
Averaging for switched impulsive systemswithpulsewidth

modulation ‹

Elisa Mostacciuolo a, Stephan Trenn b, Francesco Vasca c

aDepartment of Engineering, University of Sannio, 82100 Benevento, Italy

b SCAA @ BI(FSE), University of Groningen, Nijenborgh 9, 9747 AG Groningen

cDepartment of Engineering, University of Sannio, 82100 Benevento, Italy

Abstract

Linear switched impulsive systems (SIS) are characterized by ordinary differential equations as modes dynamics and state
jumps at the switching time instants. The presence of possible jumps in the state makes nontrivial the application of classical
averaging techniques. In this paper we consider SIS with pulse width modulation (PWM) and we propose an averaged model
whose solution approximates the moving average of the SIS solution with an error which decreases with the multiple of the
switching period and by decreasing the PWM period. The averaging result requires milder assumptions on the system matrices
with respect to those needed by the previous averaging techniques for SIS. The interest of the proposed model is strengthened
by the fact that it reduces to the classical averaged model for PWM systems when there are no jumps in the state. The
theoretical results are verified through simulations obtained by considering a switched capacitor electrical circuit.
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1 Introduction

Switching represents the natural behavior of many sys-
tems of practical interest, e.g., mechanical systems [20],
electronic circuits [25], piecewise affine systems [9,8,1].
In particular, switched systems with pulse width modu-
lation (PWM) are characterized by a sequence of modes
which repeats periodically in time [21]. The “fast”
switching behaviour determines oscillations, i.e., the so
called ripple, of the state variables around a smooth
trajectory whose dynamics are typically much slower
than the switching period. The main goal of the averag-
ing theory consists of obtaining a smooth model whose
solution is able to capture the averaged behaviour of
the switched system. The corresponding theoretical ob-
jective consists of proving that the error between the
solutions of the switched and the averaged systems is of
order of the switching period.

‹ This paper was not presented at any IFAC meeting.
This work was partially supported by NWO Vidi grant
639.032.733.
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Averaging theory has been extensively studied for PWM
systems with Lipschitz continuous solutions, see among
others [5,19,23,26–28]. Recently a new approach for pe-
riodic averaging based on time delays has been proposed
for fastly varying system [2,4]. However, the class of so-
lutions considered therein is absolutely continuous. In-
deed, the model structure considered therein does not
allow the presence of state jumps at the switching time
instants. On the other hand, there exist practical PWM
systems, such as switched capacitor DC/DC convert-
ers, which exhibit state jumps at the switching time
instants and they still present a sort of averaging be-
haviour [18,11]. These circuits can bemodeled within the
class of linear switched impulsive systems (SIS) where
each mode is characterized by a set of linear ordinary dif-
ferential equations and algebraic constraints which de-
termine the rule of the state jumps at the switching time
instants [22]. In this paper we study the application of
averaging theory to SIS with PWM.

The presence of state discontinuities makes nontrivial
the formal study of switched systems [3] and two aspects
are specifically critical for the averaging analysis of SIS.
The first issue is related to the fact that the amplitudes
of the state discontinuities usually do not reduce by de-
creasing the switching period. The approach we propose
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for overcoming this obstacle consists of comparing the
averaged solution with the moving average of the SIS
solution. Another theoretical challenge is due to the de-
pendence of the SIS solution on the matrices which char-
acterize the state jumps which one would then expect
should be included in the averaged model too. This de-
pendence introduces several problems for the analysis
which requires nontrivial theoretical arguments in order
to be solved.

The averaging analysis for switched systems with state
jumps is still at its infancy. An averaged model for homo-
geneous SIS with two modes was presented in [7] where
strict algebraic conditions (commutativity) on the ma-
trices characterizing the state jumps and those describ-
ing the modes dynamics were required. These conditions
are not assumed in the analysis of this paper. The aver-
aging result in [7] was extended to more than two modes
in [6], to the non-autonomous case in [12] and to partial
averaging in [13], however the corresponding theoretical
findings were still based on the algebraic assumptions on
the SIS matrices introduced in [7]. The commutativity
condition was relaxed in [14] by using conditions on the
kernel and the image of the matrices of the modes. How-
ever, there exist practical SIS for which these conditions
are not satisfied [17,18].

In this paper we propose a continuous-time averaged
model for SIS under milder assumptions with respect to
those formerly used. The averaging property was con-
jectured by the authors in [15] without providing any
formal proof and by taking inspiration from the appli-
cation of theoretical findings in [16] applied to discrete-
time models. In this paper we provide a formal proof for
the averaging result by showing that the error between
the solution of the averaged model and the moving av-
erage of the solution of the SIS decreases exponentially
with the number of switching periods and linearly with
respect to the period duration. The proposed averaged
model is a generalization of the classical averaged model
adopted for PWM systems with Lipschitz solution, in
the sense that if there are no state jumps the matrices of
the proposed model reduce to those of the classical one.
A switched capacitor electrical circuit is considered as a
motivating practical example and numerical simulations
validate the effectiveness of the proposed model.

The rest of the paper is organized as follows. In Section 2
some preliminary definitions and properties of SIS are
recalled. Motivating examples for the proposed analysis
are presented in Section 3. Section 4 describes the struc-
ture of the proposed averaged model and Section 5 our
main theoretical result (all proofs are reported in the Ap-
pendix). In Section 6 numerical verification of the the-
oretical results is proposed. The synthesis in Section 7
summarizes conclusions and future work.

2 Switched impulsive systems

In this section we present some preliminaries on nota-
tion, the definition of the class of SIS of interest and a
resume of the existing results on averaging for SIS.

2.1 Notation

The following notation is adopted throughout the pa-
per: R is the set of real numbers, R` (R`

0 ) is the set of
positive (nonnegative) real numbers, Rn is the set of n-
dimensional vectors of real numbers, C is the set of com-
plex numbers, F P Rmˆn indicate a real matrix with m
rows and n columns, N0 (N) is the set of (positive) nat-
ural numbers; } ¨ } indicates the Euclidean norm on Rn

and also the corresponding induced matrix norm; txu is
the largest integer less or equal than x P R. A matrix F P

Rnˆn is idempotent if F k “ F for any k P N; it is Schur if
all its eigenvalues have magnitude smaller than 1. A pair
of matrices Fi, Fj P Rnˆn is commutative if FiFj “ FjFi

with i, j P N. The product of qmatrices Fi, i “ 1, . . . , q is
defined as (note the order)

śq
i“1 Fi “ FqFq´1 ¨ ¨ ¨F2F1.

The following notation is used:Gipξq “ eFiξ for all ξ P R
and Gi,p “ Gipdipq “ eFidip for some di P D “ r0, 1q,
Σ “ t1, . . . qu with q P N. A function u : R`

0 Ñ Rn is
a Bohl function if it is a linear combination of terms of
the form tkeλt where k P N0 and λ P C. A matrix func-
tion Gp : R` Ñ Rnˆn is said to be an Opprq function as
p Ñ 0 for any r P N0, (Gp “ Opprq for short), if there ex-
ist constants α P R` and p̄ P R` such that }Gp} ď αpr

for all p P p0, p̄s.

