
erences therein. In conjunction with a data-driven learning
algorithm, our controller temporarily interrupts the learn-
ing process when the activation threshold is surpassed,
resorting to the pure feedback control with ZoH compo-
nent. The versatility of our proposed framework is show-
cased through its application to prominent data-driven
predictive control schemes, specifically data-driven MPC
and RL.

The data-driven MPC scheme builds upon Willems et
al.’s so-called fundamental lemma [24], allowing a non-
parametric description of the system’s input-output be-
havior based on measurement data, see also [25, 26] and
the references therein. The fundamental lemma states
that, for discrete-time linear time-invariant controllable
systems, the input-output trajectories of finite length lie in
the column-space of a suitable Hankel matrix constructed
directly from measured input-output data. This result
paved the way in the development of data-driven MPC
schemes, where the prior model is replaced by measured
data, cf. [27, 28, 29]. Therefore, the fundamental lemma is
subject to recent substantial research in the field of data-
driven control. In [30, 26, 31], it was extended to stochastic
descriptor systems. Extensions towards continuous-time
and non-linear systems were discussed, e.g., in [32, 33, 34]
and [35, 36], respectively.

Reinforcement learning has proven to be a successful
technique for solving complex and high-dimensional con-
trol problems, e.g. single- and multi-agent games [37],

robotics [38], and autonomous vehicles [39]. The control
objective is usually to either reach a target system state
or to maximize the cumulative expected reward, similar
to solving an optimal control problem. Through applying
trial-and-error control actions to the system while collect-
ing data and information during the closed-loop system
operation, RL techniques are able to find a control policy
to achieve the desired control task without prior system
knowledge. The main difficulty here is to overcome the
exploration-exploitation trade off, i.e., finding a balance
between trying out new control actions in order to gather
more information about the unknown system (exploration)
and applying control signals that are supposed to yield
the best immediate outcomes based on current knowledge
(exploitation). A comprehensive survey on applying RL
to control systems can be found in [40]. See also the text-
book [41] for an overview of reinforcement learning, and
for its relationship to optimal control see [42].

The present article is organized as follows. In Section 2 we
specify the control problem under consideration, introduce
the system class in Section 2.1, and present some auxil-
iary results in Section 2.2. In Section 3 we introduce the
feedback controller component, derive an explicit upper
bound on the sampling time τ > 0, and provide and rigor-
ously proved feasibility result for the ZoH feedback law.
Motivated by a numerical simulation presented in Sec-
tion 4, we extend the proposed feedback ZoH controller by
learning-based predictive control algorithms in Section 5,
namely data-driven MPC based on Willems’ fundamental
lemma in Section 5.1, and reinforcement learning-based
control in Section 5.2. We prove feasibility of the com-
bined controllers, and demonstrate the superior control
performance via numerical simulations. The more involved
proofs, including the proofs of our main results Theo-
rems 3.1 and 5.1, are relegated to Appendix A to make
the results more accessible.

Notation: N,R is the set of natural and real numbers,

resp. R≥0 := [0,∞). The standard inner product on

Rn is denoted by ⟨·, ·⟩, and ∥x∥ :=
√

⟨x, x⟩ for x ∈ Rn.

Bρ := { x ∈ Rn | ∥x∥ < ρ }. Cp(V,Rn) is the linear space

of p-times continuously differentiable functions f : V → Rn,

where V ⊂ Rm and p ∈ N ∪ {∞}; C(V,Rn) := C0(V,Rn).

For an interval I ⊂ R, L∞(I,Rn) is the space of measur-

able essentially bounded functions f : I → Rn with norm

∥f∥∞ := ess supt∈I ∥f(t)∥. L∞
loc(I,R

n) is the space of locally

bounded measurable functions. W k,∞(I,Rn) is the Sobolev

space of all k-times weakly differentiable functions f : I → Rn

with f, . . . , f (k) ∈ L∞(I,Rn), Lip(R≥0,R
m) is the space of

Lipschitz continuous functions f : R≥0 → Rm. For a finite se-

quence (fk)
N−1
k=0 in Rn of length N we define the vectorization

f[0,N−1] :=
[
f⊤
0 . . . f⊤

N−1

]⊤ ∈ RnN .
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2. Control objective, system class, and prelimi-
nary results

We consider nonlinear continuous-time control systems

y(r)(t) = f
(
d(t),T(y, . . . , y(r−1))(t)

)
+ g

(
d(t),T(y, . . . , y(r−1))(t)

)
u(t),

y|[−σ,0] = y0 ∈ Cr−1([−σ, 0],Rm),

(1)

where d ∈ L∞(R≥0,R
p) represents an unknown bounded

disturbance, f ∈ C(Rp × Rq,Rm) is a drift term, the
function g ∈ C(Rp × Rq,Rm×m) is the input gain func-
tion, and the operator T is causal, locally Lipschitz and
satisfies a bounded-input bounded-output property; the
operator is characterized in detail in Definition 2.1, and
the class of systems under consideration is introduced in
Definition 2.2. We emphasize that many physical phe-
nomena such as backlash and relay hysteresis, and non-
linear time delays can be modeled by means of the opera-
tor T (σ corresponds to the initial delay), cf. [15, Sec. 1.2].
Moreover, systems with infinite-dimensional internal dy-
namics can be represented by (1). For a control function
u ∈ L∞

loc(R≥0,R
m), system (1) has a solution in the sense

of Carathéodory, meaning a function x : [−σ, ω) → Rrm,
ω > 0, with x|[−σ,0] = (y0, ẏ0, . . . , (y0)(r−1)) such that
x|[0,ω) is absolutely continuous and satisfies ẋi(t) = xi+1(t)
for i = 1, . . . , r − 2, and ẋr(t) = f(d(t),T(x(t))) +
g(d(t),T(x(t)))u(t) (which corresponds to (1) with y = x1)
for almost all t ∈ [0, ω). A solution x is said to be maxi-
mal, if it does not have a right extension which is also a
solution.

The control objective is to design a zero-order hold control
strategy, i.e., for sampling time τ > 0,

u(t) ≡ u ∀ t ∈ [ti, ti + τ), i ∈ N,

where the data are collected at uniform sample times
ti = i · τ ∈ R≥0, which achieves for a system (1) output
tracking of a given reference yref ∈W r,∞(R≥0,R

m) within
pre-specified error bounds. To be more precise, the track-
ing error t 7→ e(t) := y(t) − yref(t) shall evolve within the
prescribed performance funnel

Fφ = { (t, e) ∈ R≥0 ×Rm | φ(t) ∥e∥ < 1 } .

This funnel is determined by the function φ belonging to

G :=

{
φ ∈W 1,∞(R≥0,R)

∣∣∣∣ inf
s≥0

φ(s) > 0

}
,

see Figure 1 for an illustration.

The specific application usually dictates the con-
straints on the tracking error and thus indicates suit-
able choices for φ. To achieve the control objective,
we introduce auxiliary error variables. For φ ∈ G,
yref ∈W r,∞(R≥0,R

m), a bijection α ∈ C1([0, 1), [1,∞)),

t

•

inf
t≥0

1/φ(t)

(0, e(0)) 1/φ(t)

Figure 1: Error evolution in a funnel Fφ with boundary 1/φ(t); the
figure is based on [43, Fig. 1], edited for present purpose.

t ≥ 0, and ξ := (ξ1, . . . , ξr) ∈ Rrm we define the error vari-
ables

e1(t, ξ) := φ(t)(ξ1 − yref(t)), (2)

ek+1(t, ξ) := φ(t)(ξk+1 − y
(k)
ref (t))+α(∥ek(t, ξ)∥2)ek(t, ξ),

for k = 1, . . . , r − 1, where e1(t) is the tracking error e(t)
normalised with respect to the error boundary φ(t). A
suitable choice for the bijection is α(s) := 1/(1−s). Using
the short notation er(t) := er(t, (y, ẏ, . . . , y

(r−1))(t)), we
propose the following controller structure for i ∈ N

∀t ∈ [ti, ti + τ) : u(t) =

{
0, ∥er(ti)∥ < λ,

−β er(ti)
∥er(ti)∥2 , ∥er(ti)∥ ≥ λ,

(3)

where λ ∈ (0, 1) is an activation threshold, and β > 0 is
the input gain. In Section 2.2 we show er ∈ B1. Thus, the
control function u is uniformly bounded since we have

∀t ≥ 0 : ∥u(t)∥ ≤ β

λ
.

