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Abstract

In this paper the finite horizon linear quadratic regulator (LQR) problem for switched linear differential algebraic
equations is studied. It is shown that for switched DAEs with a switching signal that induces locally finitely many
switches the problem can be solved by solving several LQR problems for non-switched DAE recursively. First, it is
shown how to solve the non-switched problems for index-1 DAEs followed by an extension of the results to higher index
DAEs. The resulting optimal control can be computed based on the solution of a Riccati differential equation expressed
in terms of the differential system matrices. The paper concludes with the extension of the results to the LQR problem
for general switched DAEs.
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1. Introduction

In this paper, we aim to find necessary and sufficient
conditions for the existence of an input that solves the fi-
nite horizon linear quadratic regulator problem for switched
differential-algebraic equations.

Problem 1. [LQR for switched DAEs] Find an input u
that minimizes

J(x0, u, t0) =

∫ tf

t0

∥y(t)∥2 dt+ x(t−f )Px(t
−
f ), (1)

s.t. Eσẋ = Aσx+Bσu, (2a)

y = Cσx+Dσu, (2b)

x(t−0 ) = x0, (2c)

x(t−f ) ∈ Vend, (2d)

where σ : [t0, tf ) → N is a given piecewise constant switch-
ing signal, x is the state, the matrices Ep, Ap ∈ Rn×n form
a regular matrix pair, (i.e., det(sE−A) is not indentically
zero), Bp ∈ Rn×m, Cp ∈ Rq×n and Dp ∈ Rq×m, p ∈ N,
P = P⊤ ∈ Rn×n is some symmetric positive semi-definite
matrix and Vend ⊆ Rn is some subspace.
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Switched differential algebraic equations (swDAEs) of
the form (2a) arise naturally when modeling physical sys-
tems with certain algebraic constraints on the state vari-
ables; examples of applications of non-switched DAEs in
electrical circuits (with distributional solutions) can be
found, e.g., in [1]. For non-switched DAEs, these con-
straints are often eliminated such that the system is de-
scribed by ordinary differential equations. However, in the
case of switched systems, the elimination process of the
constraints is in general different for each individual mode
and therefore there does in general not exist a description
as a switched ODE with a common state variable. This
problem can be overcome by studying switched DAEs di-
rectly.

In the context of linear systems the linear quadratic
regulator (LQR) problem on both the finite and infinite
horizon has been studied extensively, see [2, 3, 4, 5, 6] for
results on ODEs and [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
for DAEs. Most recent studies regarding the optimal con-
trol problem for DAEs focus on finding solutions based
on the Lure inequality or an extension of the Kalman-
Yakubovich-Popov lemma [17, 18, 19]; further results have
been opbtained in the context of model predictive control
[20, 21, 22, 23]. For switched differential algebraic equa-
tions it seems that so far only qualitative properties such as
controllability, stabilizability [24, 25, 26, 27, 28, 29, 30, 31],
and observability have been studied [32, 33, 34, 35, 36, 37,
38]. To the best of the authors knowledge quantitative
properties such as optimal control have not been studied
for switched DAEs. This paper aims to close this gap in
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the literature.
As trajectories of switched DAEs generally exhibit jumps

(or even impulses), which may exclude classical solutions
from existence, the piece-wise smooth distributional solu-
tion framework introduced in [39] is adopted, i.e. (x, u) ∈
Dn+mpwC∞ , where DpwC∞ denotes the space of piece-wise smooth
distributions. In particular, Problem 1 is considered in a
piece-wise smooth distributional setup. Since within this
setup, the integral over the norm squared of a Dirac im-
pulse is not well defined, it follows directly that in order
to have finite cost, the output (2b) needs to be impulse-
free. Focusing on solutions that result in an impulse-free
output, we denote the output as a piece-wise continuous
function, whereas it is actually a distribution.

We consider Problem 1 under the assumption that the
switching signal does not induce chattering behavior, i.e.,
we assume that it induces locally finitely many switches.
Since the switching signal could still induce infinitely many
switches, which is troublesome for solving the problem
in finitely many steps, we consider the bounded interval
[t0, tf ). In this interval thus only finitely many switches
are present.

For many applications, it is of interest to extend an
optimal solution in an impulse-free way on the interval
[tf ,∞). This is the case for example in choosing suitable
terminal costs if the LQR problem is to be solved on a
receding horizon. To allow for such extensions, we impose
the subspace endpoint constraint (2d) to the state at t−f .
As we will show, this subspace endpoint constraint fits
naturally in the LQR problem for switched DAEs as there
exists a solution to Problem 1 if and only if the initial value
x0 is contained in a certain subspace.

The remainder of the paper is structured as follows.
First mathematical notation and preliminaries are intro-
duced in Section 2. Then the approach to solving Prob-
lem 1 is formulated in Section 3 and the main result is pre-
sented. In Section 4 necessary and sufficient conditions for
solvability of Problem 1 for non-switched DAEs of index-1
presented and it is shown how to generalize these results
to arbitrary index-DAEs in Section 5.

2. Mathematical preliminaries

In this section we recall some notation and properties
related to the non-switched DAE

Eẋ = Ax+Bu. (3)

In the following, we call a matrix pair (E,A) and the as-
sociated DAE (3) regular iff the polynomial det(sE − A)
is not the zero polynomial. Recall the following result on
the quasi-Weierstrass form[40].

Proposition 1. A matrix pair (E,A) ∈ Rn×n × Rn×n
is regular if, and only if, there exist invertible matrices
S, T ∈ Rn×n such that

(SET, SAT ) = ([ I 0
0 N ] , [ J 0

0 I ]) , (4)

where J ∈ Rn1×n1 , 0 ⩽ n1 ⩽ n, is some matrix and N ∈
Rn2×n2 , n2 := n−n1, is a nil-potent matrix of order ν ∈ N.
In particular, ν is referred to as the index of (3).

The matrices S and T can be calculated by using the
so-called Wong sequences [40, 41]:

V0 := Rn, Vi+1 := A−1(EVi), i = 0, 1, ...

W0 := {0}, Wi+1 := E−1(AWi), i = 0, 1, ...

The Wong sequences are nested and get stationary after
finitely many iterations. The limiting subspaces are de-
fined as follows:

V∗ :=
⋂
i

Vi, W∗ :=
⋃

Wi.

For any full rank matrices V,W with imV = V∗ and
imW = W∗, the matrices T := [V,W ] and S := [EV,AW ]−1

are invertible and (4) holds. Based on the Wong sequences
we define the following projector and selectors.

Definition 2. Consider the regular matrix pair (E,A)
with corresponding quasi-Weierstrass form (4). The con-
sistency projector of (E,A) is given by

Π(E,A) := T [ I 0
0 0 ]T

−1, (5)

the differential and impulse selector are given by

Πdiff
(E,A) := T [ I 0

0 0 ]S, Π
imp
(E,A) := T [ 0 0

0 I ]S. (6)

In all three cases, the block structure corresponds to
the block structure of the quasi-Weierstrass form. Fur-
thermore, we define

Adiff := Πdiff
(E,A)A, Eimp := Πimp

(E,A)E,

Bdiff := Πdiff
(E,A)B, Bimp := Πimp

(E,A)B.

A classical solution, i.e., a differentiable or locally inte-
grable solution, to (3) in terms of these matrices yields
x = xdiff + ximp,where xdiff and ximp satisfy

ẋdiff = Adiffxdiff +Bdiffu, xdiff(t−0 ) = Πx0, (7)

ximp = −
ν−1∑
i=0

(Eimp)iBimpu(i). (8)

Observe that for index-1 systems we find ximp = −Bimpu.
Note that all the above-defined matrices do not depend on
the choice of transformation matrices S and T ; they are
uniquely determined by the original matrix pair (E,A).