2.2 SIS with pulse width modulation

The class of SIS considered in our analysis is now in-
troduced. It is characterized by a PWM with q P N
modes and a switching period p P R`. The sequence of
modes is assumed to be fixed. At each tk “ kp, k P N0,
the mode i “ 1 is activated and it remains active since
tk ` d1p where d1 P D is the duty cycle of the first
mode. Then the system commutes from the mode pi´1q-
th to the mode i-th, i “ 2, . . . , q, at the time instants

sk,i :“ tk `
ři´1

j“1 djp, k P N0 where di P D, is the duty

cycle of the i-th mode; in particular,
řq

i“1 di “ 1, see
Fig. 1.

d1p d2p dqp

tk “ sk,1 sk,2 sk,3 sk,q tk`1tk´1

Fig. 1. Illustration of the switching times notation for k ě 1.

The continuous-time switched impulsive system can be
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represented as follows

xps`
k,iq “ Πixps´

k,iq (1a)

9xptq “ Fixptq, t P psk,i, sk,i`1q (1b)

with xp0´q “ x0 P Rn initial condition, for k P N0,
i P Σ, where sk,q`1 :“ tk`1 “ sk`1,1, the state variable
is the same for each mode and xps´

k,iq (xps`
k,iq) is the

state at the end (beginning) of the pi´1q-th (i-th) mode
at the k-th period. The nonzero flow matrix Fi P Rnˆn,
i P Σ, characterizes the dynamics of the i-th mode and
the jump matrix Πi P Rnˆn, i P Σ, (called consistency
projector in the differential algebraic equations termi-
nology) determines the possible jumps of the state vari-
ables at the switching time instants. Note that in con-
trast to earlier works, we do not assume that Πi is a
project (i.e. an idempotent matrix). The switched impul-
sive system (1) includes several practical systems and,
among them, switched descriptor systems which can be
represented in the form of homogeneous switched differ-
ential algebraic equations with regular matrix pairs [16].

The solution of (1) can be written by cascading the so-
lutions of the different modes and by considering the
jumps at the switching time instants. In particular, at
the switching time instants one can write

xps`
k,iq “ Πixps´

k,iq (2a)

xps´
k,i`1q “ Gi,pxps`

k,iq, (2b)

whereGi,p “ eFidip, for k P N0, i P Σ. By combining (2),
one obtains that the left solution of (1) at the time in-
stants multiple of the switching period must satisfy the
following iterative equation

x´
k`1 “ Θpx

´
k (3)

for all k P N0 where x´
k :“ xpt´k q, x´

0 “ x0 and

Θp “

q
ź

j“1

Gj,pΠj . (4)

By iteratively applying (3), the left solution of (1) at the
time instants multiple of p can be written as

x´
k “ Θk

px
´
0 (5)

for all k P N0.

Remark 1 The model (1) is autonomous, however the
analysis presented below can be easily applied to the case
of non-autonomous systems whose inputs are Bohl func-
tions by extending the state space.

2.3 Basics on averaging for SIS

Averaging theory has been already studied for SIS. In
what follows we briefly recall the existing theoretical
results in order to motivate the proposed analysis and
to highlight the novelties of our results.

In [7] a SIS model (1) with q “ 2 was considered and the
following averaged model

9ξptq “ Aavξptq, t P R`
0 (6)

with ξp0q “ Πx0, Aav “ ΠpF1d1 ` F2d2qΠ, Π “ Π2Π1,
was introduced. In particular, it was proved that if the
matrices Π1 and Π2 are commutative and idempotent,
and the conditions

ΠiFi “ FiΠi “ Fi (7)

hold for all i P Σ then for any finite t̄ P R` the error
between the solution of (1) and that of (6) is decreasing
with the same order of the switching period, i.e.

xptq ´ ξptq “ Oppq (8)

for all t P p0, t̄s. This result was extended to more than
two modes in [6], to the non autonomous case in [12] and
to partial averaging in [13].

The commutativity condition was relaxed in [14] by in-
troducing the following conditions on the kernel and the
image of the matrices of the system (1):

imΠ Ď imΠi, (9a)

kerΠ Ě kerΠi, (9b)

for all i P Σ, where the matrix Π P Rnˆn is given by

Π “

q
ź

i“1

Πi. (10)

Note that in the case of SIS with two modes with Π
idempotent, the averaging result (8) holds even if condi-
tion (9b) does not hold. Condition (7) and the assump-
tion that Πi, i P Σ, are idempotent were still required
in order to obtain the averaging result in [14]. It should
be noticed that the commutativity conditions imply (9)
also if Πi, i P Σ, are not idempotent. In general, if the
matrices Πi, i P Σ, are idempotent, the matrix Π may
not be. However, if (9) hold and Πi, i P Σ, are idempo-
tent then Π is idempotent.

Unfortunately, it arises that several practical electrical
circuits do not satisfy (9), even if they present a sort of
averaging behaviour [18]. The averaging result presented
in this paper considers SIS (1) where the matrices Πi,
i P Σ, do not commute, are not necessarily idempotent
and the conditions (7) and (9) are not required.
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R

´
` u

C2

´

`

x2

S4

S2

S3

S1

C1

´

`

x3

Fig. 2. Elementary cell of a ladder step-up switched capacitor
converter.

3 Motivations

In this section we motivate the interest of our study by
considering two examples of switched systems. Firstly,
the SIS model of a switched capacitor circuit is de-
scribed by highlighting the significance and relevance of
state jumps occurring at switching time-instants. Then
we show the applicability of the proposed approach
to switched systems which can be viewed as periodic
singularly perturbed systems with fast and slow modes.

3.1 A circuital example

Let us consider the switched capacitor electrical circuit
shown in Fig. 2. The circuit represents the typical ele-
mentary cell of a ladder step-up switched capacitor and
it consists of two capacitors and four electronic switches
that are controlled in a complementary way. Then the
modes of the system are two. It is assumed i “ 1 in (1)
when the pair tS1,S2u are turned on together with the
pair tS3,S4u turned off and i “ 2 in (1) for the reverse
conduction of the switches pairs. By considering as in-
put a constant voltage source u “ x1, the circuit can be
modeled with x2 and x3 being the state variables corre-
sponding to the voltages on the capacitors C1 and C2,
respectively. Then the matrices pairs of (1) are:

Π1 “

»

—

—

–

1 0 0

0 C2ρ C1ρ

0 C2ρ C1ρ

fi

ffi

ffi

fl

, F1 “ ´
ρ

R

»

—

—

–

0 0 0

1 1 0

1 0 1

fi

ffi

ffi

fl

(11a)

Π2 “

»

—

—

–

1 0 0

0 1 0

1 0 0

fi

ffi

ffi

fl

, F2 “ ´
1

RC2

»

—

—

–

0 0 0

1 1 0

0 0 0

fi

ffi

ffi

fl

(11b)

where ρ “ 1
C1`C2

.

It is easy to verify that Π1 and Π2 are not commutative
and also (9) are not satisfied by (11).

δ1pp pd1 ´ δ1pqp δqpp pdq ´ δqpqp

q-th mode1-th mode

tk “ sk,1 sk,2 sk,q tk`1tk´1

Fig. 3. Illustration of q modes with fast and slow dynamics.