Our designed controller can be considered to be similar to
funnel control, see [15, 43, 44], in terms of its ability to
achieve output reference tracking within predefined error
boundaries, as well as concerning the used intermediate er-
ror variables (2). On the other hand, contrary to the stan-
dard funnel controller, the feedback law (3) is a normal-
ized linear sample-and-hold output feedback with uniform
sampling rate. Since it involves an activation threshold, it
has also similarity with the zero-or-hold controller in [20].
A further essential difference to continuous funnel control
is that in the present approach the control objective is
achieved by using estimates about the system dynamics,
while in funnel control no such information is used to the
price that the maximal control effort cannot be estimated
a-priori.

2.1. System class

In this section we formally introduce the system class
under consideration. Prior to that, we state assumptions
on the system parameters and characterize the operator T.

Assumption 1. A bound D > 0 for the unknown distur-
bance d ∈ L∞(R≥0,R

p) with ∥d∥∞ ≤ D is known.
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Assumption 2. The matrix valued function g ∈ C(Rp ×
Rq,Rm×m) is strictly positive definite, that is

∀x ∈ Rp+q ∀z ∈ Rm \ {0} : ⟨z, g(x)z⟩ > 0.

Note that we could also allow the case of strictly nega-
tive g by changing the sign in (3). Next, we provide the
defining properties of the class of operators to which T
in (1) belongs.

Definition 2.1. For n, q ∈ N and σ ≥ 0, the set T n,q
σ

denotes the class of operators T : C([−σ,∞),Rn) →
L∞
loc(R≥0,R

q) for which the following properties hold:

i) Causality: ∀ y1, y2 ∈ C([−σ,∞),Rn) ∀ t ≥ 0:

y1|[−σ,t] = y2|[−σ,t] =⇒ T(y1)|[0,t] = T(y2)|[0,t].

ii) Local Lipschitz: ∀ t ≥ 0 ∀ y ∈ C([−σ, t];Rn)
∃∆, δ, c > 0 ∀ y1, y2 ∈ C([−σ,∞);Rn) with y1|[−σ,t] =
y = y2|[−σ,t] and ∥y1(s)− y(t)∥ < δ, ∥y2(s)− y(t)∥ <
δ for all s ∈ [t, t+∆]:

ess sup
s∈[t,t+∆]

∥T(y1)(s)−T(y2)(s)∥≤c sup
s∈[t,t+∆]

∥y1(s)− y2(s)∥.

iii) Bounded-input bounded-output (BIBO): ∀ c0 > 0
∃ c1 > 0 ∀ y ∈ C([−σ,∞),Rn):

sup
t∈[−σ,∞)

∥y(t)∥ ≤ c0 =⇒ sup
t∈[0,∞)

∥T(y)(t)∥ ≤ c1.

While the first property (causality) introduced in Defi-
nition 2.1 is quite intuitive, the second (locally Lipschitz)
is of a more technical nature, required to guarantee ex-
istence and uniqueness of solutions. The third property
(BIBO) can be motivated from a practical point of view as
an infinite-dimensional extension of minimum-phase. Var-
ious examples for the operator T can be found in [44, 15].

With Assumptions 1 and 2 and Definition 2.1 we for-
mally introduce the system class under consideration.

Definition 2.2. For m, r ∈ N a system (1) belongs
to the system class Nm,r, written (d, f, g,T) ∈ Nm,r,
if, for some p, q ∈ N and σ ≥ 0, the follow-
ing holds: d ∈ L∞(R≥0,R

p) satisfies Assumption 1,
f ∈ C(Rp ×Rq,Rm), g satisfies Assumption 2, and
T ∈ T rm,q

σ .

Note that all linear minimum-phase systems with rela-
tive degree r ∈ N are contained in the system class Nm,r,
cf. [15].

2.2. Auxiliary results

In order to formulate the main result about feasibility of
the proposed ZoH controller, we introduce some notation
and establish two auxiliary results in this section. We use
the shorthand notation

χ(y)(t) := (y(t), ẏ(t), . . . , y(r−1)(t)) ∈ Rrm

for y ∈W r,∞(R≥0,R
m) and t ∈ R≥0. To guarantee that

the tracking error e = y−yref evolves within the boundary
of Fφ, we want to address the problem of ensuring that
χ(y)(t) is at every time t ≥ 0 an element of the set

Dr
t :=

{
ξ ∈ Rrm

∣∣∣∣ ∥ek(t, ξ)∥ < 1, k = 1, . . . , r − 1,
∥er(t, ξ)∥ ≤ 1

}
.

We define the set of all functions ζ ∈ Cr([−σ,∞),Rm)
which coincide with y0 on the interval [−σ, 0] and for which
χ(y)(t) ∈ Dr

t on the interval [t0, δ) for δ ∈ (0,∞]:

Yr
δ :=

{
ζ ∈ Cr−1([−σ,∞),Rm)

∣∣∣∣ ζ|[−σ,0] = y0,
∀ t ∈ [0, δ) : χ(ζ)(t) ∈ Dr

t

}
.

We aim to infer the existence of bounds for the error vari-
ables ek defined in (2) for all functions in Yr

δ independent
of the functions f , g, the disturbance d, the operator T,
and the applied control u in system dynamics (1). To
this end, we introduce the following constants εk, µk. Let
ε0 = 0 and γ̄0 := 0. Successively for k = 1, . . . , r−1 define

ε̂k∈(0, 1) s.t. α(ε̂2k)ε̂k=
∥∥∥∥ φ̇φ

∥∥∥∥
∞
(1+α(ε2k−1)εk−1)+1+γ̄k−1,

εk := max{∥ek(0)∥, ε̂k} < 1, (4)

µk :=

∥∥∥∥ φ̇φ
∥∥∥∥
∞
(1+α(ε2k−1)εk−1)+1+α(ε2k)εk+γ̄k−1,

γ̄k := 2α′(ε2k)ε
2
kµk + α(ε2k)µk.

With these constants we may derive the following result.

Lemma 2.1. Let yref ∈ W r,∞(R≥0,R
m), φ ∈ G, and

y0 ∈ Cr−1([−σ, 0],Rm) with χ(y0) ∈ Dr
0 be given. Then

there exist constants εk, µk > 0 defined in (4) such that
for all δ ∈ (0,∞] and all ζ ∈ Yr

δ the functions ek defined
in (2) satisfy

i) ∥ek(t, χ(ζ)(t))∥ ≤ εk < 1,

ii) ∥ d
dtek(t, χ(ζ)(t))∥ ≤ µk,

for all t ∈ [0, δ) and for all k = 1, . . . , r − 1.

The proof is relegated to the Appendix A. Next, we
derive bounds on the right-hand side of system (1).

