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Abstract

This paper introduce the notion of output contraction that expands the contraction notion to the time-
varying nonlinear systems with output. It pertains to the systems’ property that any pair of outputs
from the system converge to each other exponentially. This concept exhibits a more expansive nature
when contrasted with another generalized contraction framework known as partial contraction. The
first result establishes a connection between the output contraction of a time-varying system and the
output exponential stability of its variational system. Subsequently, we derive a sufficient condition
for achieving output contraction in time-varying systems by applying the output contraction Lyapunov
criterion. Finally, we apply the results to analyze the output exponential stability of nonlinear time-
invariant systems.

1. Introduction
The notion of contraction, also referred to as exponential

incremental stability, provides an analytical tool to study the
asymptotic behavior of time-varying nonlinear systems. The
contraction theory characterizes particular systems’ prop-
erty of nonlinear time-varying systems where all trajectories
from different initial conditions converge exponentially to
each other [1] and it has been studied extensively in litera-
ture for over two decades. Forni and Sepulchre [2] present
a Lyapunov-like characterization of contraction property
by lifting the Lyapunov function to the tangent bundle. A
closely related notion, the so-called incremental stability,
is studied in [3] via incremental Lyapunov functions. As
an alternative to the Lyapunov approach, Sontag et al. [4]
employ matrix measure, also known as logarithmic norm,
to directly characterize the contraction properties. In [5],
the authors present weak pairings and explore the one-
sided Lipschitz condition for the vector field to investigate
contractivity with respect to arbitrary norms. The authors
in [6] study transverse exponential stability, which can be
considered as a generalized concept of contraction by using
nonlinear Rieammanian metrics.

In general, the contraction notion refers to the contrac-
tion property of the entire state variables [1; 2; 3; 4; 5; 6].
However, establishing the contraction property of only a
portion of the state variables is not trivial. Wang et al.
in [9] introduces the concept of partial contraction, which
studies the contractivity of subsets of the state space. In [2],
the concept of horizontal contraction is presented to study
contraction property along particular directions. The notion
of 𝑘-contraction, as defined in [10], establishes a contraction
property applicable to a 𝑘-parallelotope. A recent study
in [11] shows that under certain mild assumptions, partial
contraction can lead to horizontal contraction, and horizon-
tal contraction subsequently implies 𝑘-contraction. In this
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paper, we explore a general class of systems that admit non-
contractive systems as commonly found in practice but can
exhibit contraction property for particular output mappings.

In control theory, the role of systems’ output is important
as it represents the observable or measurable state of the
system, with which we determine the control law to steer
the input variable. Accordingly, many control problems are
defined based on the use of systems’ output, such as output
regulation problems [12] and output tracking control prob-
lems [13]. In this paper, we introduce the notion of output
contraction to nonlinear time-varying systems with output,
which posits that any pair of systems’ output converge to
each other exponentially. This notion generalizes the classi-
cal notion of contraction to the class of systems that may not
exhibit contraction properties; we will illustrate this later in
Example 4.1. Additionally, we use a simple contraction case
to illustrate that output contraction showcases a broader class
of systems compared to the notion of partial contraction
introduced in [9]. In our first main result, we establish
that the property of Output Exponential Stability (OES)
(which will be defined later) of the variational dynamics is a
necessary and sufficient condition for the output contraction
of the original systems. If the output map corresponds to an
identity map, this condition can be simplified to match the
results presented in [7, Prop. 1], reducing output contraction
to standard contraction. In our second result, we present suf-
ficient conditions for output contraction of nonlinear time-
varying systems by utilizing an output contraction Lyapunov
function to analyze the OES property of the variational
systems. In our third contribution, we employ the output
exponential stability Lyapunov condition to assess the OES
of time-invariant systems. This is achieved by ensuring
that the system exhibits output contraction, with a constant
output residing within its output set.