In this paper we propose a continuous-time averaged
model for the switched impulsive system (1) under
milder assumptions with respect to (9). The averaging
property was conjectured by the authors in [15] without
providing any formal proof and by taking inspiration
from the application of theoretical findings in [16] ap-
plied to discrete-time models. In next section we provide
a formal proof for the averaging result based on new
conditions on the system matrices which can be easily
checked and are satisfied by (11).

3.2 A singularly perturbed system

The proposed averaging approach can be also applied
to periodic continuous-time switched systems which do
not present state discontinuities at the switching time
instants but exhibit an alternate sequence of fast and
slow modes. Since there are no jumps, the system can
be modeled as a SIS in the form (1) where all the Πi

are identity matrices. The resulting singularly perturbed
switched system can be described by the following equa-
tions

”

9xsptq
9xf ptq

ı

“
1

ηp
Ai

”

xsptq
xf ptq

ı

, t P rsk,i, sk,i ` δips (12a)

”

9xsptq
9xf ptq

ı

“ Fi

”

xsptq
xf ptq

ı

, t P rsk,i ` δip, sk,i`1s (12b)

where ηp is a small parameter that depends on the
switching period p and it characterizes the time scale
separation between the slow dynamics of xs and the
fast dynamics of xf , Ai and Fi are the slow and fast dy-
namic matrices of the i-th mode which can be expressed
in the following block forms

Ai “

«

0 0

Ai,1 Ai,2

ff

Fi “

«

Fi,1 Fi,2

0 0

ff

(13)

with Ai,2 a non singular matrix. The fast i-th mode
is active during the interval psk,i, sk,i ` δ1pps, δip ! di,
i P Σ, and at the time instant sk,i ` δip the slow mode is
activated and it remains active until sk,i`1, see Fig. 3.
Under the hypothesis that the parameter ηp goes to zero
faster than p, we can approximate the fast dynamics of
the i-th mode by a matrix with an error of order p2, as
described by the following equation

e
Ai

δipp

ηp “ Πi ` Opp2q (14)

4



with

Πi “

«

I 0

A´1
i,2Ai,1 0.

ff

. (15)

Then the singularly perturbed switched system (12) can
be approximated with a SIS in the form (1) where the
matrices Πi, i P Σ are given by (15).

4 Continuous-time averaged model

In this section we first introduce the proposed averaged
model by motivating the structure of its matrices. Then
themain averaging result is claimed and the assumptions
required for its proof are discussed.

4.1 Averaged model

The proposed continuous-time averaged model has the
following structure

9ξptq “ Apξptq, t P R`
0 (16a)

µptq “ Γξptq (16b)

with ξp0q “ x0 P Rn initial condition, the dynamic ma-
trix function Ap : R` Ñ Rnˆn is given by

Ap “ 1
p pΦp ´ Iq (17)

with the matrix function Φp : R` Ñ Rnˆn and the
matrix Γ P Rnˆn given by

Φp “ Π ` Λp (18a)

Γ “

q
ÿ

j“1

˜

j
ź

h“1

Πh

¸

dj (18b)

where Π P Rnˆn is given by (10) and the matrix Λ P

Rnˆn given by

Λ “

q
ÿ

j“1

˜

q
ź

h“j`1

ΠhFj

j
ź

h“1

Πh

¸

dj . (19)

where
śq

h“j`1 Πh for j “ q is assumed to be the identity
matrix.

The output µ P Rn of the model (16) is intended to be
an approximation of the moving average of the solution
of the impulsive systems (1). The dependence of (17) on
the switching period is a crucial aspect in order to ob-
tain a good approximation [16], which is an analogous
dependence used in the well known result for the clas-
sical averaging technique applied to switched systems
with modes represented by ordinary differential equa-
tions, i.e., by excluding jumps in the state [10].

It should be noticed that in the case of a switched ordi-
nary differential equations, the matrices Πi, i P Σ, are
equal to the identity matrix and the matrix Λ reduces
to the dynamic matrices of the classical continuous-time
averaged model of pulse width modulated systems with
q modes, i.e.

řq
j“1 Fjdj .

A furthermotivation for the choice of thematrices in (16)
can be obtained by discretizing the model (16) with the
forward Euler method and a sampling period p. By
indicating with zk the state variable at the time-step
k P N0 of the resulting discrete-time state-space model,
from (16a) one obtains zk`1 “ zk ` pApzk. Then, by us-
ing (17) the following discrete-time model can be written

zk`1 “Φpzk, k P N0 (20a)

µk “Γzk (20b)

with z0 “ x0. The solution of (20) can be written as

zk “ Φk
pz0 (21)

for all k P N0. In the sequel we will show that x´
k “

zk ` Oppq for any k, which motivates the choice (17)
with (18a).

The choice of the matrix Γ in the output equation (16b)
can be motivated by considering the continuous-time
moving average of the solution of (1), which is defined as

mptq “
1

p

ż t`p

t

xpτqdτ (22)

for any t P p0, t̄´ps with t̄ ą p, where xptq is the solution
of (1). We will show that the mptkq “ µk ` Oppq which
motivates the choice (16b) with (18b).

In next section it is proved that, under some assumptions
which are discussed in the sequel, there exist constants
α P R`, β P R`

0 , ε P p0, 1q, pε P R` such that the
following condition

}mptq ´ µptq} ď αp` βεk (23)

with k “ tt{pu, holds for all p P p0, pεs and t P p0, t̄´ ps,
for any t̄ P R`. In (23) the moving average mptq is given
by (22) with xptq being a solution of the SIS (1), and
µptq is the output of the averaged model (16).

4.2 Assumptions

The main result is proved starting from two basic as-
sumptions. The first one can be expressed as follows.
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Assumption 1 Given the matrix function Φp expressed
by (18a), there exists a constant α P R`

0 and an induced
matrix norm ~ ¨ ~ such that

~Φp~ ď 1 ` αp. (24)

Assumption 1 can be verified through the feasibility of a
suitable set of linear matrix inequalities [15, Lemma 4].
Note that Assumption 1 may be satisfied, while (24)
is not satisfied w.r.t. to the standard (induced) Euclid-

ian norm. As an example consider Φp “
“

1`p 0.5
0 0.5`p

‰

.

It is easily seen that for the norm ~ ¨ ~ : R2 Ñ Rě0

given by ~x~ :“ }Tx} for T “ r 1 1
0 1 s we have that

~Φp~ “ }TΦpT
´1} “ 1 ` p, i.e. (24) is satisfied for

α “ 1. However, }Φ0} « 1.14 ą 0, so that (24) does not
hold w.r.t. the Euclidian norm.

Remark 2 Under the situation that all Πi, i P Σ, are
idempotent, conditions (9) imply that Π is idempotent
and then Assumption 1 holds. On the other hand, As-
sumption 1 is also verified if all powers of the matrix Π
given by (10) are bounded, i.e. there exists a constant
M ą 0 such that }Πk

i } ď M for all k, without requiring
that Π is idempotent. This fact can be easily proved by us-
ing the Barabanov norm [24]. Therefore, the results pre-
sented in next section which are based only on Assump-
tion 1 are proved under milder conditions with respect to
the former averaging results which start from (9).