The switched DAE (2a) usually will not have classical
solutions. Due to the switching between modes ximp(t−i ) ̸=
ximp(t+i ) in general. Consequently, the state can contain
jumps or even Dirac impulses. We therefore utilize the
piecewise-smooth distributional framework as introduced
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in [39], i.e., x and u are vectors of piecewise-smooth dis-
tributions given by

DpwC∞ :=

D = fD +
∑
t∈T

Dt

∣∣∣∣∣∣
f ∈ C∞

pw, T ⊆ R is
discrete,∀t ∈ T : Dt

∈ span{δt, δ′t, δ′′t , ...}

 ,

where C∞
pw denotes the space of piecewise-smooth func-

tions, fD denotes the regular distribution induced by f , δt
denotes the Dirac impulse with support {t} and δ′t denotes
distributional derivative of δt. For D = fD +

∑
t∈T Dt ∈

DpwC∞ three types of “evaluation at time t” are defined:
left side evaluation D(t−) := f(t−), right side evaluation
D(t+) := f(t+) and the impulsive part D[t] := Dt if t ∈ T
and D[t] = 0 otherwise.

It can be shown (cf. [42]) that the space DpwC∞ can be
equipped with a multiplication, in particular, the multipli-
cation of a piecewise-constant function with a
piecewise-smooth distribution is well defined and the
switched DAE (2a) can be interpreted as an equation within
the space of piecewise-smooth distributions. Specifically,
restrictions of x and u to intervals, are well defined. Given
the notation xI for the restriction of x to the interval
I ⊆ R, it is shown in [39] that the initial trajectory problem
(ITP)

x(−∞,t0) = x0(−∞,t0)
, (9a)

(Eẋ)[t0,∞) = (Ax)[t0,∞) + (Bu)[t0,∞), (9b)

has a unique solution for any initial trajectory if, and only
if, the matrix pair (E,A) is regular. Note that it can
be shown that the solution of (9) on [t0,∞) is uniquely
determined by x(t−0 ), hence it is justified to replace (9a)
by x(t−0 ) = x0 for some x0 ∈ Rn.

The impulsive part of a solution of (9) is given by

x[t0] = −
ν−1∑
i=0

(
Eimp

)i+1 (
x(t−0 )− x(t+0 )

)
δ(i). (10)

For a single mode, the concept of impulse-controllable space
is defined as follows.

Definition 3. The impulse-controllable space for (3) is
given by

Cimp
(E,A,B) :=

{
x0

∣∣∣∣ ∃(x, u) ∈ (DpwC∞)n+m solving (9)
s.t. x(t−0 ) = x0 and (x, u)[t0] = 0.

}
.

Furthermore, the DAE is called impulse-controllable if all
initial values are impulse-controllable, i.e., Cimp = Rn.

It can be shown (see e.g. [31, Lem. 13]), that

Cimp
(E,A,B) = imΠ(E,A) + ⟨Eimp, Bimp⟩+ kerE, (11)

where

⟨Eimp, Bimp⟩ := im[Bimp, EimpBimp, . . . , (Eimp)n−1Bimp].

Lemma 4 ([43, Prop. 3]). The regular DAE (3) is impulse
controllable if and only if

i) imE +A kerE + imB = Rn,

ii) There exists a matrix L such that the closed loop
with feedback u = Lx results in an index-1 matrix
pair (E,A+ BL); the latter can be characterized by
imE + (A+BL) kerE = Rn.

We conclude this section with an explicit definition of
a solution to the switched DAE (2a).

Definition 5. A distribution (x, u) ∈ D(n+m)
pwC∞ is called a

solution to the switched DAE (2a) for a given right con-
tinuous switching signal σ with switching times t0, t1, ...,,
if (x, u) considered on each interval [tk, tk+1) is a local
(distributional) solution to ITP (9) on [tk, tk+1) with E =
Eσ(tk), A = Aσ(tk) and B = Bσ(tk), where the initial con-

dition x(t−k ) is either given by (2c) or by the final value of
the solution from the previous interval.

Since by assumption each matrix pair (Ep, Ap) is regu-
lar, it follows that each local ITP is uniquely solvable and
hence the overall switched DAE is uniquely solvable for
any given input and any given initial value x0.

3. Problem Formulation and approach

As mentioned in the introduction, we consider Prob-
lem 1 in a distributional setup. As such, the aim is to
find a distribution u ∈ DmpwC∞ that minimizes a quadratic
cost functional subject to a switched differential-algebraic
equation. In order to utilize the distributional solution
framework and to avoid technical difficulties in general,
we only consider systems with a switching signal from the
following class

S :=

{
σ : R → N

∣∣∣∣ σ is right continuous with a
locally finite number of jumps

}
,

i.e., we exclude an accumulation of switching times (see
[39]). Since a bounded interval [t0, tf ) is considered in
Problem 1, the switching signal thus induces n ∈ N switches
on this interval, each occurring at tk, where k ∈ {1, 2, ..., n}.
The switching signal is assumed to be known a priory; in
particular, solvability and the solution of Problem 1 de-
pends on the specific switching signal. By appropriately
relabeling the matrices we can therefore assume without
loss of generality that

σ(t) = k, for tk ⩽ t < tk+1, (12)

where tn+1 := tf .
The switching signal is thus not regarded as a con-

trol input. Consequently, a switched differential algebraic
equation of the form (2a) with a switching signal σ ∈ S
can be regarded as (piecewise-constant) time-varying lin-
ear systems. Such systems have a linear solutions space
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where the sum of solutions is also a solution. Further-
more, the subspace endpoint constraint (2d) is also a lin-
ear constraint and hence the sum of solutions satisfying
(2d) will also satisfy (2d). Together with the fact that the
cost functional (1) is quadratic in the state and input all
ingredients are present to prove several important prop-
erties of Problem 1. Namely if there exists an input that
solves Problem 1 the optimal cost is quadratic in the ini-
tial value and the optimal input is linear in the state, i.e.,
it is a feedback.

Lemma 6. If there exists an input u ∈ (DpwC∞)m that
solves Problem 1 then u(t+) = F (t)x(t−) for some F :
R → Rm×n.

The (technical) proof can be found in the Appendix.
Note that we only consider piecewise-smooth solutions,
hence x(t−) ̸= x(t+) for only finitely many t ∈ [t0, tf ) and
hence we can assume that the input is right-continuous
and we can simply write u(t) = F (t)x(t) in the following.

Corollary 7. If there exists an input that solves Problem 1
then the optimal cost J(x0, u, t0) is quadratic in x0, i.e.,

J(x0, u, t0) = x⊤0 K(t0)x0,

for some K : R → Rn×n.

Proof. In the proof of Lemma 6 it was shown that the map
x0 7→ V (x0, t0) satisfies the parallelogram equality (A.2).
Hence it is a (semi-) norm induced by an inner product.
Consequently, there exists a (positive semi-definite) matrix
K(t0) ∈ Rn×n such that V (x0, t0) = x⊤0 K(t0)x0.

The result of Lemma 6 also leads to the observation
that the space of initial values for which Problem 1 is solv-
able must be a subspace.

Definition 8. The set of initial values for which Problem 1
is solvable on [t0, tf ) is given by

V init
t0 :=

{
x0 ∈ Rn

∣∣∣∣ ∃ u that solves Problem 1 on
[t0, tf ) satisfying x(t

−
0 ) = x0

}
.

Corollary 9. The set V init
t0 is a subspace.

Proof. Suppose that x0, y0 ∈ V init
t0 . Since the inputs ux0

and uy0that solve Problem 1 for x(t−0 ) = x0 and x(t
−
0 ) = y0

are feedbacks, it follows that αux0
+ βuy0 is the optimal

input that solves Problem 1 for x(t−0 ) = z0 = αx0 + βy0.
Consequently, z0 ∈ V init

t0 and thus V init
t0 is a subspace.

Let V init
ti be the subspace of initial values for which

there exists a solution to Problem 1 on the interval [ti, tf )
with terminal subspace Vend and terminal cost matrix P .
Furthermore, let the optimal cost matrix be given byKi(ti),
that is, the solution to Problem 1 yields an optimal cost
J(xi, u, ti) = x⊤i K(ti)xi. Then the following lemma is a
reformulation of the Bellman principle of optimality.

Lemma 10. Problem 1 with initial value x0, terminal cost
matrix P and terminal subspace Vend has a solution on
[t0, tf ) if and only if Problem 1 on the interval [t0, ti) with
initial value x0, terminal cost matrix Ki(ti) and terminal
subspace V init

ti has a solution.