The paper is organized as follows. In Section 2, we
present preliminaries and the main problem formulation.
Our main results are presented in Section 3, where we
present necessary and sufficient conditions for the output
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contraction of nonlinear time-varying systems, and the out-
put contraction Lyapunov criterion. The numerical simu-
lations and applications are provided in Section 4 and the
conclusions are given in Section 5.

2. Preliminaries and problem formulation
Throughout this paper, we consider the following non-

linear time-varying systems
{

�̇� = 𝑓 (𝑥, 𝑡),
𝑦 = ℎ(𝑥, 𝑡), (1)

where 𝑥(𝑡) ∈ ℝ𝑛 is the state vector, 𝑓 ∶ ℝ𝑛 × ℝ+ → ℝ𝑛

is the vector field, and ℎ ∶ ℝ𝑚 × ℝ+ → ℝ𝑚 describes
the output map. We assume that 𝑓 and ℎ are continuously
differentiable.

Definition 2.1. A time-varying system (1) is called output
contractive with respect to the state if there exists positive
numbers 𝑐 and 𝛼 such that for any pair of the outputs
𝑦(𝑡), 𝑦′(𝑡) ∈ ℝ𝑚 of (1) with 𝑖 = 1, 2, we have

‖𝑦(𝑡) − 𝑦′(𝑡)‖ ≤ 𝑐𝑒−𝛼(𝑡−𝑡0)‖𝑥(𝑡0) − 𝑥′(𝑡0)‖, ∀𝑡 ≥ 𝑡0. (2)

Note that, if the output ℎ(𝑥, 𝑡) is an identity map, i.e.
𝑦 = 𝑥, Definition 2.1 reduces to the standard contraction
notion as in [7, Def. 1].

Remark 2.2. A concept closely related to the output contrac-
tion in Definition 2.1, is the partial contraction, as introduced
in [9; 11]. In these works, equation (2) is replaced by [11,
Def. 4]

‖𝑦(𝑡) − 𝑦′(𝑡)‖ ≤ 𝑐𝑒−𝛼(𝑡−𝑡0)‖𝑦′(𝑡0) − 𝑦′(𝑡0)‖, (3)

where exponential decay is only scaled by the initial output
difference and not by the entire initial state difference. The
following example shows that a system can be an output
contraction while it is not a partial contraction. Consider the
following stable LTI system

{

�̇�1 = −2𝑥1 + 𝑥2,
�̇�2 = 𝑥1 − 2𝑥2.

(4)

The trajectories of the system are given by 𝑥1(𝑡) =
1
2 (𝑥10 −

𝑥20)𝑒−3𝑡+
1
2 (𝑥10+𝑥20)𝑒−𝑡 and 𝑥2(𝑡) =

1
2 (𝑥10−𝑥20)𝑒−3𝑡𝑥20+

1
2 (𝑥10+𝑥20)𝑒−𝑡. If we take 𝑦(𝑡) = 𝑥1(𝑡) then ‖𝑦(𝑡) − 𝑦′(𝑡)‖ =
‖− 1

2 (𝑦(0) − 𝑦′(0) − 𝑥20 + 𝑥′20)𝑒
−3𝑡 + 1

2 (𝑦(0) − 𝑦′(0) + 𝑥20 −
𝑥′20)𝑒

−𝑡
‖. Consequently, we can easily find 𝑐 > 0 and 𝛼 > 0

such that (2) holds, but because the output difference 𝑦 − 𝑦′
depends on the difference of the initial condition of 𝑥2 and
𝑥′2 it is not possible to satisfy (3).

Observe that output contraction depends heavily on the
time-varying nature of the output mapping ℎ(𝑥, 𝑡). In fact, it
is neither necessary nor sufficient for output contraction that
the systems’ state is contractive. For instance, consider again
the aforementioned example provided in (4). If we take the

output map as 𝑦 = 𝑒2𝑡𝑥1, it is clear that the system no longer
possesses the property of output contraction. For a converse
example (i.e., output contraction but not state contraction),
we refer to the forthcoming Example 4.1.