An important result related to Assumption 1 is the fol-
lowing lemma which has been proved in [15].

Lemma 3 Consider a Lipschitz continuous matrix
function p ÞÑ Φp P Rnˆn. Assume there exists a constant
α P R`

0 such that (24) holds. Then, for any Lipschitz
continuous matrix function p ÞÑ Mp P Rnˆn such that
Mp “ Opp2q, it is

Φk
p “ Op1q (25a)

pΦp `Mpqk “ Φk
p ` Oppq. (25b)

for all k P t0, . . . , ℓpu with ℓp “ tt̄{pu and any finite
t̄ P R`.

Note that the asymptotic bounds (25) are valid no mat-
ter which matrix norm is used, because all matrix norms
are equivalent and hence the norm-choice only effects the
constants within the big-O notation. In the following we
will only utilize Assumption 1 via Lemma 3 and there-
fore we can use in the remainder of this work always the
standard Euclidian norm when bounding errors; in par-
ticular, knowledge of the specific (non-standard) norm
satisfying (24) is not required.

A further technical assumption required in order to ob-
tain our averaging results is the following.

Assumption 2 Given the matrices Π and Λ expressed
by (10) and (19), respectively, there exists a coordinate
transformation T P Rnˆn such that

TΠT´1 “

«

I 0

0 V

ff

(26a)

TΛT´1 “

«

Λ1 0

Λ3 Λ2

ff

(26b)

where V is Schur, with V and Λ2 square matrices of the
same dimension.

Consider the case that Πi, i P Σ, are idempotent. It can
be easily shown that (9) implies (26a), with V “ 0 but
the opposite is not true in general. Indeed, (11) do not
satisfy (9) but Assumption 2 holds for these matrices
as it can be verified by considering, for instance, the
following coordinate transformation

T “

»

—

—

–

1 0 0

´C1`C2

C2
1 C1

C2

´1 0 1

fi

ffi

ffi

fl

. (27)

Note that (26a) together with the Schur condition of
matrix V , also if Πi, i P Σ, are not idempotent, im-
plies that limkÑ8rpTΠT´1qk`1 ´pTΠT´1qks “ 0 which
means that the transformed matrix TΠT´1 converges to
an idempotent matrix when k goes to infinity.

Remark 4 Assumption 2 allows one to obtain a useful
transformation for the matrix function Φp. Indeed, by
using Assumption 2 one can write

TΦpT
´1 “

«

I ` Λ1p 0

Λ3p V ` Λ2p

ff

. (28)

For sufficiently small p the matrices I`Λ1p and V `Λ2p
have no common eigenvalues, hence there is a unique
solution Rp of the Sylvester equation

RppI ` Λ1pq ´ pV ` Λ2pqRp “ ´Λ3p (29)

such that

TpΦpT
´1
p “

«

I ` Λ1p 0

0 V ` Λ2p

ff

(30)

with

Tp :“

«

I 0

Rp I

ff

T. (31)
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Note that Rp “ 0 is the solution of (29) for p “ 0 and
(29) can be written as

pM ` pMqvecpRpq “ ´p vecpΛ3q

where vecp¨q : Rrˆr Ñ Rr2 is the standard vectorization
operator,M :“ IbV ´IbI andM :“ IbΛ2 ´ΛJ

1 bI.
Hence a standard perturbation analysis shows that

}Rp} ď
}M´1}}Λ3}

1 ´ }M´1}}M}p
p “ Oppq.

Remark 4 will be used for obtaining the main result of
the paper which shows that if Assumptions 1 and 2 hold
then (23) is satisfied.

It is interesting to compare (8) and (23) in the light of
the required assumptions. First of all the approxima-
tion result (8) involves the solution xptq of the impulsive
system while in (23) the corresponding moving average
mptq is considered. The variables ξptq and µptq do not
present jumps, so as mptq. The reason why xptq can be
used in (8), is that the amplitudes of the state jumps
converge to zero with p if (9) holds, which is not assumed
in our main averaging result. Instead, if Assumptions 1
and 2 hold it is still possible to have nontrivial jumps
when p decreases. On the other hand, the inequality (23)
says that the errormptq ´µptq decreases with the multi-
ple of the switching period and by decreasing the PWM
period.

5 Averaging results

In this section the averaging result (23) is proved. To this
aim, some preliminary steps are required. We first prove
that the difference between the solution of the SIS (1)
evaluated at the multiple of the switching period and
the solution of the discrete-time system (20), is of order
of the switching period.

Lemma 5 Consider the continuous-time SIS (1) with
initial condition x0, over a time interval t P r0, t̄s with
some t̄ P R` and the discrete-time model (20) with k “

tt{pu and initial condition z0 “ x0. If Assumption 1 is
satisfied, then the following condition

x´
k “ zk ` Oppq (32)

where x´
k is given by (5) and zk is given by (21), holds

for all k P t0, . . . , ℓpu, ℓp “ tt̄{pu.

By using Lemma 5 one can prove that the difference be-
tween themoving average (22) evaluated at themultiples
of the switching period and the output of the discrete-
time model (20), is of order of the switching period. As
for Lemma 5, also the following result requires Assump-
tion 1 but not Assumption 2.

Lemma 6 Consider the continuous-time SIS (1) with
initial condition x0, over a time interval t P r0, t̄s with
some t̄ P R`, the moving average of its solution given
by (22) evaluated at tk for k P t0, . . . , ℓp ´1u, ℓp “ tt̄{pu,
and the discrete timemodel (20)with k “ tt{pu and initial
condition z0 “ x0. If Assumption 1 is satisfied then the
following condition

mptkq “ µk ` Oppq (33)

holds for all k P t0, . . . , ℓp ´ 1u.

A further step towards the proof of our main result con-
sists of considering the error between the moving average
mptq expressed by (22) and the values obtained by sam-
plingmptq at the multiple of p, i.e.,mptkq where tk “ kp
and k “ tt{pu. In particular, by using Assumption 2 one
can prove the following result.

Lemma 7 Consider the continuous-time SIS (1) with
initial condition x0, over a time interval t P r0, t̄s with
some t̄ P R`, the moving average mptq of its solution
given by (22). If Assumptions 1 and 2 are satisfied then
there exist constants α P R`, β P R`

0 , ε P p0, 1q and
p̄ε P R` such that the following condition

}mptq ´mptkq} ď αp` βεk (34)

with tk “ kp, k “ tt{pu, holds for any t P p0, t̄ ´ ps and
any p P p0, p̄εs.

Lemma 7 allows one to conclude that the approximation
result is valid for any backward ∆-shifted version of (22)
defined as

m∆ptq “
1

p

ż t´∆`p

t´∆

xpτqdτ (35)

with ∆ P r0, pq, where xptq is the solution of (1). Indeed,
since (22) is defined as a p-forward moving average, it is
easy to verify that a condition similar to (34) holds for
m∆, i.e., }m∆ptq ´mptkq} ď αp`βεk for any ∆ P r0, pq,
t P p∆, t̄ ` ∆ ´ ps with t̄ ą p. In the following for the
sake of simplicity we consider the case ∆ “ 0.