Proof. The statement follows directly from the Bellman
principle of optimality [44].

As a consequence of Lemma 10, it follows that if we
can characterize V init

ti and we are able to compute the cor-
responding cost matrix Ki(t) and corresponding optimal
control, we can reduce the problem of solving Problem 1
on the interval [t0, tf ) to solving Problem 1 on the inter-
val [t0, ti). Moreover, by choosing ti = tn, Problem 1 on
the interval [tn, tf ) reduces to an optimal control problem
subject to a non-switched DAE. By applying Lemma 10
recursively and choosing each ti to be a switching time, it
follows that we can solve Problem 1 by solving n optimal
control problems for non-switched DAEs, each defined on
the interval [ti−1, ti), i ∈ {n, n − 1, ..., 1}. Therefore, we
will first focus on the following problem.

Problem 2. Find an input u ∈ (DpwC∞)m that minimizes

J(x0, u, t0) =

∫ tf

t0

∥y(t)∥2 dt+ x(t−f )Px(t
−
f ), (13)

s.t. Eẋ = Ax+Bu, (14a)

y = Cx+Du, (14b)

x(t−0 ) = x0 ∈ Rn, (14c)

x(t−f ) ∈ Vend, (14d)

on the interval [t0, tf ), x ∈ DnpwC∞ is the state, E,A ∈
Rn×n, B ∈ Rn×m, C ∈ Rq×n and D ∈ Rq×m, P = P⊤ ∈
Rn×n is some symmetric positive semi-definite matrix and
Vend ⊆ Rn is some subspace.

We are able to solve Problem 2 without assuming index-
1 or impulse controllability, but we will first focus on how
to solve Problem 2 for the simpler index-1 case. Then,
we will show how to rewrite Problem 2 into an optimal
control problem for an index-1 DAE (Problem 3) and how
the solvability conditions and the optimal control for the
latter provides a solution for the former.

A phenomenon already well known for ODE optimal
control problems is that the cost for the input (given by
D) needs to be non-singular to avoid impulsive optimal
controls. We will make a similar assumption here as well,
which reads as follows:

rank (D − CBimp) = m. (15)

The main result for the index-1 case of Problem 2 is then
given by the forthcoming Theorem 21, which shows that
Problem 2 is solvable if, and only if, the initial value x0 is
an element of a subspace V init which is defined in terms
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of the given final subspace Vend. Furthermore, an explicit
solution for the optimal control is provided.

Now utilizing Lemma 10 we can define recursively a
sequence of subspaces V init

ti as the subspace of feasible ini-
tial values for Problem 2 for mode i considered on the
time interval [ti, ti+1) with final subspace V init

ti+1
(where

V init
tn+1

:= Vend). Together with the non-singular input-cost
assumption

rank (Dp − CpB
imp
p ) = m. (16)

for p ∈ {0, 1, ..., n}, we can conclude that Problem 1 with
regular, index-1, matrix pairs (Ep, Ap) is solvable if, and
only if, x0 ∈ V init

t0 . Furthermore, we can explicitly provide
the optimal control:

Theorem 11. Consider the regular, index-1, switched DAE
(2) satisfying (16) for which Problem 1 is solvable, i.e.
x0 ∈ V init

t0 . Then the optimal input is given by

u(t) = −R−1
σ(t)(B

diff⊤
σ(t) K(t) + S⊤

σ(t))Πσ(t)x(t),

where Rσ = (Dσ−CσBimp
σ )⊤(Dσ−CσBimp

σ ), Sσ = (Dσ−
CσB

imp
σ )⊤Cσ and Πi is a projector resulting from the Wong

sequence based on (Ei, Ai). Finally, K(t) is given by the
solution of

K̇ = −Adiff⊤
i K −KAdiff

i

+ (Si +K⊤Bdiff
i )R−1

i (Bdiff⊤
i K + S⊤

i )−Qi,

on [ti, ti+1), where Qi = C⊤
i Ci and boundary conditions

K(t−i+1) = Ψ⊤
i K(t+i+1)Ψi, i ∈ {0, 1, ..., n− 1},

K(t−n+1) = Ψ⊤
n PΨn.

where Ψi = (I − Bimp
i Ni)Πi, for some Ni that satisfies[

I 0 Ni
]
kerHi = 0, with

Hi =

 Bimp⊤
i PBimp

i Bimp⊤
i (I −ΠVend

i
)⊤

(I −ΠVend
i

)Bimp
i 0

−Π⊤
i PB

imp
i −Π⊤

i (I −ΠVend
i

)⊤


⊤

. (17)

and ΠVend
i

is a projector onto the subspace Vend
i = V init

ti+1
.

Finally, the optimal cost is given by

min
u
J(x0, u, t0) = x⊤0 K(t0)x0.

In the next section we will show how to arrive at the
result of Theorem 11 in the case of a non-switched DAE,
i.e., the main result for Problem 2. Then we will show
how this result can be utilized to obtain necessary and
sufficient conditions for solvability of Problem 1. Finally,
we will show how these results should be modified to treat
arbitrary index (switched) DAEs.

4. Optimal control for non-switched index-1 DAEs

As mentioned previously, we will consider first the op-
timal control problem for non-switched DAEs, i.e., Prob-
lem 21. Furthermore, we will first consider Problem 2 sub-
ject to an index-1 DAE. As such, the state can be decom-
posed as

x = xdiff + ximp = xdiff −Bimpu, (18)

where the differential state component satisfies

ẋdiff = Adiffxdiff +Bdiffu, xdiff(t−0 ) = Πx0. (19)

respectively. As a consequence, we can state the following
result which follows from Lemma 6.

Corollary 12. If there exists an input u ∈ (DpwC∞)m that
solves Problem 2 where the DAE (14) is of index-1, then
u(t) = F (t)xdiff(t) for some F : R → Rm×n.

Proof. After decomposing the state as (18) and consider-
ing the ODE dynamics (19) the proof is analogous to the
proof of Lemma 6.

4.1. Terminal cost

Decomposing the state as in (18) allows us to express
the terminal cost as a quadratic function of the differential
state xdiff(t−f ) and the input. Consequently, an input u

with a value u(t−f ) that minimizes the terminal cost with

respect to the resulting xdiff(t−f ) can be chosen. However,

as the terminal cost penalizes the value of u at t−f from
the left and this value needs to be well-defined, the input
u needs to be continuous on at least [tf − ε, tf ) for some
ε > 0. Therefore altering a solution (xdiff , u) such that the
output has a desired value at t−f will in general influence
the running cost. As a result, we can not optimize the
running cost and the terminal cost independently of each
other. However, the following result shows that the value
of the optimal input u(t−f ) minimizes the terminal cost

with respect to the value xdiff(t−f ) ∈ imΠ.

Lemma 13. Let u be an input that solves Problem 2 and
let xdiff be the corresponding optimal trajectory. Denote
u(t−f ) = ψ∗ ∈ Rm and xdiff(t−f ) = ζ∗ ∈ imΠ. Then ψ∗ is
a minimizer of the following problem.

min
ψ∈Rm

(ζ∗ −Bimpψ)⊤P (ζ∗ −Bimpψ),

s.t. ζ∗ −Bimpψ ∈ Vend.

(20)

The proof can be found in the Appendix.

1We have already studied this problem with Vend = Rn in [45];
but the consideration of a general subspace Vend increases the diffi-
culty significantly and is crucial for utilizing the result in the context
of switched DAEs.
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Lemma 14. For a given ζ ∈
(
Vend + imBimp

)
∩ imΠ the

vector ψ ∈ Rm solves

min
ψ∈Rm

(ζ −Bimpψ)⊤P (ζ −Bimpψ),

s.t. ζ −Bimpψ ∈ Vend,

(21)

if and only if ζ = [ 0 0 Π ]h and ψ = [ I 0 0 ]h for some
h ∈ kerH, where

H :=

 Bimp⊤PBimp Bimp⊤(I −ΠVend)⊤

(I −ΠVend)Bimp 0
−Π⊤PBimp −Π⊤(I −ΠVend)⊤

⊤

(22)

and ΠVend is any projector onto Vend.