Similar to the traditional analysis of contraction, we
investigate the output contraction of (1) by analyzing the
output stability of the associated variational system with
outputs. This variational system, connected to the systems
in (1), is given as follows

{

�̇� = 𝜕𝑓
𝜕𝑥 (𝑥(𝑡), 𝑡) ⋅ 𝜉,

𝜈 = 𝜕ℎ
𝜕𝑥 (𝑥(𝑡), 𝑡) ⋅ 𝜉,

(5)

where 𝑥(𝑡) is any solutions of (1). We omit the explicit
dependence on (𝑥(𝑡), 𝑡) whenever it is clear from the context.
Note that (5) actually denotes a whole family of time-varying
linear systems which is parameterized by the initial value
𝑥(𝑡0) of (1).

Definition 2.3. The variational system (5) is called Output
Exponentially Stable (OES) with respect to the state, if there
exist positive numbers 𝑐, 𝛼 (independent of 𝑥, 𝑡0 and 𝜉(𝑡0))
such that for every output 𝜈(𝑡) ∈ ℝ𝑚 of (5) the inequality

‖𝜈(𝑡)‖ ≤ 𝑐𝑒−𝛼(𝑡−𝑡0)‖𝜉(𝑡0)‖, (6)

holds for all 𝑡 ≥ 𝑡0.

3. Main result
In this section, we firstly establish an equivalent relation-

ship between the output contraction of a time-varying system
(1) and the OES of its variational system (5). Secondly, a
sufficient condition is presented that guarantees the OES of
the variational system.

Proposition 3.1. The nonlinear time-varying system (1) is
output contractive with respect to the state if and only if the
corresponding variational system (5) is OES with respect to
the state.

Proof. Let us first establish a relationship between the so-
lutions of (1) and those of (5). Let

[

𝑥(𝑡)
𝑦(𝑡)

]

=
[

𝜑(𝑥0,𝑡)
ℎ(𝜑(𝑥0,𝑡),𝑡)

]

and
[

�̂�(𝑡)
�̂�(𝑡)

]

=
[

𝜑(𝑥0+𝛿𝜉0,𝑡)
ℎ(𝜑(𝑥0+𝛿𝜉0,𝑡),𝑡)

]

be two trajectories and outputs
of (1) with initial conditions 𝑥0 and �̂�0 ∶= 𝑥0 + 𝛿𝜉0,
respectively, where 𝛿 is a sufficiently small positive constant
and 𝜉0 ≠ 0 (�̂�0 and 𝑥0 are two different initial conditions)
will be related later to the initial condition of (1). In the
following, we will show that

⎧

⎪

⎨

⎪

⎩

𝜉(𝑡) ∶= lim
𝛿→0

𝜑(𝑥0+𝛿𝜉0,𝑡)−𝜑(𝑥0,𝑡)
𝛿 ,

𝜈(𝑡) ∶= lim
𝛿→0

ℎ(𝜑(𝑥0+𝛿𝜉0,𝑡),𝑡)−ℎ(𝜑(𝑥0,𝑡),𝑡)
𝛿 ,

(7)

are a solution of (5) w.r.t. 𝑥(𝑡) and with initial value

𝜉(𝑡0) = 𝜉0,

𝜈(𝑡0) = 𝜈0 = 𝜈0(𝜉0) ∶= lim
𝛿→0

ℎ(𝑥0+𝛿𝜉0,𝑡0)−ℎ(𝑥0,𝑡0)
𝛿 .
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By denoting the partial Jacobian matrices of 𝜑 at (𝑥0, 𝑡) by
Φ𝑥0 (𝑡), we can then rewrite (7) as

{

𝜉(𝑡) = Φ𝑥0 (𝑡) ⋅ 𝜉0,
𝜈(𝑡) = 𝜕ℎ

𝜕𝑥 ⋅Φ𝑥0 (𝑡) ⋅ 𝜉0.
(8)