By using the lemmas above, we can prove the following
theorem which synthesizes our main result.

Theorem 8 Consider the continuous-time SIS (1) with
initial condition x0, over a time interval t P r0, t̄s with
some t̄ P R`, the corresponding moving average mptq
given by (22) and the output µptq of the continuous-time
model (16) with initial condition ξp0q “ x0. If Assump-
tions 1 and 2 hold, then there exist constants α P R`,
β P R`

0 , ε P p0, 1q, and pε P R` such that (23) with
k “ tt{pu holds for all p P p0, pεs and t P p0, t̄´ ps.
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The averaging approximation expressed by (23) and
proved in Theorem 8 shows that the error between the
moving average mptq of the SIS solution and the output
of the averaged model depends on p and k too. In other
words, it is not enough to let the switching period going
to zero in order to reduce the error of the averaging
process, but some periods must elapse too. This is due
to the fact that the algebraic conditions on the modes
matrices have been relaxed. The following remark shows
that under more restrictive conditions on the modes
matrices, one can recover the classical Oppq averaging
result.

Remark 9 It is easy to show by checking the proof of
Theorem 8 that, under Assumptions 1 and 2, if all Πi, i P

Σ, are idempotent and (9) hold than there exist constants
αm, αµ P R` and p P R` such that

}mptq ´mptkq} ď αmp, (36a)

}mptq ´ µptq} ď αµp, (36b)

with tk “ kp, k “ tt{pu holds for all p P p0, ps and
t P p0, t̄ ´ ps. It should be noticed that in the case of a
SIS with two modes under Assumptions 1 and 2, if all
Πi, i “ 1, 2 and the product Π are idempotent then (36)
is still valid even if (9a) holds and (9b) doesn’t.

6 Simulation results

In this section three examples with their respective sim-
ulations are analyzed to validate the effectiveness of the
results presented in the previous section. The first ex-
ample describes the proposed averaged model (16) and
its effectiveness for the electronic circuit shown in Fig. 2.
The second example compares the results obtained with
the proposed averaged model and the classical one (6) in
a case where the jump matrices are projectors and sat-
isfy conditions (9), in particular, it is highlighted that
in general the average models differ. The last example
shows the application of our technique for an unstable
system and it also illustrates that in some cases the newly
proposed average model coincides with the previously
proposed averaged model.

Example 10 Let us go back to themotivating example of
our analysis whose equivalent circuit is shown in Fig. 2.
By considering (11) it follows that

Π “ Π2Π1 “

»

—

—

–

1 0 0

0 C2ρ C1ρ

1 0 0

fi

ffi

ffi

fl

(37)

being ρ “ 1
C1`C2

. It can be easily verified that the matrix

Π is product bounded, i.e. Πk is bounded for all k, and
then Assumption 1 holds independently of the circuit pa-
rameters. Moreover, Assumption 2 holds by considering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

[v
]

0.8 0.85 0.9
11.5

12

0.8 0.85 0.9
11.8

12

Fig. 4. Time evolution of the state variable x2 of Exam-
ple 10 with p “ 0.05 s (top) and p “ 0.1 s (bottom): SIS (1)
(blue lines), averaged model (16) (green lines), discrete-time
model (20) (red stars), moving average (22) (black lines).

the transformation matrix (27). The matrix (19) can be
written as

Λ “ Π2F1Π1d1 ` F2Π2Π1d2 “

»

—

—

–

0 0 0

´ 1
RC2

d2 ´
ρ
R 0

0 0 0

fi

ffi

ffi

fl

and the matrix (18b) is given by

Γ “ Π1d1 ` Π2Π1d2 “

»

—

—

–

1 0 0

0 C2ρ C1ρ

d2 C2ρd1 C1ρd1

fi

ffi

ffi

fl

where we used the condition d1 ` d2 “ 1.

We now compare the solutions of the SIS (1), the aver-
aged model (16) proposed in this paper and the discrete-
time model (20) together with the moving average (22).
Let us considerC1 “ C2 “ 120 µF,R “ 10 kΩ, u “ 12V,
d1 “ d2 “ 0.5 and null initial conditions. Fig. 4 and
Fig. 5 show the dynamics of the state variables x2 and x3,
respectively, for different values of the switching period,
over a time interval of 1 s.

Figures 6 and 7 show the left hand side of (23) computed
for the state variable x3 in logarithmic scale as a function
of time and as a function of the multiple of the switch-
ing period (steps), respectively, for different values of the
switching period.

Clearly, the intersections among the different curves in
Fig. 6 show that the initial error is not of order p, but
it quickly decreases with an increasing number of steps
and from Fig. 7 it is visible that the rate of convergence
with respect to the step counter k is independent of p,
which is related to the βεk term in (23) and is due to the

8
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Fig. 5. Time evolution of the state variable x3 of Exam-
ple 10 with p “ 0.05 s (top) and p “ 0.1 s (bottom): SIS (1)
(blue lines), averaged model (16) (green lines), discrete-time
model (20) (red stars), moving average (22) (black lines).
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]

Fig. 6. Time evolution of the error }mptkq´µptkq} computed
for the state variable x3 of Example 10 (the vertical axis
is in logarithmic scale) for different values of the switching
period: p “ 0.5 s (blue line), p “ 0.25 s (orange line), p “ 0.1 s
(green line), p “ 0.05 s (purple line), p “ 0.01 s (red line)
and p “ 0.005 s (cyan line).

fact that matrices Πi, i P Σ, are neither idempotent nor
commutative.

Note that the matrix Πk, with Π given by (37), converges

to the idempotent matrix
”

1 0 0
1 0 0
1 0 0

ı

when k goes to infinity.

This property, together with the stable averagedmatrixAp

allows one to motivate the behavior shown in Fig. 4 in the
sense that the jumps do not influence the stability of the
slow dynamics captured by the trajectories of the averaged
model. After a sufficient number of steps (k ě 17), the
error settles to a value which is of order p, which is related
to the αp term in (23). Note that the intermediate lower
values for the error are due to the intersections of the
solution of the averaged model and the moving average
in this specific example (visible in Fig. 5, where the green
curve is initially below the black curve, but later is above).

2 4 6 8 10 12 14 16 18 20

k

10
-3

10
-2

10
-1

10
0

[V
]

Fig. 7. The error }mptkq ´ µptkq} computed for the state
variable x3 of Example 10 (the vertical axis is in logarith-
mic scale) versus the multiples of p for different values of
the switching period: p “ 0.5 s (blue line), p “ 0.25 s (or-
ange line), p “ 0.1 s (green line), p “ 0.05 s (purple line),
p “ 0.01 s (red line) and p “ 0.005 s (cyan line).

The error of the left hand side of (23) computed for the
whole state has an analogous behaviour as the one plotted
in Fig.s 6 and 7 and a corresponding plot is therefore
omitted.