The proof can be found in the Appendix.
Given the result of Lemma 14, we can compute which

states ζ ∈ imΠ are possibly an endpoint of an optimal tra-
jectory. Moreover, for each potential endpoint ζ ∈ imΠ we
can compute a value of ψ that solves (21). Consequently,
for a given optimal solution (xdiff , u) where xdiff(t−f ) = ζ,
we are able to express the terminal cost of this solution in
terms of xdiff(t−f ) only.

Corollary 15. If there exists an input u that solves Prob-
lem 2 then the optimal terminal cost satisfies

x(t−f )
⊤Px(t−f ) = xdiff(t−f )

⊤Ψ⊤PΨxdiff(t−f ),

where Ψ = (I −BimpN), for any N satisfying[
I 0 −NΠ

]
kerH = 0, (23)

where H is given by (22)

Proof. Since (x, u) is solving Problem 2 it follows from
Lemma 13 that ψ = u(t−f ) minimizes (20) for ζ = xdiff(t−f ).

By Corollary 12 the optimal input is linear in xdiff , i.e.,
u = Nxdiff for some linear map N . Hence by Lemma 14,
N satisfies [ I 0 −NΠ ]h = 0 for any h ∈ kerH, i.e. (23) ac-
tually has a solution. Furthermore, for any other N̄ which
satisfies (23) it follows that N̄ζ = [ 0 0 N̄Π ]h = [ I 0 0 ]h =
[ 0 0 NΠ ]h = Nζ, hence the effective optimal feedback does
not depend on the specific choice of N satisfying (23).

Although the minimum of the objective function in (21)
is uniquely given for a particular xdiff ∈ Rn, a minimizer
u ∈ Rm is not necessarily unique. However, the following
result can still be concluded regarding an optimal input.

Corollary 16. If an input u solves Problem 2 then the
optimal feedback satisfies u(t−f ) = Nxdiff(t−f ) for some N
satisfying (23).

4.2. Running cost

We will now turn our attention to the running cost and
the optimal control given on the half-open interval [t0, tf ).

To that extent, we will write

∥y(t)∥2 =

[
x
u

]⊤ [
C
D

] [
C D

] [x
u

]
,

=

[
xdiff

u

]⊤ [
C⊤

D̄⊤

] [
C D̄

] [xdiff
u

]
,

where D̂ = D − CBimp. Then, after defining Q = C⊤C,
S = D̂⊤C and R = D̂⊤D̂, we can rewrite the cost func-
tional as

J(x0, u, t0) =

∫ tf

t0

[
xdiff

u

]⊤ [
Q S⊤

S R

] [
xdiff

u

]
dt

+ x(t−f )
⊤Px(t−f ).

Lemma 17. Assume that the matrices C and D satisfy
(15). Then D̂ := D − CBimp has full column rank and
D̂⊤D̂ is positive definite.

Proof. Since D − CBimp has full column rank it follows
directly that D̂⊤D̂ is invertible.

Remark 18. As already mentioned in the introduction,
the assumption (15) can be regarded as the differential-
algebraic version of the assumption that D⊤D is positive
definite, which is commonly made in the LQR problem
for ordinary differential equations. The assumption that
D⊤D is positive definite is usually made to penalize every
input action in the cost. As the solution x of a DAE
has a component that is directly determined by the input,
the cost functional can penalize the input also indirectly
via penalizing the corresponding state component. Hence
penalizing all input actions is equivalent to the condition
(15).

Lemma 19. If an input u ∈ (DpwC∞)m solves Problem 2
then

u(t) = −R−1
(
Bdiff⊤K(t) + S⊤)xdiff(t), (24)

where K solves

K̇ = −Adiff⊤K −KAdiff −Q

+ (S +K⊤Bdiff)R−1(Bdiff⊤K + S⊤), (25)

with terminal condition K(t−f ) = Ψ⊤PΨ.

Proof. For any symmetric-matrix-valued continuously dif-
ferentiable function K(t) defined on [t0, tf ) we can write
the cost-functional as

J(xdiff , u, t0)− x⊤0 K(t0)x0

=

∫ tf

t0

[
xdiff

u

]⊤ [
Q S⊤

S R

] [
xdiff

u

]
+ d

dt (x
diff(t)⊤K(t)xdiff(t)) dt

+ xdiff(t−f )
⊤
(
Ψ⊤PΨ−K(t−f )

)
xdiff(t−f ).
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Taking the two integrals together and computing the
second integral using the differential equation and the com-
pletion of the squares formula, we obtain (omitting the
dependence on t):

xdiff⊤Qxdiff+2xdiff⊤S⊤u+ u⊤Ru+
d

dt
xdiff⊤Kxdiff

=xdiff⊤(Q+Adiff⊤K +KAdiff + K̇)xdiff⊤

+ 2u⊤(BdiffK⊤ + S)xdiff + u⊤Ru

=xdiff⊤KBdiff⊤R−1BdiffKxdiff

+ 2u⊤(BdiffK⊤ + S)xdiff + u⊤Ru

+ xdiff⊤Wxdiff

=∥Ru+ (Bdiff⊤K + S⊤)xdiff∥2

+ xdiff⊤Wxdiff ,

where

W := K̇ +Adiff⊤K +KAdiff

− (S +K⊤Bdiff)R−1(Bdiff⊤K + S⊤) +Q.

Consequently, we can rewrite the cost in Problem 2 as

J(x0, u, t0) =x
⊤
0 K(t−0 )x0

+

∫ tf

t0

∥Ru(t) + (Bdiff⊤K(t) + S⊤)xdiff(t)∥2

+ xdiff(t)⊤W (t)xdiff(t) dt

+ xdiff(t−f )
⊤
(
Ψ⊤PΨ−K(t−f )

)
xdiff(t−f ),

where Ψ = (I −BimpN)Π for some N satisfying (23).
Under the assumption (15), it follows from the lit-

erature on solutions on the Riccati differential equation
(cf. Theorem 10.7 in [46]) that a function K satisfy-
ing K(t−f ) = Ψ⊤PΨ such that W = 0 can always be
chosen. Hence by choosing K(t) such that W = 0 and
K(t−f ) = Ψ⊤PΨ we obtain that the cost J(xdiff , u) can be
expressed as

J(x0, u, t0)− x⊤0 K(t−0 )x0

=

∫ tf

t0

∥Ru(t) + (Bdiff⊤K(t) + S⊤)xdiff(t)∥2 dt. (26)

Clearly without the constraint xdiff(t−f ) − Bimpu(t−f ) ∈
Vend it follows that J(x0, u) is minimized if the input is
given by

u = −R−1(Bdiff⊤K + S⊤)xdiff .

Next, we will show that for the problem with the constraint
inf J(x0, u, t0) = x⊤0 K(t−0 )x0.

Case 1: xdiff(t−f ) ∈ Vend + imBimp

Suppose applying the input (24) to the initial condition x0
results in xdiff(t−f ) ∈ Vend + imBimp. Then consider the

input uδ = u+ ūδ where uδ is defined as

uδ =


0, t0 ⩽ t < tf − δ,

ϕ(t), tf − δ ⩽ t < tf − δ
2 ,

Nxdiff(t−f )− u(t−f ), tf − δ
2 ⩽ t < tf ,

for some N satisfying [ I 0 −N ] kerH, is constant and ϕ(t)
is chosen in such a way that the corresponding solution
xdiffδ satisfies xdiffδ (t−f ) = xdiff(t−f ) (which is always possi-
ble, cf. Lemma 28 in the Appendix).

Note that

xdiffδ (t−f )−Bimpuδ(tf ) = xdiff(t−f )−BimpNxdiffδ (t−f )

= xdiff(t−f )−BimpNxdiff(t−f ) ∈ Vend

and thus uδ is a feasible input.
It follows from (26) that for every ε > 0 there exists a

solution (xdiffδ , uδ) such that

J(xdiffδ , uδ, t0) = x⊤0 K(t−0 )x0 + ε

and thus we can conclude

inf J(xdiff , u, t0) = x⊤0 K(t−0 )x0.