Lemma 2.2. Consider (1) with (d, f, g,T) ∈ Nm,r. Let
yref ∈ W r,∞(R≥0,R

m), φ ∈ G, y0 ∈ Cr−1([−σ, 0],Rm)
with χ(y0)(0) ∈ Dr

0, and D > 0 from Assumption 1. Then,
there exist constants fmax, gmax, gmin > 0 such that for
every δ ∈ (0,∞], ζ ∈ Yr

δ , d ∈ L∞(R≥0,R
p) with ∥d∥∞ ≤

D, z ∈ Rn\ {0}, and t ∈ [0, δ)

fmax ≥
∥∥f((d,T(χ(ζ)))|[0,δ))

∥∥
∞ ,

gmax ≥
∥∥g((d,T(χ(ζ)))|[0,δ))

∥∥
∞ ,

gmin ≤
〈
z, g((d,T(χ(ζ)))|[0,δ)(t))z

〉
∥z∥2

.

(5)

The proof is relegated to the Appendix A.
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3. Sampled-data feedback controller

With the introductory results presented in the previous
section, we are now in a position to formulate a feasibility
result about the ZoH feedback controller. To phrase it,
Theorem 3.1 yields that the ZoH controller (3) achieves
the control objective discussed in Section 2 for a system (1)
with (d, f, g,T) ∈ Nm,r, if the sampling time τ satisfies
the following condition (6).

Theorem 3.1. Given a reference yref ∈ W r,∞(R≥0,R
m)

and a funnel function φ ∈ G consider a system (1) with
(d, f, g,T) ∈ Nm,r. With the constants given in (4), set

κ0:=

∥∥∥∥ φ̇φ
∥∥∥∥
∞
(1+α(ε2r−1)εr−1)+∥φ∥∞(fmax+∥y(r)ref ∥∞)+ γ̄r−1,

define the input gain

β >
2κ0

gmin infs≥0 φ(s)
,

and the constant κ1 := κ0 + ∥φ∥∞ gmaxβ. Assume that
the initial condition satisfies χ(y0)(0) ∈ Dr

0, i.e., the error
variables from (2) (here we omit the dependence on χ(y) =
(y, . . . , y(r−1))) satisfy ∥ek(0)∥ < 1 for all k = 1, . . . , r−1,
and er(0) ≤ 1; and, for an activation threshold λ ∈ (0, 1),
let the sampling time satisfy

0 < τ ≤ min

{
κ0

κ2
1

,
1− λ

κ0

}
. (6)

Then the ZoH controller (3) applied to a system (1) yields
that ∥ek(t)∥ < 1 for all k = 1, . . . , r − 1 and ∥er(t)∥ ≤ 1
for all t ≥ 0. This is initial and recursive feasibility of
the ZoH control law (3). In particular, the tracking error
satisfies ∥e(t)∥ < 1/φ(t) for all t ∈ R≥0.

The proof of Theorem 3.1 is relegated to the Ap-
pendix A.

The parameter λ ∈ (0, 1) in (3) is an activation threshold
(cf. event-triggered control [23]), chosen by the designer,
which divides the tracking error in a safe and a safety crit-
ical region. A large value of λ implies that the controller
will be inactive for a wide range of values of the last error
variable, which, in case of relative degree one, means in-
activity for a wide range of the tracking error, while still
guaranteeing transient accuracy.

The sampling time τ in (6) strongly depends on the
evolution of the funnel function and on the reference yref .
This gives the possibility of dynamically adapting the sam-
pling time, e.g., in the case of setpoint transition, where
the reference is constant y0ref in the first period and con-
stant y1ref ̸= y0ref in the last period. At the setpoints the
sampling time can be larger than during the transition.

An explicit bound on the control input can be computed
in advance, since ∥u∥∞ ≤ β/λ. This bound depends on
the system parameters derived in Lemma 2.2. However,
precise knowledge about the functions f , g and the oper-
ator T is not necessary. Mere (conservative) estimates on
the bounds fmax, gmax, and gmin as in (5) are sufficient.

Remark 3.1. The results in Theorem 3.1 are also valid
for ∥er(0)∥ = 1. This is in contrast to continuous time fun-
nel control, where all r error variables (2) initially have to
be bounded away from 1 to guarantee boundedness of the in-
put. To illustrate this, consider ẏ(t) = u(t), and yref = 0.
Let φ ∈ G and choose the bijection α(s) = 1/(1 − s). Ac-

cording to [15] the control is given by u(t) = − y(t)
1−φ(t)2y(t)2 .

Now, for a sequence of initial values yj(0), j ∈ N, such
that φ(0)|yj(0)| → 1 for j → ∞, the sequence of cor-
responding initial controls uj(0) is unbounded. On the
other hand, for the same sequence of initial values the
controller (3) yields a bounded signal ∥uZoH∥∞ ≤ β/λ.
Moreover, such a sequence of initial values requires ever
smaller sampling time, if a continuous funnel controller is
implemented, cf. Section 4.

Remark 3.2. Note that u = 0 is not necessary for
∥er(ti)∥ < λ; however, according to the current proof,
u ̸= 0 will decrease τ . For instance, applying the con-
trol value u(ti−1) of the last sampling period is feasi-
ble, or the control value may be chosen according to
the data informativity framework [45]. Such a data-
driven control is safeguarded by the proposed controller (3),
similar to the combined controller [12]. We will ex-
ploit this observation in Section 5, where we propose a
two-component data-driven/learning-based controller with
u ̸= 0 for ∥er(tk)∥ < λ.

4. Numerical example: pure ZoH feedback

To illustrate the controller (3) we consider the mass-
on-car system [46]. On a car with mass m1, to which a
force F = u can be applied, a ramp is mounted on which
a second mass m2 moves passively, see Figure 2.

F

y

a=const

s

Figure 2: Mass-on-car system. The figure is based on [46, 15].

The second mass is coupled to the car by a spring-
damper combination, and the ramp is inclined by a fixed
angle ϑ ∈ (0, π/2). The equations of motion are given by[

m1 +m2 m2 cos(ϑ)
m2 cos(ϑ) m2

](
z̈(t)
s̈(t)

)
+

(
0

ks(t) + dṡ(t)

)
=

(
u(t)
0

)
,

(7a)
where z is the car’s horizontal position, and s is the relative
position of the second mass. As output the second mass’
horizontal position is measured

y(t) = z(t) + cos(ϑ)s(t). (7b)
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Figure 3: Outputs, reference, and error tolerance.
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Figure 4: Controls.

For simulation we choose the parameters ϑ = π/4, m1 = 1,
m2 = 2, spring constant k = 1, and damping d = 1.
A short calculation yields that for these parameters sys-
tem (7) has relative degree r = 2, and as outlined in [15,
Sec. 3] it can be represented in the form (1) with BIBO
internal dynamics. We simulate output reference tracking
of the signal yref = 0.4 sin(π2 t) for t ∈ [0, 1], transport-
ing the mass m2 on the car from position 0 to 0.4 within
chosen error boundaries ±0.15. We choose the activation
threshold λ = 0.75. With these parameters a brief calcu-
lation yields fmax ≤ 1.4, gmin = gmax = 0.25, and hence,
the sampling time τ ≤ 4.8 · 10−3, and the gain β ≥ 27.55,
which guarantee success of the tracking task. Choosing the
smallest β this already gives ∥uZoH∥∞ ≤ β/λ ≤ 36.73. We
start with a small initial tracking error y(0) = −0.0925,
and ẏ(0) = ẏref(0). We compare the controller (3) with
the continuous funnel controller [15]; corresponding sig-
nals have the subscript FC, e.g., uFC. Moreover, simulat-
ing the ZoH controller was even successful for τ = 2.0·10−2