Example 11 Let us consider the system (1) with q “ 2
and the following matrices

Π1 “

»

—

—

–

1 0 0

0 1 0

0 ´1 0

fi

ffi

ffi

fl

, F1 “

»

—

—

–

0 ´2 0

1 ´3 0

´1 3 0

fi

ffi

ffi

fl

Π2 “

»

—

—

–

0 ´1 0

0 1 0

0 1 0

fi

ffi

ffi

fl

, F2 “

»

—

—

–

0 2 0

0 ´2 0

0 ´1 1

fi

ffi

ffi

fl

Note that for this example the matrices Π1 and Π2 are
idempotent and satisfy the condition (9), hence Π :“
Π2Π1 is idempotent as well. Nevertheless, it is easy to
verify that the proposed averaged model (16) is different
from (6). In Fig. 8 the time evolution of the state vari-
ables x1 and x2 for p “ 0.1 s are reported by showing the
solutions of the SIS (1), the averaged model (16), and
other solutions of interest.

A significant difference is clearly the choice of the initial
conditions. The averaged model (6) exploits the fact that
Π is a projector and chooses an initial value in the sub-
space imΠ, thereby matching very well the moving aver-
age after one period. The reason is that after one period
the solution of the switched systems has distance of order
p from the subspace imΠ. Our newly proposed averaged
model doesn’t assume this property and instead chooses

9
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Fig. 8. Time evolution of the state variable x1 (top) and x2

(bottom) of Example 11 with p “ 0.1 s: SIS (1) (blue lines),
averaged model (6) (orange lines), averaged model (16)
(green lines), discrete-time model (20) (red stars), moving
average (22) (black lines).
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Fig. 9. Time evolution of the error }mptkq ´ µptkq} of Ex-
ample 11 (the vertical axis is in logarithmic scale) for dif-
ferent values of the switching period: p “ 0.1 s (blue line),
p “ 0.08 s (red line), p “ 0.06 s (yellow line), p “ 0.05 s (pur-
ple line), p “ 0.03 s (green line) and p “ 0.01 s (cyan line).

an initial value which is consistent with the moving av-
erage over the first interval which is still very far away
from the subspace imΠ. Furthermore, the dynamics of
our newly proposed averaged model approximate the jump
towards the common consistency space by introducing an
eigenvalue ´1{p in the matrix Ap and it takes some steps
until the initial error vanishes. This is also clearly visible
in Fig. 9 which shows the error of the proposed averaged
model, i.e., the left hand side of (23), for different switch-
ing periods. For each p the error decreases over time and
for any time instant the error decreases with decreasing
p. The continued exponential decay is due to the fact, that
all solutions (switched and averaged) converge exponen-
tially to zero and hence trivially the error also converges
exponentially to zero.

Note that the matrix F2 is not Hurwitz but the dynamic

matrix Ap of the resulting averaged model is Hurwitz for
all p ą 0. Looking at Fig. 8 the interpretation is that
the fast dynamics characterized by the idempotent jump
matrices allow the trajectory of the SIS to get closer to
the trajectory of the averaged model when the number of
elapsed periods increases.

Example 12 Let us consider the following numerical
example where the matrices Fi and Πi, with i P t1, 2u are
given by

Π1 “

»

—

—

–

1 0 1

0 1 0

0 0 0

fi

ffi

ffi

fl

, F1 “

»

—

—

–

´4 ´1 ´4

´1 4 ´1

0 0 0

fi

ffi

ffi

fl

Π2 “

»

—

—

–

1 0 0

0 1 0

0 0 0

fi

ffi

ffi

fl

, F2 “

»

—

—

–

´10 ´1 0

´1 0 0

0 0 0

fi

ffi

ffi

fl

.

The matrices Π1 and Π2 do not satisfy conditions (9b),
however the products Π2Π1 and Π1Π2 are idempotent.
Then according to Remark 9 the error between the moving
averagemptq of the solution of this system and its samples
mptkq is Oppq. By considering d1 “ d2 “ 0.5 and the
following matrices

Λ “

»

—

—

–

´7 ´1 ´7

´1 2 ´1

0 0 0

fi

ffi

ffi

fl

, Γ “

»

—

—

–

1 0 1

0 1 0

0 0 0

fi

ffi

ffi

fl

the dynamic matrix (17) is given by

Ap “

»

—

—

–

´7 ´1 ´p7p´ 1q{p

´1 2 ´1

0 0 ´1{p

fi

ffi

ffi

fl

where p is the switching period. Let us compare the so-
lutions of the SIS (1), the averaged model (16) and the
discrete-time model (20) together with the moving aver-
age (22). Figures 10 and 11 show the dynamics of the
state variables x1 and x2, respectively, for different val-
ues of the switching period, over a time interval of 0.5 s.
It is evident that the error between the output µptq and
the moving average mptq is Oppq, i.e., it is enough to let
the switching period going to zero without needing some
periods to elapse.

It is remarkable to make a comparison between the av-
eraged model (6) presented in our previous studies and
the proposed model (16). Let us consider the averaged dy-
namic matrix of the continuous averaged model (6) which
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Fig. 10. Time evolution of the state variable x1 of Exam-
ple 12 with p “ 0.05 s (top) and p “ 0.1 s (bottom): SIS (1)
(blue lines), averaged model (16) (green lines), discrete-time
model (20) (red stars), moving average (35) with δ “ p{2
(black lines).
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Fig. 11. Time evolution of the state variable x2 of Exam-
ple 12 with p “ 0.05 s (top) and p “ 0.1 s (bottom): SIS (1)
(blue lines), averaged model (16) (green lines), discrete-time
model (20) (red stars), moving average (35) with δ “ p{2
(black lines).

is given by

Aav “ ΠpF1d1 ` F2d2qΠ “

»

—

—

–

´7 ´1 ´7

´1 2 ´1

0 0 0

fi

ffi

ffi

fl

.

It is easy to see that ΓAp “ Aav. Moreover the initial
condition for (6) and (17) are the same, indeed Γx0 “

Πx0. Then the solutions of (6) and (17) keep very close
to each other.

7 Conclusion

A new averaged model for SIS which exhibit state jumps
at the switching time instants has been presented. The
proposed model generalizes the classical averaged model
widely adopted for the analysis of switched PWM sys-
tems with Lipschitz continuous solution. The averaging

result requires milder assumptions on the system matri-
ces with respect to previous averaging analyses for SIS.
A switched capacitor electrical circuit has been used to
validate the results and to motivate their practical use-
fulness.

Future work will be dedicated to the study of scenar-
ios with time-varying and state-dependent duty cycles.
Furthermore, other directions of future research are the
application of the proposed averaging approach for the
stability analysis of switched impulsive systems and sin-
gularly perturbed systems.