From (8), we know that (7) satisfies 𝜈 = 𝜕ℎ
𝜕𝑥 𝜉 as desired. The

flow 𝜑(𝑥0, 𝑡) of (1) satisfies

𝜑(𝑥0, 𝑡) = 𝑥0 + ∫

𝑡

𝑡0
𝑓
(

𝜑(𝑥0, 𝜏), 𝜏
)

d𝜏, (9)

and similarly, the flow 𝜑(𝑥0 + 𝛿𝜉0, 𝑡) satisfies

𝜑(𝑥0 + 𝛿𝜉0, 𝑡) = 𝑥0 + 𝛿𝜉0 + ∫

𝑡

𝑡0
𝑓
(

𝜑(𝑥0 + 𝛿𝜉0, 𝜏), 𝜏
)

d𝜏.

(10)

Hence,

𝜉(𝑡) = 𝜉0 + ∫

𝑡

𝑡0
lim
𝛿→0

1
𝛿

(

𝑓
(

𝜑(𝑥0 + 𝛿𝜉0, 𝜏), 𝜏
))

− 𝑓
(

𝜑(𝑥0, 𝜏), 𝜏
)

)

d𝜏
(11)

Clearly,

lim
𝛿→0

1
𝛿

(

𝑓
(

𝜑(𝑥0 + 𝛿𝜉0, 𝜏), 𝜏
))

− 𝑓
(

𝜑(𝑥0, 𝜏), 𝜏
)

)

= 𝜕𝑓
𝜕𝑥 (𝑥(𝜏), 𝜏) ⋅Φ𝑥0 (𝜏) ⋅ 𝜉0

(8)
= 𝜕𝑓

𝜕𝑥 (𝑥(𝜏), 𝜏) ⋅ 𝜉(𝜏).

(12)

Substituting this back to (11) and differentiating with respect
to time gives us

�̇�(𝑡) =
𝜕𝑓
𝜕𝑥

𝜉(𝑡). (13)

Altogether this shows that indeed 𝜉(𝑡), 𝜈(𝑡) given by (7) is a
solution of (5). We can now show the sufficiency result.

Output Contraction ⇒ OES. Let 𝑐 and 𝛼 be the constants
corresponding to the output contractivity condition. Seeking
a contradiction, assume the variational system (5) is not
OES. Then there exists a solution 𝑥(⋅) of (1) and an initial
value 𝜉0 such that for the corresponding output 𝜈(⋅) of (5) we
have that for 𝑐′ ∶= 3

2𝑐 and 𝛼′ ∶= 𝛼, there exists 𝑇 > 0 such
that

‖𝜈(𝑇 )‖ > 𝑐′𝑒−𝛼
′(𝑇−𝑡0) ‖

‖

𝜉0‖‖ = 3
2
𝑐𝑒−𝛼(𝑇−𝑡0) ‖

‖

𝜉0‖‖ . (14)

Let �̂�(⋅), 𝑦(⋅) be outputs of (1) with initial values �̂�(𝑡0) ∶=
𝑥(𝑡0) + 𝛿𝜉(𝑡0) and 𝑥(𝑡0), respectively. By definition, 𝜈(𝑡) ∶=
lim
𝛿→0

�̂�(𝑡)−𝑦(𝑡)
𝛿 . Hence, for a sufficiently small 𝛿 > 0, we have

that at time 𝑇 ,

‖�̂�(𝑇 ) − 𝑦(𝑇 )‖
𝛿

> 2
3
‖𝜈(𝑇 )‖ , (15)

where the lower-bound constant 2
3 < 1 is chosen arbitrarily

for the following computation of bounds. Combining (14),
(15), we obtain

‖�̂�(𝑇 ) − 𝑦(𝑇 )‖
(15)
> 2

3
𝛿 ‖𝜈(𝑇 )‖

(14)
> 𝑐𝑒−𝛼(𝑇−𝑡0) ‖

‖

𝛿𝜉0‖‖

= 𝑐𝑒−𝛼(𝑇−𝑡0) ‖
‖

�̂�(𝑡0) − 𝑥(𝑡0)‖‖ ,

for all 𝜉0 ≠ 0. This is in contradiction to the output contrac-
tivity of (1) and concludes the proof of the sufficiency part.