and β = 4; corresponding signals have a circumflex, e.g.,
ŷZoH. Figure 3 shows the system’s output and the refer-
ence plus/minus error tolerance. Note that although the
control input is discontinuous, the output signal is continu-
ous due to integration. All controllers achieve the tracking
task. In Figure 4 the controls are depicted. The ZoH input
consists of separated pulses - for two reasons. First, the
control law (3) uses (undirected) worst-case estimations
gmin, gmax and fmax to compute the input signal. Hence,
the control signal is at many time instances unnecessary
large; however, it is ensured that the control signal is suf-
ficiently large for all times. Second, (3) involves an ac-
tivation threshold λ, i.e., the controller is inactive, if the
tracking error is small. If at sampling the tracking error is
above this threshold, the applied input is sufficiently large
(due to the worst case estimations) to push the error back
below the threshold. Thus, at the next sampling instance
the input is determined to be zero. The worst-case esti-
mations and the ZoH setting make it inevitable that the
control signal looks peaky. The control signal ûZoH (black)

is also peaky, but not so large in magnitude (smaller β) and
with a larger width (larger τ). Overall, ûZoH is compara-
ble with uFC. The success of the simulation with these pa-
rameters gives rise to the hope of finding better estimates
for sufficient control parameters β, τ in future work. Im-
proving the control performance is also topic of Section 5.
Note that the control signal uFC also has a large peak at
the beginning, where ∥uFC∥∞ ≈ 100. For simulation, we
used Matlab, for integration of the dynamics the routine
ode15s with AbsTol = RelTol = 10−6, with adaptive step
size. Integrating the funnel controller [15] ode15s yields
that the maximal step size is ≈ 3.99 · 10−2 and the mini-
mal step size is ≈ 1.21 ·10−6. This means, the largest step
is about eight times larger than τ , and the smallest time
step is about 4000 times smaller than τ .

5. Two-component data-driven controller

As can be seen from the numerical simulation in Sec-
tion 4, the control signal uZoH exhibits undesirably large
peaks. This is due to the worst case estimations in the
controller design. In this section, a basic idea for improv-
ing the control signal is explained using two example tech-
niques.

These ideas are based on the observation made in Re-
mark 3.2, namely if ∥er(tk)∥ < λ, then any bounded in-
put u can be applied to the system. In particular, data-
driven control schemes are applicable, which often show
superior performance due to collection of “system knowl-
edge” in terms of input-output data. The idea of a com-
bined control scheme is illustrated in Figure 5.

System (1)

uZoH from (3)
(safety critical region)

Learning-based control
(safe region)

−u y yref

∥er(tk)∥ ≥ λ

∥er(tk)∥ < λ

e = y − yref ,
ek as in (2)

Figure 5: Schematic structure of the combined controller.

Since the calculations in the proof of Theorem 3.1 in-
volve worst case estimates, the application of u(t) ̸= 0 for
t ∈ [tk, tk + τ), if ∥er(tk)∥ < λ requires adaption of the
sampling time τ . This adaption is formulated in the fol-
lowing feasibility result for the switched control strategy

∀t ∈ [tk, tk+1) : u(t) =

{
udata, ∥er(tk)∥ < λ,

−β er(tk)
∥er(tk)∥2 , ∥er(tk)∥ ≥ λ.

(8)

Theorem 5.1. Given a reference yref ∈ W r,∞(R≥0,R
m)

and a funnel function φ ∈ G consider a system (1) with
(d, f, g,T) ∈ Nm,r. Let the constants given in (4), and
κ0, κ1 and β be given as in Theorem 3.1. Assume that the
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initial condition satisfies χ(y0)(0) ∈ Dr
0 and, for an acti-

vation threshold λ ∈ (0, 1), and umax ≥ 0 let the sampling
time satisfy

0 < τ ≤ min

{
κ0

κ2
1

,
1− λ

κ0 + ∥φ∥∞gmaxumax

}
. (9)

If ∥udata∥∞ ≤ umax, then the combined controller (8)
applied to a system (1) yields that ∥ek(t)∥ < 1 for all
k = 1, . . . , r − 1 and ∥er(t)∥ ≤ 1 for all t ≥ 0. This is
initial and recursive feasibility of the controller (8). In
particular, the tracking error satisfies ∥e(t)∥ < 1/φ(t) for
all t ∈ R≥0.

Proof. By adapting the sampling time τ the statement fol-
lows with the same proof as for Theorem 3.1.

With Theorem 5.1 at hand, we may now consider the
following extensions of the control law (3), resulting in a
combined controller (8).

Remark 5.1. We emphasise that none of the control
schemes applied if ∥er(tk)∥ < λ are required to achieve
any tracking guarantees. The only requirement is that the
control signal udata satisfies ∥udata∥∞ ≤ umax for given
umax > 0. In particular, this means that any predictive
controller applied in the safe region satisfies input con-
straints given by umax. Moreover, a control scheme applied
in the safe region is not even supposed to be suitable for
the system to be controlled. Since the sampling time is suf-
ficiently small, the feedback law −βer(tk)/∥er(tk)∥2 main-
tains the tracking guarantees in case of failure of udata.

Remark 5.2. The input udata in (8) is not necessarily
supposed to be of data-driven or learning-based type. A
sample-and-hold version of the funnel control law [15], i.e.,

udata(t) = −α(∥er(tk)∥2)er(tk), t ∈ [tk, tk + τ) (10)

is feasible with umax = λ/(1 − λ2). This choice approxi-
mates the continuous funnel control signal on a fixed time
grid. Since this discrete-time funnel controller is safe-
guarded by the ZoH controller in (8), none of the issues
regarding feasibility of this sampled-and-hold funnel con-
trol signal (cf. the considerations in [14]) are present. If a
nominal model of the system is available, another combined
controller strategy would be to include a pre-computed feed-
forward signal, cf. [47], with u = ufeedforward +uZoH where
the feedforward controller is active in the safe as well in the
safety-critical region. The controller (8) would interpret
this additional signal as a “helpful” disturbance (“helpful”
since it will reduce the control effort of the feedback), and
constraint satisfaction is guaranteed.

5.1. Data-driven MPC using Willems’ fundamental
lemma

In this section we propose a control regime for the safe
region established by a data-driven MPC scheme based
on the fundamental lemma by Willems et al. [24]. We

consider a surrogate model for the system (1) given by a
discrete-time linear time-invariant system in minimal, i.e.
controllable and observable, state-space realization

xk+1 = Axk +Buk (11a)

yk = Cxk +Duk (11b)

with matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and
D ∈ Rm×m. Except the dimensionm, which is determined
by the input and output dimension of the system (1), the
parameters A,B,C,D are assumed to be unknown.

Next we recall the property of persistency of excitation
and the fundamental lemma for controllable systems by
Willems et al. [24], which are pivotal elements in the subse-
quent discussion. A sequence u = (uk)

N−1
k=0 with uk ∈ Rm,

k = 0, . . . , N − 1, is called persistently exciting of order L,
L ∈ N, if the Hankel matrix

HL(u) :=

 u0 . . . uN−L

...
. . .

...
uL−1 . . . uN−1

 ∈ RmL×(N−L+1) (12)

has full row rank.

Lemma 5.1 (Fundamental lemma). Let (û, ŷ) =
((ûk)

N−1
k=0 , (ŷk)

N−1
k=0 ) be an input-output trajectory of length

N , N ∈ N, of the system (11) such that û is persistently
exciting of order L+n, where L ∈ N and n is the state di-
mension of system (11). Then (u, y) = ((uk)

L−1
k=0 , (yk)

L−1
k=0 )

is an input-output trajectory of length L of system (11) if
and only if there is ν ∈ RN−L+1 such that[

u[0,L−1]

y[0,L−1]

]
=

[
HL(û)
HL(ŷ)

]
ν. (13)

The fundamental lemma allows a complete non-
parametric, data-driven description of the system’s finite-
length input-output trajectories based only on measured
input-output data.

