Model reduction for switched DAEs

 Stephan Trenn

 Stephan Trenn}

Associate Professor for Mathematical Systems Theory
Jan C. Willems Center for Systems and Control
University of Groningen, Netherlands

Joint work Sumon Hossain (North South University, Dhaka, Bangladesh)

GAMM FA "Dynamics and Control" Workshop, TU Dortmund, 8 September 2023

Model reduction setup

Given: Large scale switched DAE

$$
\begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u, \quad x\left(t_{0}^{-}\right) \in \mathcal{X}_{0} \subseteq \mathbb{R}^{n} \\
y & =C_{\sigma} x+D_{\sigma} u
\end{aligned}
$$

, $\sigma:\left[t_{0}, t_{f}\right) \rightarrow \mathcal{Q}:=\{0,1,2, \ldots, \mathrm{~m}\}$ known switching signal
, $\left(E_{k}, A_{k}, B_{k}, C_{k}, D_{k}\right) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times m}$ mode $k \in \mathcal{Q}$
, $n \gg m, p$

Goal

Find reduced switched system with similar input-output behavior

Challenges

No restriction on index of each DAE mode \rightarrow Jumps and Dirac impulses must be preserved

Example (Example 1 from Hossain \& T. 2023 (preprint))

Switched DAE with $n=4, m=p=1$

$$
\sigma(t)=0 \text { on }[0,2), \quad \sigma(t)=1 \text { on }[2,4), \quad \sigma(t)=2 \text { on }[4,5)
$$

Simulation for $x_{0}=0$ and $u(t)=\sin (t)$:

Overview reduction method

Step 1

Rewrite swDAE as equivalent swODE with jumps and Diracs (same state dimension)

Step 2 (cf. Hossain \& T. 2023, Automatica)
Remove unobservable and uncontrollable states (reduced realization)
Step 3
Decouple output Dirac inducing states (decoupling assumption)

Step 4 (cf. Hossain \& T. 2024, IEEE TAC)
Midpoint balanced truncation on non-output-Dirac-inducing states

Step 1: swDAE \rightarrow swODE with jumps and Diracs

$$
\begin{equation*}
E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u, \quad x\left(t_{0}^{-}\right)=x_{0}, \quad y=C_{\sigma} x+D_{\sigma} u \tag{swDAE}
\end{equation*}
$$

Theorem

Let $\boldsymbol{U}^{\nu}:=\left(u^{\top}, \dot{u}^{\top}, \ldots, u^{(\nu-1)^{\top}}\right)^{\top}$, then there exist matrices such that

$$
\begin{aligned}
\dot{z} & =A_{k}^{\text {diff }} z+B_{k}^{\text {diff }} u, \quad \text { on }\left(s_{k}, s_{k+1}\right), \quad z\left(t_{0}^{-}\right)=x_{0} \\
z\left(s_{k}^{+}\right) & =J_{k}^{x} z\left(s_{k}^{-}\right)+J_{k}^{v} \boldsymbol{U}^{\nu_{k-1}}\left(s_{k}^{-}\right), \quad k \geq 0, \\
w & =C_{k} z+D_{k} u+D_{k}^{\mathrm{imp}} \boldsymbol{U}^{\nu_{k}}, \quad \text { on }\left(s_{k}, s_{k+1}\right), \\
w\left[s_{k}\right] & =\sum_{i=0}^{\nu_{k}-2}\left[C_{k}^{i} z\left(s_{k}^{-}\right)+\boldsymbol{D}_{k}^{\mathrm{imp}-} \boldsymbol{U}^{\nu_{k-1}}\left(s_{k}^{-}\right)-\boldsymbol{D}_{k}^{\mathrm{imp}+} \boldsymbol{U}^{\nu_{k}}\left(s_{k}^{+}\right)\right] \delta_{s_{k}}^{(i)}
\end{aligned}
$$

(swODE)
has the same input-output behavior as (swDAE)
Key ingredient: Quasi-Weierstrass form