OES ⇒ Output Contraction. Let us consider two outputs
𝑦(⋅) = ℎ

(

𝜑(𝑥0, ⋅)
)

and �̂�(⋅) = ℎ
(

𝜑(�̂�0, ⋅)
)

of (1). Conse-
quently, we can utilize the fundamental theorem of calculus
for line integrals to obtain

�̂�(𝑡) − 𝑦(𝑡) = ∫

�̂�0

𝑥0

dℎ
(

𝜑(𝜁, 𝑡)
)

d𝜁
d𝜁 (16)

According to (7), one has

𝜈(𝑡) =
dℎ

(

𝜑(𝑥0, 𝑡)
)

d𝑥0
𝜉0. (17)

From the OES property of (5) and (17), one has

‖𝜈(𝑡)‖ =
‖

‖

‖

‖

‖

dℎ
(

𝜑(𝑥0, 𝑡)
)

d𝑥0
𝜉0
‖

‖

‖

‖

‖

≤ 𝑐𝑒−𝛼(𝑡−𝑡0)‖𝜉0‖. (18)

Since 𝜉0 ≠ 0, we have

‖

‖

‖

‖

‖

dℎ
(

𝜑(𝑥0,𝑡)
)

d𝑥0
𝜉0
‖

‖

‖

‖

‖

‖𝜉0‖
≤ 𝑐𝑒−𝛼(𝑡−𝑡0).

(19)

Given that 𝜉0 ≠ 0 is chosen arbitrarily, it follows from (19)
that

‖

‖

‖

‖

‖

dℎ
(

𝜑(𝑥0, 𝑡)
)

d𝑥0

‖

‖

‖

‖

‖

= sup
‖𝜉0‖≠0

‖

‖

‖

‖

‖

dℎ
(

𝜑(𝑥0,𝑡)
)

d𝑥0
𝜉0
‖

‖

‖

‖

‖

‖𝜉0‖
≤ 𝑐𝑒−𝛼(𝑡−𝑡0),

(20)

Using (20) to get the upper bound of (16), we have

‖�̂�(𝑡) − 𝑦(𝑡)‖ =
‖

‖

‖

‖

‖

∫

�̂�0

𝑥0

dℎ
(

𝜑(𝜁, 𝑡)
)

d𝜁
d𝜁

‖

‖

‖

‖

‖

(20)
≤ 𝑐𝑒−𝛼(𝑡−𝑡0) ‖

‖

�̂�(𝑡0) − 𝑥(𝑡0)‖‖ ,

(21)

This shows that (1) is output contracting and the proof is
complete.

We present now the following theorem on the output
contraction property of system (1).

Theorem 3.2 (Output Contraction Lyapunov Condition).
Consider the time-varying system (1) with its corresponding
variational system (5). Suppose that there exist positive
constants 𝛼1, 𝛼2, 𝛼3, 𝛼4 ∈ ℝ≥0, 𝛼3 < 𝛼4, 𝑝 ∈ ℝ≥1 and a
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continuous function 𝑉 ∶ ℝ𝑛 × ℝ𝑛 × ℝ≥0 → ℝ≥0 such that,
for all (𝑥, 𝜉, 𝑡) ∈ ℝ𝑛 ×ℝ𝑛 ×ℝ≥0,