Remark 5.3. Note that persistency of excitation order L̃
implies persistency of excitation of lower order L, L ≤ L̃.
This fact might be exploited in situations where the state
dimension n of a suitable surrogate model (11) is unclear
but can be estimated, for instance, from physical interpre-
tations of the underlying system (1). At worst overesti-
mation of n results in an increased data demand for the
signal (û, ŷ), while the representation (13) is maintained.

Next we introduce an data-driven MPC scheme lever-
aged by the fundamental lemma , Lemma 5.1. To this end
let (û, ŷ) = ((ûk)

N−1
k=0 , (ŷk)

N−1
k=0 ) be measured input-output

data, where û is persistently exciting of order L + 2n. In
every discrete time step tk we aim to solve the optimal
control problem

minimize
(u,y,ν,σ)

k+L∑
i=k+1

(
∥yi−yref,i∥2Q+∥ui∥2R

)
+λν∥ν∥2+λσ∥σ∥2

(14a)
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with (u, y) = ((ui)
k+L
i=k−n+1, (yi)

k+L
i=k−n+1) subject to[

u[k−n+1,k+L]

y[k−n+1,k+L]

]
=

[
HL+n(û)
HL+n(ŷ)

]
ν, (14b)[

u[k−n+1,k]

y[k−n+1,k]

]
=

[
ũ[k−n+1,k]

ỹ[k−n+1,k]

]
+ σ, (14c)

∥ui∥ ≤ umax, i = k + 1, . . . , k + L (14d)

on a finite horizon L > 0, given a past input-output trajec-
tory (ũ, ỹ) = ((ũi)

k
i=k−n, (ỹi)

k
i=k−n), where ũi = u(ti), ỹi =

y(ti) with u, y denote the input and output of system (1),
respectively. The weighting matrices Q,R ∈ Rm×m in
the stage cost in (14a) are assumed to be symmetric and
positive-definite. As a key difference to standard MPC
the state-space model (11) is replaced in the optimal con-
trol problem (14) by the equivalent non-parametric de-
scription (14b) based on Lemma 5.1. The constraint (14c)
serves as initial condition which together with the observ-
ability of surrogate model (11) imposes alignment on the
latent state, i.e. x[k−n+1,k] = x̃[k−n+1,k] for the state se-

quences (xi)
k
i=k−n+1 and (x̃i)

k
i=k−n−1 corresponding to the

input-output trajectories ((ui)
k
i=k−n+1, (yi)

k
i=k−n+1) and

((ũi)
k
i=k−n+1, (yi)

k
i=k−n+1). In order to take into account

model mismatches due to nonlinearity of the underlying
system (1) we introduce a slack variable σ ∈ R2nm and
the cost functional in (14a) involves a regularization in
terms of ν with weighting parameters λν > 0, λσ > 0.
Further, we impose input constraints in (14d). The data-
driven MPC scheme is summarized in Algorithm 1.

In practice the observed past trajectory (ũ, ỹ) sampled
from the system (1) up to a certain point in time may
serve as source for the data (û, ŷ) deployed in the system
description (14c) via Hankel matrices. With this choice
more and more data is available with increasing time and,
hence, in this way a higher persistency of excitation order
can be achieved. As an extension to the above proposed
data-driven MPC strategy one may allow for a prediction
horizon L, which increases over time whenever the updated
data is persistently exciting of sufficient order.

The ZoH feedback law (3) involves the recursively de-
fined auxiliary error variables ej defined in (2), which in
particular involve higher-order derivatives of both the sys-
tem output y and the reference signal yref . To take the
structure of these ej into account in the data-driven MPC
scheme, we aim to include information on these deriva-
tives in the cost function. However, since the data-driven
framework is formulated for discrete-time models (11), we
use finite differences to approximate the output’s deriva-

tives, i.e., we use yi−yi−1

τ =: y
[1]
i . Higher-order deriva-

tives are approximated accordingly, and we denote with

y
[ℓ]
i = 1

τℓ

∑ℓ
j=0(−1)j

(
j
ℓ

)
yi−j for yi being the output of (11)

the backwards finite difference approximation of the ℓth-
order derivative. Furthermore, we want to take into ac-
count the weighting of the higher-order derivatives. To
see, how the derivatives are to be weighted, we explicate
the error variable e3 (we omit the time argument) using

Algorithm 1 Data-driven MPC with error guarantees

PE ← false;
for k = 0, 1, . . . do

get latest sample point (ũk, ỹk);
calculate ∥er(tk)∥;
if not PE then // learn the dynamics

update data (û, ŷ), ûk ← ũk, ŷk ← ỹk;
if û is p.e. of order L+ n then

PE ← true;
store HL+n(û), HL+n(ŷ);

if ∥er(tk)∥ < λ then
if PE then // MPC feedback

uact ← solve(OCP (14));
else // random input action

uact ← random (bounded by umax);
else // sampled-data feedback

uact ← −β er(tk)

∥er(tk)∥2 ;

apply uact as ZoH input action to the system (1)

the bijection α(s) = 1/(1− s), and obtain

e3 = φë+
1

1− ∥e2∥2
e2

= φë+
1

1− ∥e2∥2
(
φė+

1

1− ∥e1∥2
e1

)
= φ

(
ë+

1

1− ∥e2∥2︸ ︷︷ ︸
≥1

ė+
1

1− ∥e2∥2︸ ︷︷ ︸
≥1

1

1− ∥e1∥2︸ ︷︷ ︸
≥1

e
)
.

(15)

From this it is clear that the weighting is decreasing with
increasing order of the derivative. Combining the regular-
isation in (14) and the previous reasoning, we propose the
following cost functional

k+L∑
i=k+1

(r−1∑
ℓ=0

φ(ti)µℓ∥y[ℓ]i − y
(ℓ)
ref (ti)∥

2
Q + ∥ui∥2R

)
+ λν∥ν∥2 + λσ∥σ∥2,

(16)

where µ0 ≥ µ1 ≥ · · · ≥ µr−1 ≥ 0, and φ(ti) is the fun-
nel function evaluated at t = ti. The weights µℓ reflect
the weighting structure in the auxiliary error variables,
see (15). Note that 1/(1− s2) = 1 if and only if s = 0, i.e.,
it is reasonable to order the factors µℓ strictly.

In the following we demonstrate the data-enabled MPC
scheme described in Algorithm 1 on the example sys-
tem (7) with fixed prediction horizon L = 20. Because
of the linearity of system (7) we waive the slack variable
in the optimal control problem (14), i.e. we set σ = 0. We
set umax = 10 which yields τ ≤ 2.8 · 10−3 according to (9).
As weights we choose Q = 103 ·I, R = 10−4 ·I, λν = 10−6.
We consider a constant funnel given by φ(t) = 0.15. The
output tracking, the control signal and the auxiliary error
variables are depicted in Figure 6, Figure 7 and Figure 8
in blue, respectively. In the beginning, there is random
control in order to generate a persistently exciting input
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signal. Then, at t = 0.2728 persistency of excitation is
reached and MPC produces a control signal, however, the
error e2 exceeds the safety region. Hence, the ZoH sig-
nal becomes active. In the subsequent phase the system
is governed by the MPC component, while the signal is
saturated at −umax. Again the error variable e2 leaves the
the safety region at t = 0.3770 and the ZoH component
takes over, resulting in a large control input, which is ap-
plied for one sampling interval. Afterwards, MPC again
is sufficient to keep e2 and e1 below λ and maintains the
tracking goal.