Appendix

7.1 Proof of Lemma 5

Proof. Consider (3)–(4). By using the Taylor approxi-
mation one can write

Gj,p “ eFjdjp “ I ` Fjdjp` Opp2q “ I ` Oppq (38)

for all j P Σ, where I is the identity matrix. By using (38)
in (4) one obtains

Θp “

q
ź

j“1

Gj,pΠj “ Π ` Λp` Opp2q “ Φp ` Opp2q

(39)

where Π is given by (10), Λ by (19) and Φp by (18a).
By applying Lemma 3 with Assumption 1, from (25b) it
follows

Θk
p “ Φk

p ` Oppq (40)

for all k P t0, . . . , ℓpu. By subtracting (21) to (5) one
obtains

x´
k “ zk ` Θk

px
´
0 ´ Φk

pz0
a
“ zk ` Φk

ppx´
0 ´ z0q ` Oppq

“ zk ` Oppq (41)

where in
a
“ we used (40). ■

7.2 Proof of Lemma 6

Proof. Consider (22). By solving (1) and by using (2)
one can write

pmptkq “

ż pk`1qp

kp

xptqdt

“

q
ÿ

i“1

ż dip

0

GipψqΠixps´
k,iqdψ

“

q
ÿ

i“1

ż dip

0

GipψqΠi

i´1
ź

h“1

Gh,pΠhx
´
k dψ (42)
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for all k P t0, . . . , ℓp ´ 1u. Then, from (42) by using (38)
and by noticing the presence of the integral one can
write:

pmptkq “

q
ÿ

i“1

Πi

i´1
ź

h“1

Πhx
´
k dip` Opp2q

“

q
ÿ

i“1

i
ź

h“1

Πhx
´
k dip` Opp2q

“ Γpx´
k ` Opp2q

a
“ Γpzk ` Opp2q

“ µkp` Opp2q (43)

where Γ is given by (18b), in
a
“ we used Lemma 5 with

Assumption 1 and µk is defined by (20b). By dividing
both sides of (43) by p it follows that (33) holds. ■

7.3 Proof of Lemma 7

Proof. By definition it is mptq “ mptkq for any t “

tk “ kp, k P t0, . . . , ℓp ´1u and then in the time instants
multiple of the switching period the condition (34) is
trivially satisfied.

Let us consider the moving average over a time inter-
val of length p which starts in i-th mode. For any t P

rsk,i, sk,i`1s, k P t0, . . . , ℓp ´ 1u, τi “ t ´ sk,i, i.e. τi P

r0, dips, by substituting the solution of SIS (1) in (22)
and by reminding that the duty cycles are constant, one
can write

pmptq “pmpsk,i ` τiq “

ż dip

τi

GipψqΠixps´
k,iqdψ

`

q
ÿ

j“i`1

ż djp

0

GjpψqΠjxps´
k,jqdψ

`

i´1
ÿ

j“1

ż djp

0

GjpψqΠjxps´
k`1,jqdψ

`

ż τi

0

GipψqΠixps´
k`1,iqdψ.

By using (2)–(4) it follows

pmptq “

ż dip

τi

GipψqΠi

i´1
ź

w“1

Gw,pΠwx
´
k dψ

`

q
ÿ

j“i`1

ż djp

0

GjpψqΠj

j´1
ź

w“1

Gw,pΠwx
´
k dψ

`

i´1
ÿ

j“1

ż djp

0

GjpψqΠj

j´1
ź

w“1

Gw,pΠwx
´
k`1dψ

`

ż τi

0

GipψqΠi

i´1
ź

w“1

Gw,pΠwx
´
k`1dψ. (44)

Let us rewrite (42) as follows

pmptkq “

q
ÿ

j“1

ż djp

0

GjpψqΠj

j´1
ź

w“1

Gw,pΠwx
´
k dψ

“

ż dip

0

GipψqΠi

i´1
ź

w“1

Gw,pΠwx
´
k dψ

`

i´1
ÿ

j“1

ż djp

0

GjpψqΠj

j´1
ź

w“1

Gw,pΠwx
´
k dψ

`

q
ÿ

j“i`1

ż djp

0

GjpψqΠj

j´1
ź

w“1

Gw,pΠwx
´
k dψ. (45)

By taking the difference between (45) and (44) one ob-
tains

ppmptq ´mptkqq “

ż τi

0

GipψqΠi

i´1
ź

w“1

Gw,pΠwpx´
k`1 ´ x´

k qdψ

`

i´1
ÿ

j“1

ż djp

0

GjpψqΠj

j´1
ź

w“1

Gw,pΠwpx´
k`1 ´ x´

k qdψ.

(46)

By using (3)–(4)

x´
k`1 “ Θpx

´
k “

q
ź

i“1

Πix
´
k ` Oppq “ Πx´

k ` Oppq, (47)

together with Gipψq “ I ` Oppq and Gw,p “ I ` Oppq,
from (46) one can write

ppmptq ´mptkqq “ τi

i
ź

w“1

ΠwpΠ ´ Iqx´
k

`

i´1
ÿ

j“1

djp
j

ź

w“1

ΠwpΠ ´ Iqx´
k ` Opp2q. (48)

By using (5) and (40) in Lemma 5, the expression (48)
can be rewritten as

ppmptq ´mptkqq “
˜

τi

i
ź

w“1

Πw `

i´1
ÿ

j“1

djp
j

ź

w“1

Πw

¸

pΠ ´ IqΦk
px

´
0 ` Opp2q.

(49)

where τi “ t´ sk,i and k “ tt{pu.
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From Assumption 2 and Remark 4 there exists a matrix
Tp such that (30) holds and then one has

TppΠ ´ IqΦk
pT

´1
p “ TppΠ ´ IqT´1

p TpΦ
k
pT

´1
p

“

˜«

I 0

Rp I

ff

TΠT´1

«

I 0

´Rp I

ff

´ TpT
´1
p

¸

TpΦ
k
pT

´1
p

“

˜«

I 0

Rp I

ff «

I 0

0 V

ff «

I 0

´Rp I

ff

´

«

I 0

0 I

ff¸

TpΦ
k
pT

´1
p

“

«

0 0

V ´ I

ff «

pI ` Λ1pqk 0

0 pV ` Λ2pqk

ff

“

«

0 0

0 pV ´ IqpV ` Λ2pqk

ff

. (50)

Since V is Schur it follows there exist constants β1 P R`
0 ,

ε P p0, 1q and p̄ε P R` such that, by taking the norms
on both side of (50) it is

}TppΠ ´ IqΦk
pT

´1
p } ď β1ε

k (51)

for all p P p0, p̄εs. Moreover one can write

}pΠ ´ IqΦk
p} “ }T´1

p TppΠ ´ IqΦk
pT

´1
p Tp}

ď }T´1
p }}TppΠ ´ IqΦk

pT
´1
p }}Tp}

ď β0}TppΠ ´ IqΦk
pT

´1
p } ď β0β1ε

k, (52)

where β0 P R` is such that

}Tp}}T´1
p } ď β0 (53)

which exists for sufficiently small p because Rp in (31)
is Oppq.

Then, by dividing both sides of (49) by p, by considering
that τi “ Oppq, by taking the norms on both sides, given
the initial condition x´

0 and by using (52), it follows that
there exists an αi P R` such that the following condition

}mptq ´mptkq} ď}

˜

τi
p

i
ź

w“1

Πw `

i´1
ÿ

j“1

dj

j
ź

w“1

Πw

¸

pΠ ´ IqΦk
px

´
0 } ` αip

ď

˜

}

i
ź

w“1

Πw} `

i´1
ÿ

j“1

}

j
ź

w“1

Πw}

¸

}pΠ ´ IqΦk
p}}x´

0 } ` αip

ď

i
ÿ

j“1

}

j
ź

w“1

Πw}β0β1ε
k}x´

0 } ` αip

ďβεk ` αip (54)

is satisfied for any t P rsk,i, sk,i`1q, τi “ t ´ sk,i, for all
k P t0, . . . , ℓp ´ 1u and p P p0, p̄εs, where

β “ β0β1}x´
0 }

q
ÿ

j“1

}

j
ź

w“1

Πw}.