𝛼1‖𝜈‖
𝑝 ≤ 𝑉 (𝑥, 𝜉, 𝑡) ≤ 𝛼2‖𝜉‖

𝑝𝑒𝛼3(𝑡−𝑡0) (22)

is satisfied, where 𝜈(𝑥, 𝜉, 𝑡) = 𝜕ℎ
𝜕𝑥 (𝑥, 𝑡)𝜉, and such that

�̇� ∶= 𝜕𝑉
𝜕𝑡

+ 𝜕𝑉
𝜕𝑥

𝑓 + 𝜕𝑉
𝜕𝜉

𝜕𝑓
𝜕𝑥

𝜉 ≤ −𝛼4𝑉 (23)

holds. Then the system (1) is output contraction according to
Definition 2.1.

Proof. Note that for every solution 𝑥 of (1) and correspond-
ing solution 𝜉 of (5) we have that d

d𝑡𝑉 (𝑥(𝑡), 𝜉(𝑡), 𝑡) equals the
left-hand side of (23). Consequently, we have

𝑉 (𝑥(𝑡), 𝜉(𝑡), 𝑡)
(23)
≤ 𝑐′𝑒−𝛼4(𝑡−𝑡0)𝑉 (𝑥0, 𝜉0, 𝑡0), (24)

with 𝑐′ > 0. Then, it follows from (22) that

‖𝜈‖
(22)
≤ ( 1

𝛼1
)
1
𝑝 𝑉 (𝑥, 𝜉, 𝑡)

1
𝑝

(24)
≤ ( 𝑐

′

𝛼1
)
1
𝑝 𝑒−

𝛼4
𝑝 (𝑡−𝑡0)𝑉 (𝑥0, 𝜉0, 𝑡0)

1
𝑝

(22)
≤ ( 𝑐

′𝛼2
𝛼1

)
1
𝑝 𝑒−

𝛼4−𝛼3
𝑝 (𝑡−𝑡0)

‖𝜉0‖.

(25)

The variational system (5) is OES with 𝑐 = 𝑐′ 𝛼1𝛼2
and 𝛼 =

𝛼4−𝛼3
𝑝 . By Proposition 3.1, we can conclude that the system

(1) is output contractive.

In Theorem 3.2, our analysis includes the utilization of a
time-varying Lyapunov function, which distinguishes (22)
from the established bounds of Lyapunov function. If we
select 𝛼3 = 0, equation (22) becomes the standard Lyapunov
function bounds. For the LTI system (4) in the preceding
example, we can choose 𝑉 (𝑥, 𝜉, 𝑡) = 𝜉21 + 𝜉22 , with 𝛼1 =
𝛼2 = 1, 𝛼3 = 0, and 𝑝 = 𝛼4 = 2. In this case, Theorem
3.2 can be applied to show that the system (4) is output
contractive. Observe that the choice of 𝑉 (𝑥, 𝜉, 𝑡) guarantees
the contraction of system (4). This example shows that
𝑉 (𝑥, 𝜉, 𝑡) does not need to depend explicitly on 𝑥 and in
view of the 𝑥-independent upper bound (22), the possible
dependence on 𝑥 is in fact rather limited in general. However,
even if 𝑉 does not explicitly depends on 𝑥, �̇� will still
depend on 𝑥 via 𝜕𝑓

𝜕𝑥 .

4. Simulation setup and applications
This section presents two numerical examples to numer-

ically validate the proposed analysis tools and demonstrate
their application. The first example explores the output con-
traction property of a non-contracting system using Theorem
3.2. The second example showcases the practical utilization
of Proposition 3.1 for assessing the output exponential sta-
bility of a time-invariant system, as illustrated by Corollary
4.3.