In a second numerical experiment we extend the MPC
strategy towards higher auxiliary error variables in the cost
functional and an adaptively increasing prediction horizon.
The performance is depicted in Figure 6, Figure 7 and Fig-
ure 8 in red. Starting with L = 1 the prediction horizon is
allowed to increases over time until L = 20. Further, we
set Q = 103 · I, R = 10−4 · I, λν = 10−6 as before, and
µ0 = 1

φ(0) , µ1 = 1
φ(0) · 10

−2, where the funnel is constant

with φ(t) = 0.15. In comparison to the first experiment
one observes that the enhanced MPC strategy suffices to
safeguard both error variables and, therefore, at no time
the ZoH component becomes active. The tracking perfor-
mance in both runs is of similar quality.
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Figure 6: Outputs, reference, and boundaries.
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Figure 7: Controls.

5.2. Reinforcement Learning: Q-table control

Using the example of Q-learning, we show, in this sec-
tion, how the controller (3) can be combined with model-
free reinforcement learning (RL) techniques to improve the
control signal using the control strategy (8). Q-learning
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Figure 8: Error variables.

was first developed in [48] and has since become a corner-
stone of reinforcement learning and foundation for many
other learning algorithms [49].

To explain the basic concepts of Q-learning, we consider
a nonlinear discrete-time control system of the form

xk+1 = f
(
xk, uk

)
(17)

where x ∈ X ⊂ Rn is the state of the system, u ∈ U ⊂ Rm

is the control input, and f : X × U → X is an unknown
function. Given an initial state x0 ∈ X , we denote for a
control sequence u = (uk) ∈ UN, the solution of (17) by
x(·;x0, u). We further assume that there exists a bounded
function r : X × U → R, which is also called reward func-
tion. Note that we do not assume the function r to be
known but that merely at every step k ∈ N of the sys-
tem (17) the reward r(xk, uk) can be obtained. The ob-
jective is to maximise the cumulative future reward, i.e.
to solve the optimisation problem

maximize
u∈UN

∞∑
k=0

γkr(x(k;x0, u), uk) (18)

with discount factor γ ∈ (0, 1) which determines the rela-
tive importance of long-term versus short-term future re-
wards. The so called Q-function Q : X × U → R defined
by

Q(x̂, û) := r
(
x̂, û

)
+ γ sup

u∈UN

∞∑
k=0

γkr(x(k; f(x̂, û), u), uk).

(19)
plays a key role for solving the optimisation problem.

Theorem 5.2 ([42, Sec. 1.1]). Consider the system (17).
If π : X → U is a feedback control with

π(x) ∈ argmax
u∈U

Q(x, u) (20)

for all x ∈ X , then π applied to the system (17) is a solu-
tion to the optimisation problem (18).

If the Q-function is known, then an optimal feedback
control π, in the sense of solving the optimisation prob-
lem (18), can be calculated. Its simplicity makes the op-
timal feedback control, also known as optimal policy, very
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appealing. This however gives rise to the problem of ap-
proximating or learning the Q-function (19). While there
exist various modern approaches addressing the prob-
lem [49], the original Q-learning algorithm from [48] takes
the form Algorithm 2.

Algorithm 2 Q-learning algorithm

1. Initialise j = 0, Q̃0(x, u) := 0, let state x ∈ X , select
a learning rate (αk) ∈ [0, 1)N.

2. Select u ∈ U , observe x′ = f(x, u) ∈ X .

3. Update

Q̃k+1(x, u) :=(1−αk)Q̃k(x, u)+αk

(
r(x, u)+γmax

u′∈U
Q̃j(x

′, u′)

)
.

4. Set x := x′, increase j by one, and go to (2).

An essential part of Algorithm 2 is the selection of the
control action in Step 2. One has to find a balance be-
tween selecting the currently expected optimal control and
selecting a different action hoping it yields a higher cumu-
lative reward in the future. There exist several strate-
gies to address this exploration-exploitation dilemma, see
e.g. [50]. One of the commonly used selection of the con-
trol action in the Step 2 of Algorithm 2 is an ε-greedy
choice. For a given ε ∈ [0, 1], the control action is selected
as u = maxu∈U Q̃j(x, u) with the probability of 1− ε and
an arbitrary control u ∈ U is selected with probability of ε.
The learning rate (αk) plays also a crucial role in ad-

dressing the exploration-exploitation dilemma. It deter-
mines the extent to which Algorithm 2 updates its esti-
mate of the Q-function during each iteration by new in-
formation. It is a decisive factor in the convergence rate
of the learning algorithm, see e.g. [51].

Theorem 5.3 ([52]). Consider the system (17) with finite
sets X , U . If the learning rate (αk) ∈ ℓ2(N)\ℓ1(N) and if
all (x, u) ∈ X × U appear infinitely often in Step 2 of the
algorithm, then

lim
k→∞

Q̃k(x, u) = Q(x, u)

for all x ∈ X , u ∈ U .

In view of Theorem 5.3, combining Q-learning with the
controller (3) in the form of a combined controller (8) and
applying it to the system (1) faces three challenges which
need to be addressed: Q-learning is formulated for dis-
crete systems, the sets X , U are assumed to be finite,
and the problem is presumed to be time-invariant. Un-
der the assumption that the operator T does not have a
time-delay, using a sampling rate τ > 0 and only apply-
ing constant control signals between two sampling times
puts the system (1) via evaluation of its solution operator
into a discrete system of the form (17). There are various

approaches to overcome the requirement of a finite state
and control space X , U , see e.g. [53]. As a consequence
of Lemma 2.1, the states χ(y), respectively the error sig-
nals ei for i = 1, . . . , r−1, of the system (1), evolve within a
compact set K when applying the combined controller (8)
to the system (1). Using a discretization of this compact
set is, therefore a straightforward way to overcome the
problem of the requirement of a finite set X . Since the
controller (3) is bounded by β/λ, a discretization of the
set B̄β/λ is a natural choice for U . However, the curse of di-
mensionality renders a discretization approach unsuitable
for high-dimensional problems. Due to the dependence
of yref and φ on t, the considered problem is inherently
time variant. There are a number of different results for
addressing this issue, see e.g. [54, 55]. It is also possible to
encode this time dependency in the state of the system (17)
by enlarging the compact set K and modifying (17), be-
cause the functions yref and φ are bounded. However, one
cannot guarantee that all (x, u) ∈ X ×U appear infinitely
often in the algorithm, unless yref and φ are periodic. Fur-
thermore, encoding the time dependency in the compact
set K further worsens the problem of the curse of dimen-
sionality. Nevertheless, in virtue of Remark 5.1 it is still
meaningful to combine the Q-learning scheme with the
ZoH controller (3).