However, the infimum is attained if and only if the input
is given by (24). Hence the result follows.

Case 2: xdiff(t−f ) ̸∈ Vend + imBimp

Suppose applying the input (24) to the initial condition
x0 results in xdiff(t−f ) ∈ Vend + imBimp. We will prove in
this case that there does not exist an optimal control. For
the sake of contradiction, assume that the optimal control
is given by ũ ∈ (DpwC∞)m. Then the solution (x̃diff , ũ)
must satisfy x̃diff(t−f ) ∈ Vend + imBimp, as the solution is
feasible.

Let y0 ∈ Rn, y0 ̸= x0 be an initial value such that
the solution (ydiff , u) with ydiff(t−0 ) = y0 and u given by
the feedback (24) satisfies ydiff(t−f ) = q. Recall, that the
optimal control is a feedback. As a consequence of the
linearity of the optimal control in the state, it must hold
that v = u − ũ is the optimal control for the initial value
z0 = y0 − x0. However, by linearity of solutions, the solu-
tion (zdiff , v) satisfies

zdiff(t−) = eA
diff t−ttz0 +

∫ t

t0

eA
diff (t−τ)Bdiffv(τ) dτ

= eA
diff t−ttx0 +

∫ t

t0

eA
diff (t−τ)Bdiff ũ(τ) dτ

− eA
diff t−tty0 −

∫ t

t0

eA
diff (t−τ)Bdiffu(τ) dτ

= x̃diff(t−)− ydiff(t−)

and consequently zdiff(t−f ) = 0. However, this implies that
z0 = 0, as a feedback, cannot control an initial condition to
zero unless it is zero. Hence we can conclude that x0 = y0,
which yields a contradiction. Hence there does not exist
an optimal control for x0.
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4.3. Combining the results

Thus far we have only been concerned with necessary
conditions for solvability of Problem 2. The reason that
the conditions in Corollary 19 are not sufficient in general
is that a feedback of the form (24) does not necessarily
ensure that all the constraints are satisfied. A solution
(xdiff , u) with u given by (24) and xdiff(t−0 ) = x0 ∈ imΠ
does not necessarily satisfy

xdiff(t−f )−Bimpu(t−f ) ∈ Vend,

nor

x(t−f )
⊤Px(t−f ) = xdiff(t−f )Ψ

⊤PΨxdiff(t−f ),

for any N for which [ I 0−N ] kerH = 0. Both these condi-
tions can be rewritten equivalently as

(I −ΠVend)(I −BimpΛ)xdiff(t−f ) = 0 (27)

and

(I −BimpΛ)⊤P ((I −BimpΛ)−Ψ⊤PΨ)xdiff = 0, (28)

where we have written

Λ := −R−1
(
Bdiff⊤Ψ⊤PΨ+ S⊤) ,

for convenience. However, it follows straightforwardly that
if a solution (xdiff , u) with xdiff(t−0 ) = x0 and u satisfying
(24) is such that (27) and (28) are satisfied the input is op-
timal. To prove this, we will first introduce the backward
state-transition matrix, defined similarly to [2] or [47] and
which also appears in [8].

Definition 20. The backwards state transition matrix for
the closed loop time-varying differential equation

ẋdiff =
(
Adiff −BdiffR−1(Bdiff⊤K + S⊤)

)
xdiff ,

is given by Ω(t, tf ), where K is a solution to (25) with
terminal condition K(t−f ) = Ψ⊤PΨ. In particular, the

state satisfies xdiff(t) = Ω(t, tf )x
diff(t−f ).

Theorem 21. Problem 2 is solvable if and only if

x0 ∈ V init := Ω(t0, tf ) ker ΞΠ, (29)

with

Ξ =

[
(I −ΠVend)(I −BimpΛ)

(I −BimpΛ)⊤P (I −BimpΛ)−Ψ⊤PΨ

]
where Ω(t0, tf ) is the backward state transition matrix as
defined in Definition 20 and the optimal control is given
by

u(t) = −R−1(Bdiff⊤K(t) + S⊤)xdiff(t), (30)

where K is a solution to (25) with terminal condition K(t−f ) =

Ψ⊤PΨ. Finally, the optimal cost is given by

J∗(x0, u, tf ) = xdiff(t−0 )K(t0)x
diff(t−0 )

and is quadratic in xdiff(t−0 ).

5. LQR for Higher-index DAEs

In the previous section, Problem 2 has been considered
where the DAE was assumed to be of index-1. This as-
sumption allowed us to decompose the state into a compo-
nent that solves an ODE and a feed-trough term depending
directly on the input. Furthermore, the solution (x, u) was
impulse-free regardless of the initial value as long as the
input was impulse-free. This decomposition can not be
made anymore if a higher index DAE is considered. As a
result of the higher index of the DAE, the state will also
depend on the derivatives of the input u and the state will
not necessarily be impulse-free if the input is impulse-free.

In fact, there exists an input that results in an impulse-
free solution (x, u) satisfying x(t−0 ) = x0 if and only if the
initial value is contained in the impulse-controllable space
Cimp. For such initial values, we will show in the following
a particular impulse-controllable DAE can be considered
equivalently instead of (14). Specifically, after applying a
preliminary feedback, an index-1 DAE can be considered.

For initial values x0 ̸∈ Cimp, i.e., initial values that are
not contained in the impulse-controllable space, a solution
x satisfying x(t−0 ) = x0 ̸∈ Cimp a Dirac impulse will occur
inevitably, i.e., regardless of the choice of input. However,
an optimal control might still exist for these initial values,
as long as the corresponding Dirac impulses are not visible
in the output. Combining these observations lead to the
following result.

Lemma 22. Consider the DAE (14) and assume it is
of arbitrary index. There exists an impulse-free input u ∈
(DpwC∞)m such that for the solution (x, u) satisfying x(t−0 ) =
x0 of (14) the output is impulse-free at t0, i.e., y[t0] =
Cx[t0]+Du[t0] = 0, if and only if x0 ∈ Cimp+Oimp where
Oimp is the impulse-unobservable space defined as

Oimp := ker

 CEimp

C(Eimp)2

...
C(Eimp)ν−1

 (31)

and ν is the index of nilpotency of Eimp.

Proof. The proof can be found in the Appendix.

As the condition x0 ∈ Cimp + Oimp is necessary and
sufficient for the existence of an impulse-free output, it is
a necessary condition for the existence of an impulse-free
input that minimizes (13), subject to (14). However, it
suffices to only consider initial values contained in Cimp.
The main reason for this is that initial values x0 ∈ (Cimp+
Oimp) \ Cimp will only produce a Dirac impulse at t0 if
a zero input is applied. This impulse will occur in the
unobservable space, the output will remain zero. Hence it
follows that u = 0 is trivially the optimal input.

Corollary 23. Consider the DAE (14). For any x0 ∈
Cimp + Oimp a solution (x, u) with x(t−0 ) = x0 satisfies
y(t) = ȳ(t) where ȳ(t) is the output corresponding to the
solution (x̄, u) with x̄(t−0 ) =Wx0 where W is an orthogo-
nal projector onto Cimp.
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Hence in the remainder of the paper, we will consider
initial values contained in the impulse-controllable space
of (14). However, instead of considering (14), which is not
impulse-controllable and of higher index, we can consider
an auxiliary impulse-controllable DAE. For there exists
an impulse-controllable DAE which has the same input-
output behavior as (14) for initial values x0 ∈ Cimp. Be-
cause this auxiliary DAE is impulse-controllable, it is much
more convenient to consider in the analysis than (14) itself.

Lemma 24. Let Cimp be the impulse-controllable space of
(14). A distribution (x, u) satisfying x(t−0 ) with x0 ∈ Cimp,
solves (14) if and only if it solves

EWẋ = Ax+Bv, (32)

y = Cx+Dv, (33)

where W is an orthogonal projector onto Cimp. More-
over the pair (EW,A) is regular and (32) is an impulse-
controllable DAE.

Proof. The proof can be found in the Appendix.