By considering (54) for all i P Σ it follows that (34)
holds for all t P p0, t̄ ´ ps and any p P p0, p̄εs with α “

maxiPΣ αi. ■

7.4 Proof of Theorem 8

Proof. Let us consider (16) and (22). By taking the
norm of the difference one can write

}mptq ´ µptq} “ }mptq ´mptkq `mptkq ´ µptq}

paq

ď α1p` β1ε
k
1 ` }mptkq ´ µk ` µk ´ µptq}

pbq

ď α3p` β1ε
k
1 ` }µk ´ µptq}

pcq

ď α3p` β1ε
k
1 ` }Γ} }zk ´ ξptq}

ď α3p` β1ε
k
1 ` }Γ} }zk ´ ξpkpq}

` }Γ} }ξpkpq ´ ξptq} (55)

holds for all p P p0, pε1s, t P p0, t̄s, k “ tt{pu, where in
paq we used Lemma 7 with α called α1, β called β1 and
ε called ε1, in pbq we used Lemma 6 which allows one
to write (33) as }mptkq ´ µk} ď α2p and we defined
α3 “ 2maxtα1, α2u, in pcq we used (20b) and (16b).

Let us consider the term }zk ´ ξpkpq} in (55). By solv-
ing (16a) and by using (21) one can write

ξpkpq ´ zk “

´

epΦp´Iqk ´ Φk
p

¯

x0. (56)

From (56) and by using arguments similar to (52) it
follows

}ξpkpq ´ zk} ď }

´

epΦp´Iqk ´ Φk
p

¯

}}x0}

ď β0}Tp

´

epΦp´Iqk ´ Φk
p

¯

T´1
p }}x0} (57)

where Tp is given by (31) and we used (53). From Re-
mark 4 one can write

TppΦp ´ IqT´1
p “

”

Λ1p 0
0 V ´I`Λ2p

ı

, (58)
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and then

Tp

´

epΦp´Iqk ´ Φk
p

¯

T´1
p

“ eTppΦp´IqT´1
p k ´ pTpΦpT

´1
p qk

“ e

´”

Λ1p 0
0 V ´I`Λ2p

ı¯

k
´

”

I`Λ1p 0
0 V `Λ2p

ık

“

”

peΛ1p
q
k 0

0 peV ´I`Λ2p
q
k

ı

´

”

pI`Λ1pq
k 0

0 pV `Λ2pq
k

ı

.

(59)

Considering the Taylor expansion of the exponential
function, we have eΛ1p “ I ` Λ1p ` Opp2q and hence
being k “ tt{pu,

peΛ1pqk “ pI ` Λ1pqk `Oppq. (60)

By using (60) in (59) one has

Tp

´

epΦp´Iqk ´ Φk
p

¯

T´1
p “

”

Oppq 0

0 peV ´I`Λ2p
q
k

´pV `Λ2pq
k

ı

.

(61)
Since the matrix V is Schur by hypothesis, for suffi-
ciently small p the eigenvalues of V `Λ2p havemagnitude
smaller than 1 and V ´ I ` Λ2p is Hurwitz (and hence
the eigenvalues of eV ´I`Λ2p also have magnitude smaller
than 1). Consequently, there exist constants β2, β3 P R`

0 ,
ε2 P p0, 1q and pε2 P R` such that

}peV ´I`Λ2pqk} ď β2ε
k
2 (62a)

}pV ` Λ2pq}k ď β3ε
k
2 (62b)

for all p P p0, p̄ε2s. By taking the norms on both sides
of (61) and by using (62) it follows that there exists a
constant α4 P R`, such that

}Tp

´

epΦp´Iqk ´ Φk
p

¯

T´1
p } ď α4p` β4ε

k
2 . (63)

where β4 “ 2maxtβ2, β3u. Then from (57) with (63) the
following inequality

}ξpkpq ´ zk} ď α5p` β5ε
k
2 (64)

with α5 “ α4β0}x0}, β5 “ β0β4}x0}, holds for all p P

p0, pε2s, t P p0, t̄s, k “ tt{pu.

By substituting (64) in (55) it follows

}mptq ´ µptq} ď α6p` β6ε
k
3 ` }Γ} }ξpkpq ´ ξptq} (65)

with α6 “ 2maxtα3, α5u, β6 “ 2maxtβ1, β5u and
ε3 “ maxtε1, ε2u and for all p P p0, p̄ε3s with
p̄ε3 “ mintp̄ε1 , p̄ε2u.

By considering the last term in (65) and the solution
of (16a), for any t P rkp, kp` pq one can write

ξptq ´ ξpkpq “

´

e
1
p pΦp´Iqpt´kpq

´ I
¯

ξpkpq

“

´

epΦp´Iqp t
p ´kq

´ I
¯

ξpkpq. (66)

By using (53) in (66) it follows

}ξptq ´ ξpkpq} “ }

´

epΦp´Iqp t
p ´kq

´ I
¯

epΦp´Iqkx0}

“ }

´

epΦp´Iq t
p ´ epΦp´Iqk

¯

x0}

ď β0}Tp

´

epΦp´Iq t
p ´ epΦp´Iqk

¯

T´1
p }}x0}

paq
“ β0}

„

peΛ1p
q
t
p ´peΛ1p

q
k 0

0 peV ´I`Λ2p
q
t
p ´peV ´I`Λ2p

q
k

ȷ

} }x0}

“ β0}

”

eΛ1t
´eΛ1kp 0

0 peV ´I`Λ2p
q
t
p ´peV ´I`Λ2p

q
k

ı

} }x0}

(67)

where in paq we used arguments similar to those used
for (59). By taking the Taylor series one can write

eΛ1t ´ eΛ1kp “ Λ1pt´ kpq ` Opp2q “ Oppq. (68)

Since V is Schur then V ´I is Hurwitz and there exists a
sufficiently small p such that V ´I`Λ2p is Hurwitz and
eV ´I`Λ2p is Schur. Then there exists a constant β7 P R`

0
such that

}peV ´I`Λ2pq
t
p ´ peV ´I`Λ2pqk}

ď }peV ´I`Λ2pq}
t
p ` }peV ´I`Λ2pq}k

ď β7ε
k
2 ` β2ε

k
2 . (69)

By using (68) and (69) in (67) it follows that there exists
a constant α7 P R` such that

}ξptq ´ ξpkpq} ď α7p` β8ε
k
2 (70)

with β8 “ 2β0}x0}maxtβ2, β7u. By substituting (70)
in (65), it follows that (23) holds withα “ 2maxtα6, α7u,
β “ 2maxtβ6, β8u and ε “ maxtε2, ε3u and for all
p P p0, p̄εs with p̄ε “ mintp̄ε2 , p̄ε3u.

■
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