In the following we demonstrate the combined con-
troller (8) consisting of (3) and the Q-learning Algorithm 2
on the example system (7). Using the control strategy (8)
with sampling time τ > 0 and time instances tk ∈ τN, the
aim is to take advantage of Q-learning by exploring the
safe tracking region, e.g. for ∥er(tk)∥ < λ, and applying
an improved control signal while the safety critical region
is secured by the controller uZoH as in (3) for ∥er(tk)∥ ≥ λ.
We, therefore, only consider the error variable er for the
Q-learning Algorithm 2 and choose a uniform discretiza-
tion of the set B̄λ as the state space X . Considering the
system (1) and the error variables (2), er satisfies the or-
dinary differential equation

ėr(t) =
φ̇(t)

φ(t)
(er(t)− γr−1(t)) + γ̇r−1(t)

+ φ(t)(f(z(t)) + g(z(t))u− y
(r)
ref (t)),

with γr−1(t) := α(∥er−1(t)∥2)er−1(t) and z(·) :=
(d(·),T(χ(y))(·)). Sampling this differential equation with
sampling time τ results in a discrete-time control system.
However, note that it does not have the form (17) due to
the time dependency of yref and φ, and the state variables
e1, . . . , er−1 are neglected. Nevertheless, the application
of the Q-learning algorithm achieves that the error vari-
able er remains, after an initial learning period, below the
threshold λ as simulations show, see Figures 9 and 10. Fur-
ther research is necessary to determine whether it is always
the case that solely considering er in the Q-learning algo-
rithm is sufficient and if guarantees about the convergence
of the learning algorithm can be given despite the inherent
time dependency of the problem. As for the set of control

10



values, we choose U to be a uniform discretization of the
set B̄umax

where umax is chosen as umax = 10 as in the
example in Section 5.1. To improve the performance of
the original controller (3), meaning better tracking perfor-
mance and reduced control values, we choose the reward
function

r(er(tk), u) = −∥er(tk)∥2 − αu ∥u∥2 ,

with parameter αu ∈ R≥0. The function r rewards small
values of the error variable er and the applied control val-
ues (depending on the penalty parameter αu). For the
simulation of the example system (7) we chose the sys-
tem parameters as in Section 4. The reference trajectory
was selected as yref = 0.4 sin(π4 t) for t ∈ [0, 20]. Further
for the Q-learning parameters, the dimensions of the finite
sets X and U were selected as 8 and 25, respectively. The
learning rate is set as constant α = 0.8. In order to let
the algorithm explore more, the greedy parameter is set
to ε = 1 for t ∈ [0, 1], then a decay parameter with a value
of εd = 0.5 was applied every second in order to take the
control action more often according to learned Q-function.
For the reward function the parameter αu = 1/umax was
selected. The simulations are depicted in Figures 9 and 10.
Figure 9 shows how the error signals evolve within the
funnel, respectively the λ activation threshold. Figure 10
shows the corresponding control action. It can be seen
that with the help of the primary controller uZoH in (3),
Q-learning algorithm is able to explore and learn safely.
The learning controller component applies random control
actions with an amplitude lower than 10 to explore the
state and control space. Only if the error is larger than
the activation threshold, the ZoH control component in-
tervenes with a large control input to prevent a violation
of the funnel boundaries. One can see that with decaying
ε the number of random control actions applied to the sys-
tem reduces and the error e2(t) signal gets closer to 0 and
remains close to it. Overall, the Q-learning algorithm re-
duces the peaks of the control significantly in comparison
to Section 4 where merely the controller (3) was applied.
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Figure 9: Error signals.

Remark 5.4. To reduce computational effort, the con-
trol signal udata in (8) does not have to be updated at ev-
ery ti = iτ . Since the system class (1) allows for bounded
disturbances, it is possible to combine the data-driven con-
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Figure 10: Control signals.

trol with a move blocking strategy, cf. [56], i.e., to ap-
ply the control value udata for longer than one sampling
interval τ . If then er leaves the safe region, the con-
troller (8) interprets the additional value udata as a dis-
turbance in the system (according to Assumption 1 this
means D = ∥d∥∞ + umax), and hence the constraint sat-
isfaction is guaranteed by the controller. Note that system
measurements, however, have to be taken at every ti = iτ .

6. Conclusion and future work

We presented a novel two-component controller for
continuous-time nonlinear control systems. The ZoH
tracking controller consists of a data-driven/learning-
based component and a discrete-time output-feedback con-
troller with prescribed performance. The feedback con-
troller is designed to achieve the control objective (tracking
with prescribed performance) and safeguards the learning-
based controller. We derived explicit upper bounds on the
sampling time τ > 0 and for the maximal control input.
As data-driven controller we employed an MPC algorithm
based on the fundamental results of Willems et al. [24],
which enables predictive control using only input-output
data. Further, we implemented a reinforcement learn-
ing scheme and investigated a Q-table control algorithm
to explore the system’s dynamics. The proposed two-
component data-driven controller was proven to achieve
the control objective, and in particular, outperform the
pure feedback controller.

Based on the presented results, future work will aim
to reduce the conservatism of the controller and to in-
vestigate the interplay with observers and/or the funnel
pre-compensator [57, 58] to alleviate the strict assumption
of not only knowing the output but also its derivatives.
Moreover, we plan to perform a comprehensive comparison
(simulation study) with other data-driven ZoH controllers,
e.g., the one recently proposed in [59], and combining these
with the proposed safeguarding feedback component.
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A. Proofs of auxiliary results

We present the proofs of the auxiliary results Lem-
mata 2.1 and 2.2 presented in Section 2.2, and Theorem 3.1
in Section 3.

Proof of Lemma 2.1. We use the constants εk, µk > 0 de-
fined in (4), and to improve legibility, we use the notation
ek(t) := ek(t, χ(ζ)(t)) for ζ ∈ Yr

δ . Let δ ∈ (0,∞] and ζ ∈
Yr
δ be arbitrary but fixed. We define the auxiliary function

γk(t) := α(∥ek(t)∥2)ek(t), and set γ0(·) = γ̇0(·) = 0. Note
that for k = 1, . . . , r − 1 each of the error signals defined
in (2) satisfies for t ∈ [0, δ) the differential equation

ėk =
φ̇

φ
(ek−γk−1)+ek+1+γ̇k−1 −α(∥ek∥2)ek,

where the dependency on t has been omitted and e(k) de-
notes the k-th derivative of e(t) = ζ(t) − yref(t). We ob-
serve

γ̇k = 2α′(∥ek∥2) ⟨ek, ėk⟩ ek + α(∥ek∥2)ėk.

Seeking a contradiction, we assume that for at least
one ℓ ∈ {1, . . . , r − 1} there exists t∗ ∈ (0, δ) such that
∥eℓ(t∗)∥2 > εℓ. W.l.o.g. we assume that this is the
smallest possible ℓ. Invoking χ(y0) ∈ Dr

0 and conti-
nuity of the involved functions we may define t∗ :=
max

{
t ∈ [0, t∗)

∣∣ ∥eℓ(t)∥2 = εℓ
}
. Then, for t ∈ [t∗, t

∗]
we calculate, omitting again the dependency on t,

d
dt

1
2
∥eℓ∥2 =

〈
eℓ,

φ̇
φ
(eℓ − γℓ−1) + eℓ+1 + γ̇ℓ−1 − α(∥eℓ∥2)eℓ

〉
≤∥eℓ∥

(∥∥∥∥ φ̇φ
∥∥∥∥
∞
(1+α(ε2ℓ−1)εℓ−1)+1+γ̄ℓ−1−α(ε2ℓ)εℓ

)
≤0,

in the last line we used the monotonicity of α(·), the def-
inition of εℓ, and that γ̇ℓ−1 is bounded by minimality of ℓ.
Hence, the contradiction εℓ < ∥eℓ(t∗)∥2 ≤ ∥eℓ(t∗)∥2 = εℓ
arises after integration. This yields boundedness of eℓ, γℓ.
Using the derived bounds we estimate

∥ėℓ∥ ≤
∥∥∥∥ φ̇φ

∥∥∥∥
∞
(1 + α(ε2ℓ−1)εℓ−1) + 1 + α(ε2ℓ)εℓ + γ̄ℓ−1 = µℓ.

We conclude ∥ek(t)∥ ≤ εk < 1 and ∥ėk(t)∥ ≤ µk for all
k = 1, . . . , r − 2 and all t ∈ [0, δ). For k = r − 1 the same
arguments are valid invoking er : [0, δ)→ B1.