The auxiliary DAE (32) is much easier to analyze with
respect to the optimal control problem as for impulse-
controllable DAEs there exists a feedback that reduces the
index to 1, cf. Lemma 4. Let u = Lx+ v be such a feed-
back. After applying this feedback we obtain

Σaux :

{
EWẋ = (A+BL)x+Bv,

y = (C +DL)x+Dv,
(34)

which is of index-1. For index-1 DAEs the results have al-
ready been established and the following result shows that
these results can be carried over to (34). As such, to solve
Problem 2 subject to a higher index DAE, it suffices to
find an optimal input v that solves the following auxiliary
Problem.

Problem 3. Consider the DAE (14), let W be a pro-
jector onto Cimp corresponding to (14). Find an input
v ∈ (DpwC∞)m that solves the following problem:

min J(x0, v, t0) =

∫ tf

t0

∥ȳ(t)∥2 dt+ x(t−f )Px(t
−
f ), (35)

s.t. EWẋ = (A+BL)x+Bv, (36)

ȳ = (C +DL)x+Dv, (37)

x(t−0 ) = x0 ∈ Rn, (38)

x(t−f ) ∈ Vend, (39)

on the interval [t0, tf ), where L is a matrix, such that
(EW,A+BL) is of index-1.

Lemma 25. Let Cimp be the impulse-controllable space
corresponding to (14). There exists an input u ∈ DpwC∞

that solves Problem 2 subject to x0 ∈ Cimp if and only if
there exists an input v ∈ (DpwC∞)m that solves Problem 3
subject to x0 ∈ Cimp.

Furthermore, the optimal input that solves Problem 2
subject to (14) satisfies u = Lx+v, where v is the optimal
input that solves Problem 3.

Proof. As x0 ∈ Cimp it follows form Lemma 24 that the so-
lution (x, u) solves (14) if and only if it solves (32). Hence
we will consider solutions of (32). Applying a feedback to
(32) can be regarded as a change of coordinates[

x
u

]
=

[
I 0
L I

] [
x̄
v

]
. (40)

Writing (32) as[
EW 0

] [ẋ
u̇

]
=

[
A B

] [x
u

]
,

enables us to write[
EW 0

] [ ˙̄x
v̇

]
=

[
EW 0

] [ẋ
u̇

]
=

[
A B

] [I 0
L I

] [
x̄
v

]
=

[
(A+BL) B

] [x̄
v

]
.

Hence (x, u) solves (32) if and only if, (x̄, v) satisfying (40)
solves (34). Furthermore, it follows naturally from that if
u = Lx+ v that J(x,0 u) = J̄(x̄0, v).

Given a method to compute the optimal input to Prob-
lem 2, it remains to characterize the space for which the
problem can be solved. This space can easily be computed
based on the computation of the optimal input for Prob-
lem 3.

Lemma 26. Let V init
be the space of initial values for

which Problem 3 can be solved. Then the space of initial
values for which Problem 2 can be solved is given by

V init = V init ∩ (Cimp +Oimp), (41)

where Cimp and Oimp be the impulse-controllable space and
impulse-observable space corresponding to (14).

6. LQR for general switched DAEs

Given the results regarding Problem 2 where the DAE
is assumed to be of arbitrary index, the results for Prob-
lem 1 where each mode of (2a) is of arbitrary index follow
straightforwardly. A summarizing algorithm is presented
in Algorithm 1.

We illustrate the overall procedure with the following
illustrative (academic) example.

Example 27. Consider the switched DAE given by

ẋ =
[
1 1 0
1 0 1
1 1 2

]
+
[
1
0
0

]
u, 0 ⩽ t < 1,[

1 0 0
0 0 1
0 0 0

]
ẋ = −x+

[
1
0
1

]
u, 1 ⩽ t < 2,

ẋ =
[−1 0 0

0 0 0
0 0 0

]
x+

[
1
0
0

]
u, 2 ⩽ t < 3,
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Algorithm 1 LQR with subspace constraint

Input : Ei, Ai, Bi, Ci, Di, ti(i = 0, 1, . . . , n), P,Vend

Set V init
tn+1

:= Vend and Kn(t
−
n+1) := P

for i = n, n− 1, ..., 0 do
Step 1: Preconditioning
Compute Cimp

i via (11) and Oi via (31)
Choose any projector Wi onto Cimp

i

Utilizing Lemmas 4 and 24, choose Li such that
(EWi, Ai +BiLi) is of index 1

Define

(Ēi, Āi, B̄i, C̄i, D̄i)

:= (EiWi, Ai +BiLi, Bi, Ci +DiLi, Di)

Compute Π̄i, Ā
diff
i , B̄diff

i ,B̄imp
i via the Wong sequences of

(Ēi, Āi)
Step 2: Solve Riccati equations
Set Vend

ti+1
= V init

ti+1

Solve

K̇i = −Ādiff⊤
i Ki −KiĀ

diff
i

+ (S̄i +K⊤
i B̄diff

i )R̄−1
i (B̄diff⊤

i Ki + S̄⊤
i )− Q̄i,

on [ti, ti+1), with R̄i := (D̄i − C̄iB̄
imp
i )⊤(D̄i − C̄iB̄

imp
i ),

S̄i := (D̄i − C̄iB̄
imp
i )⊤C̄⊤, Q̄i := C̄⊤

i C̄i and boundary condi-
tion

Ki(t
−
i+1) = Ψ⊤

i Ki+1(t
+
i+1)Ψi, if i ̸= n

where Ψi = (I − B̄imp
i Ni)Π̄i, for some Ni that satisfies[

I 0 NiΠ̄i

]
kerHi = 0, with

Hi =


B̄imp⊤

i Ki(t
−
i+1)B̄

imp
i B̄imp⊤

i (I −ΠVend
ti+1

)⊤

(I −ΠVend
ti+1

)B̄imp
i 0

−Π̄⊤
i PB̄imp

i −Π̄⊤
i (I −ΠVend

ti+1
)⊤


⊤

and ΠVend
ti+1

is a projector onto the subspace Vend
ti+1

Step 3: Compute subspace V init
ti

Compute Ωi(ti, ti+1) (see Def. 20) for the system

ẋdiff =
(
Ādiff

i − B̄diff
i R̄−1

i (B̄diff⊤
i Ki + S̄⊤

i )
)
xdiff .

Compute V̄ init
ti = Ωi(ti, ti+1) ker ΞiΠ̄i, with

Ξi =

[
(I −ΠVend

ti+1
)(I − B̄impΛi)

(I − B̄impΛi)
⊤P (I − B̄impΛi)−Ψ⊤

i PΨi

]

where Λ := −R̄−1
i

(
B̄diff⊤

i Ψ⊤
i K(t−i+1)Ψi + S̄⊤

i

)
.

Compute V init
ti = V init

ti ∩ (Cimp
i +Oimp

i ).
end for

Step 4: Compute optimal control
Compute

u(t) = −R̄−1
σ(t)

(
B̄diff⊤

σ(t) Kσ(t)(t) + S̄⊤
σ(t)

)
Π̄σ(t)x(t),

together with the output

y = x+
[
1
0
0

]
u.

The cost functional to be minimized is thus given by

J(x0, u, 0) =

∫ 3

0

∥y(t)∥ dt,

subject to x(3−) ∈ span
{[

1
0
0

]}
:= Vend. In this particular

problem, the terminal cost matrix is given by P = 0.
Note that the mode active on 1 ⩽ t < 2 is impulse-

controllable, but not index-1. To that extent a preliminary
index-reducing feedback given by

u(t) =

{[
0 1 1

]
x(t) + v(t), 1 ⩽ t < 2,

v(t), otherwise,

is applied, resulting in

(Ē0, Ā0, B̄0, C̄0, D̄0) =
(
I,
[
1 1 0
1 0 1
1 1 2

]
,
[
1
0
0

]
, I,

[
1
0
0

])
,

(Ē1, Ā1, B̄1, C̄1, D̄1) =

([
1 0 0
0 0 1
0 0 0

]
,
[−1 1 1

0 0 0
0 1 1

]
,[

1
0
1

]
,
[
1 1 1
0 1 0
0 0 1

]
,
[
1
0
0

])
,

(Ē2, Ā2, B̄2, C2, D2) =
(
I,
[−1 0 0

0 0 0
0 0 0

]
,
[
1
0
0

]
, I,

[
1
0
0

])
,

The optimal feedback matrix on each interval [ti, ti+1),
i ∈ {0, 1, 2} is computed after solving

K̇i = −Ādiff⊤
i Ki −KiĀ

diff
i

+ (S̄i +K⊤
i B̄

diff
i )R̄−1

i (B̄diff⊤
i K + S̄⊤

i )− Q̄i,

Ki(t
−
i+1) = Ψ⊤

i Ki+1(t
+
i+1)Ψi,

where Ψi = (I − Bimp
i Ni)Π̄i for some Ni which satisfies

[ I 0 −NiΠ̄ ] kerHi = 0. and K2(3
−) = 0. The computation

yields

K1(2
−) =

[
0 0 0
0 1 0
0 0 1

]
, K0(1

−) =
[
0.39 0 0.38
0 0 0

0.38 0 2.40

]
,

K0(0
+) =

[
0.21 −0.03 0.07
−0.03 0.03 −0.19
0.07 −0.19 1.59

]
.