Step 2: Reduced realization

$$
\begin{array}{rlrl}
\dot{z} & =A_{k}^{\text {diff }} z+B_{k}^{\text {diff }} u, & \dot{\widehat{z}} & =\widehat{A}_{k} \widehat{z}+\widehat{B}_{k} u, \\
z\left(t_{0}^{-}\right) & =x_{0} \in \mathcal{X}_{0} & \widehat{z}\left(t_{0}^{-}\right) & =\widehat{x}_{0}=\Pi^{\mathcal{X}_{0}} x_{0} \in \widehat{\mathcal{X}}_{0} \\
z\left(s_{k}^{+}\right) & =J_{k}^{x} z\left(s_{k}^{-}\right)+J_{k}^{v} v_{k}, & & \widehat{z}\left(s_{k}^{+}\right) \\
w & =\widehat{J}_{k}^{x} \widehat{z}\left(s_{k}^{-}\right)+\widehat{J}_{k}^{v} v_{k} \\
& =C_{k} z, & \widehat{w} & =\widehat{C}_{k} \widehat{z} \\
w\left[s_{k}\right] & =\sum_{i=0}^{\rho_{k}} C_{k}^{i} z\left(s_{k}^{-}\right) \delta_{s_{k}}^{(i)} & \widehat{w}\left[s_{k}\right] & =\sum_{i=0}^{\rho_{k}} \widehat{C}_{k}^{i} \widehat{z}\left(s_{k}^{-}\right) \delta_{s_{k}}^{(i)}
\end{array}
$$

Key ingredients

, Extended reachability subspaces $\overline{\mathcal{R}}_{0}, \overline{\mathcal{R}}_{1}, \ldots, \overline{\mathcal{R}}_{\mathrm{m}}$
, Restricted unobservability subspaces $\underline{\mathcal{U}}_{\mathrm{m}}, \underline{\mathcal{U}}_{\mathrm{m}-1}, \ldots, \underline{\mathcal{U}}_{0}$
, Weak Kalman decomposition based on the subspace pairs $\left(\overline{\mathcal{R}}_{k}, \underline{\mathcal{U}}_{k}\right)$

Step 2 - The subspaces $\overline{\mathcal{R}}_{k}$ and \mathcal{U}_{k}

$\langle A \mid \mathcal{V}\rangle=$ smallest A-invariant subspace containing \mathcal{V}
$\langle\mathcal{V} \mid A\rangle=$ larges A-invariant subspace contained in \mathcal{V}
Ext. Reachability Subspaces

$$
\overline{\mathcal{R}}_{k}:=\mathcal{R}_{k}+\left\langle A_{k}^{\text {diff }} \mid J_{k}^{x} \overline{\mathcal{R}}_{k-1}+\operatorname{im} J_{k}^{v}\right\rangle, \quad k=0, \ldots, \mathrm{~m},
$$

where $\mathcal{R}_{k}:=\left\langle A_{k}^{\text {diff }} \mid \operatorname{im} B_{k}^{\text {diff }}\right\rangle, \quad \overline{\mathcal{R}}_{0}:=\mathcal{X}_{0}$

Restr. Unobservability Subspaces

$$
\begin{array}{r}
\underline{\mathcal{U}}_{k}=\mathcal{U}_{k} \cap\left\langle\left(J_{k+1}^{x}\right)^{-1} \underline{\mathcal{U}}_{k+1} \cap \mathcal{U}_{k+1}^{\mathrm{imp}} \mid A_{k}^{\text {diff }}\right\rangle, \quad k=\mathrm{m}-1, \ldots, 1,0 \\
\text { where } \mathcal{U}_{k}:=\left\langle\operatorname{ker} C_{k} \mid A_{k}^{\text {diff }}\right\rangle, \quad \mathcal{U}_{k}^{\text {imp }}:=\operatorname{ker}\left[C_{k}^{0} / C_{k}^{1} / \ldots / C_{k}^{\rho_{k}}\right], \quad \underline{\mathcal{U}}_{\mathrm{m}}:=\mathcal{U}_{\mathrm{m}}
\end{array}
$$

Step 2: The weak Kalman decomposition

Lemma (Hossain \& T. 2022, MATHMOD)
Given system (A, B, C) and A-invariant subspaces $\overline{\mathcal{R}} \supseteq \operatorname{im} B, \quad \mathcal{U} \subseteq \operatorname{ker} C$. Choose $T=\left[T_{1}, T_{2}, T_{3}, T_{4}\right]$ invertible such that

$$
\operatorname{im} T_{1}=\overline{\mathcal{R}} \cap \underline{\mathcal{U}}, \quad \operatorname{im}\left[T_{1}, T_{2}\right]=\overline{\mathcal{R}}, \quad \operatorname{im}\left[T_{1}, T_{3}\right]=\underline{\mathcal{U}} .
$$

Then ($\left.T^{-1} A T, T^{-1} B, C T\right)$ has the form

$$
\left(\left[\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & A_{14} \\
0 & A_{22} & 0 & A_{24} \\
0 & 0 & A_{33} & A_{34} \\
0 & 0 & 0 & A_{44}
\end{array}\right],\left[\begin{array}{c}
B_{1} \\
B_{2} \\
0 \\
0
\end{array}\right],\left[\begin{array}{lllll}
0 & C_{2} & 0 & C_{4}
\end{array}\right)\right.
$$

In particular, (A, B, C) and $\left(A_{22}, B_{2}, C_{2}\right)$ have identical input-output behavior.