Example 4.1. Consider a time-varying system whose dy-
namics take the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̇�1 = −0.1𝑥31 − (4 + sin 𝑡 + 0.3𝑥21)𝑥2
+ sin(𝑥1 + 𝑥2) + cos 𝑡,

�̇�2 = −0.1𝑥32 − (4 + sin 𝑡 + +0.3𝑥22)𝑥1
+cos(𝑥1 + 𝑥2) + sin 𝑡,

𝑦 = 𝑥1 + 𝑥2,

(26)

where 𝑥(𝑡) ∈ ℝ𝑛 is the state vector and 𝑦(𝑡) ∈ ℝ𝑚 is the out-
put. The left plot of Figure 1 shows the trajectories originat-
ing from two different initial conditions

[ −2.5
−5

]

and
[ −1.5

−3
]

.
In this plot, it is clear that the system (26) does not exhibit
contraction behavior. The variational system of (26) is given
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Figure 1: The plot of trajectories and output of time-varying
system in Example 4.1 initialized at

[

−2.5
−5

]

and
[

−1.5
−3

]

.

by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̇�1 = −(4 + sin 𝑡 − 0.6𝑥1𝑥2)𝜉2
+
(

cos(𝑥1 + 𝑥2) − 0.3𝑥21
)

(𝜉1 + 𝜉2),
�̇�2 = −(4 + sin 𝑡 − 0.6𝑥1𝑥2)𝜉1

−
(

sin(𝑥1 + 𝑥2) − 0.3𝑥22
)

(𝜉1 + 𝜉2),
𝜈 = 𝜉1 + 𝜉2.

Using

the output contraction Lyapunov function 𝑉 (𝑥, 𝜉, 𝑡) = (𝜉1 +
𝜉2)2, we can satisfy (22) by setting 𝛼1 = 1, 𝛼2 = 2,
𝛼3 = 0, and 𝑝 = 2. The derivative of 𝑉 (𝑥, 𝜉, 𝑡) satisfies
�̇� (𝑥, 𝜉, 𝑡) = −2

(

4 − sin 𝑡 + cos(𝑥1 + 𝑥2) + sin(𝑥1 + 𝑥2) +
0.3(𝑥1 + 𝑥2)2

)

(𝜉1 + 𝜉2)2. Subsequently, (23) can be fulfilled
by taking 𝛼4 = 2. Hence (26) satisfies the hypotheses for the
output contraction as outlined in Theorem 3.2. The outputs
corresponding to two different initial conditions

[ −2.5
−5

]

and
[ −1.5

−3
]

are depicted in the right plot of Figure 1.

4.1. Output exponential stability of time-invariant
systems

It is well known that for a contracting time-invariant
system, all trajectories converge to an equilibrium exponen-
tially. As an interesting particular case of our main results
above, we can prove output exponential stability of the time-
invariant systems by using Proposition 3.1. Consider a time-
invariant nonlinear autonomous system given by

{

�̇� = 𝑓 (𝑥),
𝑦 = ℎ(𝑥), (27)

where there exists a 𝑥∗(𝑡) (not necessarily an equilibrium),
which admits an output equilibrium 𝑦∗ (possibly unknown),
such that 𝑦∗ = ℎ(𝑥∗(𝑡)). In the next definition, we extend [8,
Def. 2.3] into the nonlinear systems case.
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Definition 4.2. A time-invariant autonomous system (27)
with an output equilibrium 𝑦∗ is called Output Exponentially
Stable (OES) with respect to the state if there exists positive
numbers 𝑐 and 𝛼 such that for any pair of the output 𝑦(𝑡) ∈
ℝ𝑚 of (27),

‖𝑦(𝑡) − 𝑦∗‖ ≤ 𝑐𝑒−𝛼(𝑡−𝑡0)‖𝑥(𝑡0) − 𝑥∗(𝑡0)‖, ∀𝑡 ≥ 𝑡0, (28)

where 𝑥(𝑡0), 𝑥∗(𝑡0) are the initial conditions of the state 𝑥(𝑡),
𝑥∗(𝑡0), respectively.

In the subsequent corollary, we analyze the OES of (27)
through its variational system (31).