Proof of Lemma 2.2. To prove the assertion, we invoke
continuity of the system functions f, g and the resulting
boundedness on compact sets. According to Lemma 2.1,
there exist εk ∈ (0, 1) for k = 1, . . . , r − 1 such that

∀ζ∈Yr
∞ ∀ t ∈ R≥0 ∀ k = 1, . . . , r− 1 : ∥ek(t, χ(ζ)(t))∥≤εk.

Further, ∥er(t, χ(ζ)(t))∥ ≤ 1. Thus, due to the definition
of ek in (2), there exists a compact set Kζ ⊂ Rrm with

∀ ζ ∈ Yr
∞ ∀ t ∈ R≥0 : χ(ζ)(t) ∈ Kζ .

Due to the BIBO property of the operator T, there ex-
ists a compact set Kq ⊂ Rq with T(ξ)(R≥0) ⊂ Kq for
all ξ ∈ C(R≥0,R

rm) with ξ(R≥0) ⊂ Kζ . For arbitrary
δ ∈ (0,∞) and ζ ∈ Yr

δ , we have, according to Lemma 2.1,

∀ t ∈ [0, δ) ∀ k = 1, . . . , r − 1 : ∥ek(t, χ(ζ)(t))∥ ≤εk.

Further, ∥er(t, χ(ζ)(t))∥ ≤ 1. Thus, χ(ζ)(t) ∈ Kζ

for all t ∈ [0, δ). For every element ζ ∈ Yr
δ the func-

tion χ(ζ)|[0,δ) can smoothly be extended to a function

ζ̃ ∈ (C(R≥0,R
m))r with ζ̃(t) ∈ Kζ for all t ∈ R≥0.

Due to the BIBO property of the operator T, we have
T(ζ̃)(t) ∈ Kq for all t ∈ R≥0. Since T is causal,
this implies T(χ(ζ))|[0,δ)(t) ∈ Kq for all t ∈ [0, δ) and

ζ ∈ Yr
δ . Define the compact set K := BD ×Kq ⊂ Rp+q.

Since f(·) and g(·) are continuous, the constants fmax :=
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maxx∈K f(x) and gmax := maxx∈K g(x) exist. For ev-
ery δ ∈ (0,∞], ζ ∈ Yr

δ , and d ∈ L∞(R≥0,R
p) with

∥d∥∞ ≤ D we have ∀ t ∈ [0, δ) : (d(t),T(χ(ζ))(t)) ∈ K.
Therefore, we obtain fmax ≥

∥∥f((d,T(χ(ζ)))|[0,δ))
∥∥
∞ and

gmax ≥
∥∥g((d,T(χ(ζ)))|[0,δ))

∥∥
∞. Since g(x) is positive def-

inite, for every x ∈ K there exists gmin > 0 such that

gmin ≤
⟨z,g((d,T(χ(ζ)))|[0,δ)(t))z⟩

∥z∥2 for all z ∈ Rm\ {0}.

Proof of Theorem 3.1. The proof consists of two main
steps. In the first step we establish the existence of a
solution of the initial value problem (1), (3). In the sec-
ond step we show feasibility of the proposed control law,
i.e., all error variables are bounded by εk and the tracking
error evolves within the funnel boundaries.
Step 1. The application of the control signal (3) to sys-
tem (1) leads to an initial value problem. If this prob-
lem is considered on the interval [0, τ ], then there ex-
ists a unique maximal solution on [0, ω) with ω ∈ (0, τ ].
If all error variables ek evolve within the set B1 for all
t ∈ [0, ω), then ∥χ(y)(·)∥ is bounded on the interval [0, ω)
and, as a consequence of the BIBO condition of the op-
erator, T(·) is bounded as well. Then ω = τ , cf. [60,
§ 10, Thm. XX] and there is nothing else to show. Seek-
ing a contradiction, we assume the existence of t ∈ [0, ω)
such that ∥ek(t)∥ ≥ 1 for at least one k = 1, . . . , r. In-
voking Lemma 2.1 it remains only to show that the last
error variable er satisfies ∥er(t)∥ ≤ 1 for all t ∈ [0, ω).
Before we do so, we record the following observation. For
γr−1(t) := α(∥er−1(t)∥2)er−1(t) we calculate for z(·) :=
(d(·),T(χ(y))(·))

ėr(t)− φ(t)g(z(t))u = φ̇(t)e(r−1)(t) + φ(t)e(r)(t)

+ γ̇r−1(t)− φ(t)g(z(t))u

=
φ̇(t)

φ(t)
(er(t)− γr−1(t)) + γ̇r−1(t)

+ φ(t)(f(z(t))− y
(r)
ref (t)) =: J(t).

(A.1)

Step 2. We show ∥er(t)∥ ≤ 1 for all t ∈ [0, ω). We
separately investigate the two cases ∥er(0)∥ < λ and
∥er(0)∥ ≥ λ.
Step 2.a We consider ∥er(0)∥ < λ. In this case we have
u = 0. Seeking a contradiction, we suppose that there
exists t∗ := inf { t ∈ (0, ω) | ∥er(t)∥ > 1 }. For the func-
tion J(·) introduced in (A.1) we observe ∥J |[0,t∗)∥∞ ≤ κ0

according to Lemmata 2.1 and 2.2. Then we calculate for
t ∈ [0, t∗]

1 = ∥er(t∗)∥ ≤ ∥er(0)∥+
∫ t∗

0
∥ėr(s)∥ ds

= ∥er(0)∥+
∫ t∗

0
∥J(s)∥ ds

≤ ∥er(0)∥+
∫ t∗

0
κ0 ds < λ+ κ0ω < 1,

where we used t∗ < ω ≤ τ < (1− λ)/κ0. This contradicts
the definition of t∗.
Step 2.b We consider ∥er(0)∥ ≥ λ. In this case we have the
control u = −βer(0)/∥er(0)∥2. We show again ∥er(t)∥ ≤ 1

for all t ∈ [0, ω). To this end, seeking a contradiction, we
suppose the existence of t∗ = inf { (0, ω) | ∥er(t)∥ > 1 }.
Invoking the initial conditions and continuity of the in-
volved functions, and utilising Lemma 2.2 and (A.1), we
calculate for t ∈ [0, t∗]

d
dt

1
2∥er(t)∥

2 = ⟨er(t), ėr(t)⟩ =
〈
er(0) +

∫ t

0
ėr(s) ds, ėr(t)

〉
≤ ∥er(0)∥∥J(t)∥+ ω∥ėr|[0,t∗]∥2∞ + φ(t) ⟨er(0), g(z(t))u⟩

= ∥er(0)∥∥J(t)∥+ω∥ėr|[0,t∗]∥2∞−φ(t)β
⟨er(0),g(z(t))er(0)⟩

∥er(0)∥2

≤ ∥er(0)∥κ0 + ω∥ėr|[0,t∗]∥2∞ − inf
s≥0

φ(s)gminβ

≤ κ0 + ωκ2
1 − inf

s≥0
φ(s)gminβ ≤ 2κ0 − inf

s≥0
φ(s)gminβ < 0,

the third line due to t∗ < ω ≤ τ , the penultimate line
via the definition of τ and the last line by definition of β;
moreover, we used ∥ėr|[0,t∗]∥ ≤ κ1 and ∥J |[0,t∗]∥∞ ≤ κ0. In

particular this yields 1
2

d
dt∥er(t)|t=0∥2 < 0, by which t∗ >

0. Therefore, we find the contradiction 1 = ∥er(t∗)∥2 <
∥er(0)∥2 ≤ 1. Repeated application of the arguments in
Steps 1 and 2 on the interval [ti, ti + τ ], i ∈ N, yields
recursive feasibility.
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