After computing the backward state transition matri-
ces Ξi it follows that

V init
2 = span

{[
1
0
0

]}
, V init

1 = span
{[

1
0

0.54

]
,
[
0
1
0

]}
,

V init
0 = span

{[
1
0

0.49

]
,
[

0
1

0.06

]}
.

Given the solution Ki we can compute the optimal input
and optimal state trajectory, which are shown in Figure 1
and 2, respectively. As can be seen, both the optimal input
and the optimal trajectory are piecewise continuous and
contain jumps. ⋄
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optimal u(t)

Figure 1: The optimal input u(t) that solves Problem 1

0 0.5 1 1.5 2 2.5 3

0

20

40

60

Optimal trajectory

x1(t)
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Figure 2: The corresponding optimal trajectory x(t) that solves

Problem 1 with initial value x0 = [ 32.98 52.30 19.46 ]⊤.

7. Conclusion

In this paper, the finite horizon LQR problem for switched
linear differential-algebraic equations has been studied. It
was shown that for switched DAEs with a switching sig-
nal that induces locally finitely many switches the problem
can be solved by solving LQR problems for non-switched
DAE repeatedly. First, it was shown how to solve the
non-switched problems for index-1 DAEs followed by an
extension of the results to higher index DAEs. The result-
ing optimal control can be computed based on the solution
of a Riccati differential equation expressed in terms of the
differential system matrices. Although these differential
systems matrices do not depend on a particular coordinate
transformation, it remains a future direction of research to
express the results in terms of the original system matrices,

Another natural direction of future research is to ex-
plore the admission of impulsive inputs. The authors sus-
pect however that the results in this direction would not

be much different than the ones already obtained in this
paper and the results on singular optimal control obtained
by Willems et all.

Appendix A. Proofs

Proof of Lemma 6

First we will show that the map x0 7→ u is linear, where
x(t−0 ) = x0 and u solves Problem 1; in particular, we will
show that λu is the optimal control for any initial value
λx0 and that for any initial values x0, z0 ∈ Rn for which
optimal inputs ux, uz exists, the input ux + uz is optimal
for the initial value x0 + z0.

To that extent, let V (x0, t) be the value function as

V (x0, t) = inf
u
J(x0, u, t0) (A.1)

Applying the input λu to an initial condition λx0 results
in a trajectory λx, due to the linearity of solutions of the
switched DAE. This means that J(λx0, λu) = λ2J(x0, u)
for any λ ∈ R and we can conclude that

λ2V (x0, t0) = λ2J(x0, u) = J(λx0, λu) = V (λx0, t0).

Hence we can conclude that if u is the optimal input for
x0 that λu is the optimal input for λx0. In the following,
we will prove if ux and uz are the optimal inputs for x0
and z0 respectively, that ux + uz is the optimal input for
x0 + z0. To do so, it will be first shown that

V (x0 + z0, t0) + V (x0 − z0, t0) = 2V (x0, t0) + 2V (z0, t0).
(A.2)

Observe that

∥Cσ(x+z)+Dσ(ux+uz)∥2+∥Cσ(x−z)+Dσ(ux−uz)∥2

= 2∥Cσx+Dσux∥2 + 2∥Cσz +Dσuz∥2,

and

(x(t−f ) + z(t−f ))
⊤P (x(t−f ) + z(t−f ))

+ (x(t−f )− z(t−f ))
⊤P (x(t−f )− z(t−f ))

= x(t−f )
⊤Px(t−f ) + z(t−f )

⊤Pz(t−f ),

from which we can conclude that

J(x0 + z0, ux + uz, t0) + J(x0 − z0, ux − uz, t0)

= 2J(x0, ux, t0) + 2J(z0, uz, t0).

Hence for all input ux and uz (and thus not necessarily
the optimal ones) we obtain

V (x0 + z0, t0) + V (x0 − z0, t0)

⩽ J(x0 + z0, ux + uz) + J(x0 − z0, ux − uz)

= 2J(x0, ux) + 2J(z0, uz),

11



which means that V (x0+z0, t0)+V (x0−z0, t0) ⩽ 2V (x0, t0)+
2V (z0, t0). Conversely

2V (x0, t0) + 2V (z0, t0)

⩽ 2J(x0, ux, t0) + 2J(z0, uz, t0)

= J(x0 + z0, ux + uz, t0) + J(x0 − z0, ux − uz, t0),

from which we can conclude that 2V (x0, t0)+2V (z0, t0) ⩽
V (x0 + z0, t0) + V (x0 − z0, t0) and therefore the equality
V (x0 + z0, t0) + V (x0 − z0, t0) = 2V (x0, t0) + 2V (z0, t0)
follows. Furthermore, if ux is the optimal input for x0 and
uz is the optimal input for z0 then

V (x0 − z0, t0) + V (x0 + z0, t0)

= 2V (x0, t0) + 2V (z0, t0)

= 2J(x0, ux, t0) + 2J(z0, uz, t0)

= J(x0 + z0, ux + uz, t0)

+ J(x0 − z0, ux − uz, t0).

Since V (x0 + z0, t0) ⩽ J(x0 + z0, ux + wz) and similarly
V (x0 − z0, t0) ⩽ J(x0 − z0, ux − uz), it follows that

0 ⩽ J(x0 + z0, ux + wz)− V (x0 + z0, t0)

= V (x0 − z0, t0)− J(x0 − z0, ux − uz) ⩽ 0,

and thus

V (x0 + z0, t0) = J(x0 + z0, ux + uz),

which shows that ux + uz is optimal for x0 + z0.
Hence there exists a linear map between the optimal

trajectory and the optimal input. In particular, the map
x(t−0 ) 7→ u(t+0 ) is linear, i.e., there exists a matrix F (t0) ∈
Rm×n such that u(t+0 ) = F (t0)x(t

−
0 ).

From the dynamic programming principle [44, 48] it
follows that u[τ,tf ) is the optimal control for the cost func-
tion in Problem 1 considered on the interval [τ, tf ) for any
τ ∈ [t0, tf ), hence by replacing the initial time t0 in the
above argumentation by τ ∈ [t0, tf ) we can conclude that
for every τ ∈ [t0, tf ) a matrix F (τ) ∈ Rm×n exists such
that the optimal control satisfies u(τ+) = F (τ)x(τ−).

Proof of Lemma 13

Before proving Lemma 13 we need the following tech-
nical lemma:

Lemma 28. Consider the ODE (7) on the interval [0, s]
and with zero initial condition. Then for any α ∈ Rm,
there exists ϕ : [0, s/2] → Rm such that the input

u(t) =

{
ϕ(t), t ∈ [0, s/2)

α, t ∈ [s/2, s)

has a corresponding solution x with x(s−) = 0.

Proof. Let x1 := −e−Adiffs/2
∫ s/2
0

eA
diff (s/2−τ)Bdiffαdτ , then

applying u(t) = α on [s/2, s) with initial value x1 will re-
sult in a solution which reaches zero at t = s. Further-
more, by definition eA

diffs/2x1 is reachable, and since the
reachable space is Adiff -invariant, it follows that also x1 is
reachable from zero, which guarantees the existence of ϕ
as claimed.