Corollary 4.3 (Output Exponential Stability Lyapunov Con-
dition). The time-invariant system (27) with its correspond-
ing variational system (31) is OES if there exist positive
constants 𝛼1, 𝛼2, 𝛼3 ∈ ℝ≥0, 𝑝 ∈ ℝ≥1 and a continuous
function 𝑉 ∶ ℝ𝑛 ×ℝ𝑛× → ℝ≥0 such that

𝛼1‖𝜈‖
𝑝 ≤ 𝑉 (𝑥, 𝜉) ≤ 𝛼2‖𝜉‖

𝑝, ∀𝑥, 𝜉 ∈ ℝ𝑛 (29)

where 𝜈 ∶= 𝜕ℎ
𝜕𝑥 (𝑥) ⋅ 𝜉, and such that

𝜕𝑉
𝜕𝑥

𝑓 + 𝜕𝑉
𝜕𝜉

𝜕𝑓
𝜕𝑥

𝜉 ≤ −𝛼3𝑉 (30)

holds.

Proof. The variational system of (27) is
{

�̇� = 𝜕𝑓
𝜕𝑥 (𝑥(𝑡)) ⋅ 𝜉,

𝜈 = 𝜕ℎ
𝜕𝑥 (𝑥(𝑡)) ⋅ 𝜉,

(31)

If conditions (29)-(30) are satisfied then using similar argu-
ments as in the proof of Theorem 3.2, the variational system
(31) is OES. Applying Proposition 3.1, we can conclude that
the system (27) is output contraction. As 𝑦∗ represents one of
admissible output of (27), and (27) is output contractive, it
follows all the outputs will exponentially converge to 𝑦∗.

Example 4.4. Consider the following time-invariant system

⎧

⎪

⎨

⎪

⎩

�̇�1 = −3𝑥2 − sin(𝑥1 + 𝑥2),
�̇�2 = −3𝑥1 + cos(𝑥1 + 𝑥2),
𝑦 = 𝑥1 + 𝑥2,

(32)

where 𝑥(𝑡) ∈ ℝ𝑛 is the state vector and 𝑦(𝑡) ∈ ℝ𝑚

is the output. The left of Figure 2 shows the trajecto-
ries of (32) originating from

[ 3
3
]

. This plot shows that
(32) is unstable. The variational system of system (32)

is given by

⎧

⎪

⎨

⎪

⎩

�̇�1 = −3𝜉2 − (𝜉1 + 𝜉2) cos(𝑥1 + 𝑥2),
�̇�2 = −3𝜉1 + (𝜉1 + 𝜉2) sin(𝑥1 + 𝑥2),
𝜈 = 𝜉1 + 𝜉2.

By

taking 𝑉 (𝑥, 𝜉) = (𝜉1 + 𝜉2)2 as the Lyapunov function, we
can fulfill (29) by choosing 𝛼1 = 1, 𝛼2 = 2, and 𝑝 = 2.
The time-derivative of 𝑉 (𝑥, 𝜉) satisfies �̇� (𝑥, 𝜉) = −2

(

3 −
cos(𝑥1+𝑥2)+sin(𝑥1+𝑥2)

)

(𝜉1+𝜉2)2. Consequently, (30) can

be satisfied by taking 𝛼3 = 2. Thus, the system (32) satisfies
the hypotheses for OES as given in Corollary 4.3. The output
associated with the initial condition

[ 3
3
]

is shown in the right
plot of Figure 2, which shows that it clearly converges to an
equilibrium 𝑦∗≈ 0.246.
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Figure 2: The plot of trajectories and outputs of the system in
Example 4.4 initialized at

[

3
3
]

.

5. Conclusion
This paper introduces the notion of output contraction

to characterize the contraction behavior of a nonlinear time-
varying system via its output map. We derive a necessary
and sufficient condition that establishes a link between the
output contraction property of the original system and the
output exponential stability (OES) of its variational system.
Additionally, we introduce the output contraction Lyapunov
condition to guarentee OES of the variational system.
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