In order to prove Lemma 13, assume now that u solves
Problem 2 for some fixed x0. Let x

diff be the corresponding
optimal trajectory on [t0, tf ). Denote u(t−f ) = ψ ∈ Rm

and xdiff(t−f ) = ζ ∈ imΠ. Seeking a contradiction, assume

there exists a value w for which ζ −Bimpw ∈ Vend and

(ζ −Bimpw)⊤P (ζ −Bimpw)

= (ζ −Bimpψ)⊤P (ζ −Bimpψ)−M,

for some M > 0. Consider the solution (xs, us) of (14)
where us = u+ ūs and ūs is defined as

ūs =

 0, t0 ⩽ t < tf − s,
ϕ(t), tf − s ⩽ t < tf − s

2 ,
w − ψ tf − s

2 , ⩽ t < tf

where ϕ(t) is chosen in such a way that xdiffs (t−f ) = xdiff(t−f ),
which is always possible according to Lemma 28. Fur-
thermore, for any ε > 0 there exists a sufficiently small
s > 0 such that the output ys resulting from the solution
(xdiffs , us) satisfies∫ tf

t0

∥ys(t)∥2 dt =

∫ tf−s

t0

∥ys(t)∥2 dt+

∫ tf

tf−s
∥ys(t)∥2 dt

=

∫ tf−s

t0

∥y(t)∥2 dt+

∫ tf

tf−s
∥ys(t)∥2 dt

⩽
∫ tf

t0

∥y(t)∥2 dt+ ε,

As us(t
−
f ) = u(t−f ) + ūs(t

−
f ) = w we find that xdiffs (t−f ) −

Bimpus(t
−
f ) ∈ Vend and

J(x0, us) = J(x0, u) + ε−M.

Hence for ε < M there exists an s such that the solution
(xdiffs , us) satisfies J(x0, us) < J(x0, u), which contradicts
the optimality of (xdiff , u). Therefore the result follows.

Proof of Lemma 14

Note that the terminal cost function

(ζ −Bimpψ)⊤P (ζ −Bimpψ), (A.3)

for a given ζ ∈ imΠ is a convex function of ψ ∈ Rm.
Furthermore ψ ∈ Rm minimizes (A.3) if and only if ψ
minimizes

1
2ψ

⊤Bimp⊤PBimpψ − ζ⊤Π⊤PBimpψ,
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where here and in the following we replace ζ by Πζ to
enforce that ζ = Πζ ∈ imΠ. The constraint Πζ−Bimpψ ∈
Vend is satisfied if and only if (I−ΠVend)(Πζ−Bimpψ) = 0,
where ΠVend is a projector onto Vend. This condition can
be written equivalently as

(I −ΠVend)Bimpψ = (I −ΠVend)Πζ.

As this constraint is a convex function and P is positive
semi-definite, it follows that this optimization problem is
a convex problem. Hence any local minimizer is a global
minimizer. The first-order necessary conditions are thus
also sufficient. Hence ψ is a minimizer that satisfies the
constraints if and only if there exists a Lagrange multiplier
λ such that[

Bimp⊤PBimp Bimp⊤(I −ΠVend)⊤

(I −ΠVend)Bimp 0

] [
ψ
λ

]
=

[
Bimp⊤P

(I −ΠVend)

]
Πζ.

This can equivalently be written as Hξ = 0 where

H :=

 Bimp⊤PBimp Bimp⊤(I −ΠVend)⊤

(I −ΠVend)Bimp 0
−Π⊤PBimp −Π⊤(I −ΠVend)⊤

⊤

(A.4)

and ξ⊤ = [ ψ⊤ λ⊤ ζ⊤ ]
⊤
. Since ζ ∈ imΠ and hence ζ = Πζ

the result follows.

Proof of Lemma 22

(⇒) Suppose that there exists an impulse-free input
such that y[t] = 0. Then since the input u is impulse-
free, i.e., u[t] = 0, it follows that y[t] = Cx[t] + Du[t] =
Cx[t]. Consequently, the output is impulse-free for a given
impulse-free input if and only if x[t] ∈ kerC. In the case
u[t] = 0 then it follows from the solution formula (10) and
observing that Eimp = Eimp(I −Π) that

Cx[t] = −C
ν−1∑
i=0

(Eimp)i+1(I −Π)(x0 − x(t+0 ))δ
(i) = 0.

Consequently (I − Π)(x0 − x(t+0 )) ∈ kerC(Eimp)i, for i ∈
{1, 2, ..., ν − 1}. Hence we can conclude that (I −Π)(x0 −
x(t+0 )) ∈ Oimp. Since (I − Π)x(t+0 ) ∈ Cimp it follows that
(I −Π)x0 ∈ Oimp + Cimp. Finally, since that imΠ ⊆ Cimp

we can conclude that

x0 = Πx0 + (I −Π)x0 ∈ Cimp +Oimp,

which proves the desired result.
(⇐). Let x0 = p0 + q0 for some p0 ∈ Cimp and q0 ∈

Oimp. Then by definition of Cimp there exists an impulse-
free input u such that (p, u) satisfying p(t−0 ) = p0 is impulse-
free, i.e., p[t] = 0 for all t ⩾ t0. As Eimp(I − Π) = Eimp

the solution (q, 0) with q(t−0 ) = q0 will satisfy

Cq[t0] = −C
ν−1∑
i=0

(
Eimp

)i+1
(I −Π) q0δ

(i)

= −C
ν−1∑
i=0

(
Eimp

)i+1
q0δ

(i) = 0.

Hence the solution (q, 0) with q(t−0 ) = q0 will only generate
a Dirac impulse at t0, which will not appear in the output
y. By linearity of solutions, (x, u) with x(t−0 ) = x0 will
satisfy x(t) = p(t) + q(t) and hence

y[t] = Cx[t] + Du[t] = C(p[t] + q[t]) = Cq[t] = 0.

Hence u is an impulse-free input such that (x, u) with
x(t−0 ) = x0 ensures y[t] = 0.

Proof of Lemma 24

In order to prove the statement, we have to prove that
Eẋ = EWẋ. As x(t−0 ) = x0 ∈ Cimp, it follows that (I −
W )x(t) = 0 on [t0,∞). Consequently (I −W )ẋ(t) = 0 on
(t0,∞). Therefore Eẋ = EWẋ on (t0,∞). It remains to
show that Eẋ[t0] = EWẋ[t0]. However as (I−W )x(t−0 ) =
0, it follows that

Eẋ[t0] = E(Wẋ+ (I −W )ẋ[t0]) = EWẋ[t0].

Conversely, assume that x solves EWẋ = Ax+Bu. Then
since (I −W )x(t) ∈ kerE and hence (I −W )ẋ(t) ∈ kerE.
Consequently, EWẋ = E(W + (I −W ))ẋ = Eẋ. Further-
more, since x0 ∈ imW , and x(t−0 ) = x0 = Wx0, it follows
that EWẋ[t0] = E(Wẋ[t0] + (I −W )ẋ[t0]) = Eẋ[t0].

Now it remains to prove regularity of (EW,A) and

impulse-controllability of EWẋ = Ax + Bu. Let Cimp
W be

the impulse-controllable space of this auxiliary DAE. It
follows from the above that Cimp ⊆ Cimp

W . However, since

kerEW ⊆ Cimp
W it follows that

(Cimp)⊥ ⊆ kerEW + (Cimp)⊥ = kerEW ⊆ Cimp
W ,

and thus Rn ⊆ Cimp
W . Hence the auxiliary DAE is impulse

controllable.
Finally, for x ∈ Cimp it follows that EWx = Ex and

hence (λEW −A)x = (λE −A)x ̸= 0. Next observe that

Rn = imEW +A kerEW + imB

⊆ imE +A kerE + imB +A(Cimp)⊥

⊆ Cimp +A(Cimp)⊥

and hence Ax ̸= 0 for x ∈ (Cimp)⊥. Hence also for x ∈
(Cimp)⊥ it follows that

(λEW −A)x = Ax ̸= 0.

Thus we can conclude that (EW,A) is regular.

13
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