Example 1 - Reduced states after Step 2

Step 3 - Decoupling assumption

$$
\begin{aligned}
\dot{\hat{z}} & =\widehat{A}_{k} \widehat{z}+\widehat{B}_{k} u, \quad \widehat{z}\left(t_{0}^{-}\right)=\widehat{x}_{0} \in \widehat{\mathcal{X}}_{0} \\
\widehat{z}\left(s_{k}^{+}\right) & =\widehat{J}_{k}^{x} \widehat{z}\left(s_{k}^{-}\right)+\widehat{J_{k}^{v}} v_{k} \\
\widehat{w} & =\widehat{C}_{k} \widehat{z}, \quad \widehat{w}\left[s_{k}\right]=\sum_{i=0}^{\rho_{k}} \widehat{C}_{k}^{i} \widehat{z}\left(s_{k}^{-}\right) \delta_{s_{k}}^{(i)}
\end{aligned}
$$

Decoupling Assumption

\exists coordinate transformations $T_{k}=\left[T_{k}^{\overline{\mathrm{imp}}}, T_{k}^{\text {imp }}\right]$ such that

$$
\widehat{C}_{k}^{i} T_{k-1}^{\overline{\mathrm{mp}}}=0, \quad T_{k}^{-1} \widehat{A}_{k} T_{k}=\left[\begin{array}{cc}
A_{k}^{\overline{\mathrm{mpp}}} & 0 \\
0 & A_{k}^{\text {imp }}
\end{array}\right], \quad T_{k}^{-1} \widehat{J}_{k}^{x} T_{k-1}=\left[\begin{array}{cc}
J_{k}^{\overline{\mathrm{xmp}}} & 0 \\
0 & J_{k}^{x^{\text {imp }}}
\end{array}\right]
$$

Step 3 - Decoupling assumption

$$
\begin{aligned}
& \dot{z}^{\overline{\mathrm{m} p}}=A_{k}^{\overline{\mathrm{imp}}} z^{\overline{\mathrm{mp}}}+B_{k}^{\overline{\overline{i m p}}} u, \quad z^{\overline{\mathrm{imp}}}\left(t_{0}^{-}\right)=x_{0}^{\overline{\overline{\mathrm{mp}}}} \in \mathcal{X}_{0}^{\overline{\mathrm{imp}}}, \\
& \dot{z}^{\text {imp }}=A_{k}^{\text {imp }} z^{\text {imp }}+B_{k}^{\text {imp }} u, \quad z^{\text {imp }}\left(t_{0}^{-}\right)=x_{0}^{\text {imp }} \in \mathcal{X}_{0}^{\text {imp }}, \\
& z^{\overline{\mathrm{mp}}}\left(s_{k}^{+}\right)=J_{k}^{x^{\overline{\mathrm{m} p}}} z^{\overline{\mathrm{mp}}}\left(s_{k}^{-}\right)+J_{k}^{v^{\overline{\mathrm{m} p}}} v_{k}, \\
& z^{\text {imp }}\left(s_{k}^{+}\right)=J_{k}^{x^{\mathrm{imp}}} z^{\mathrm{imp}}\left(s_{k}^{-}\right)+J_{k}^{v^{\mathrm{imp}}} v_{k}, \\
& \widehat{w}=C_{k}^{\overline{\mathrm{imp}}} z^{\overline{\mathrm{mp}}}+C_{k}^{\mathrm{imp}} z^{\mathrm{mpp}}, \quad \widehat{w}\left[s_{k}\right]=\sum_{i=0}^{\rho_{k}} C_{k}^{\mathrm{imp}, i} z^{\mathrm{mp}}\left(s_{k}^{-}\right) \delta_{s_{k}}^{(i)}
\end{aligned}
$$

Decoupling Assumption

\exists coordinate transformations $T_{k}=\left[T_{k}^{\overline{\mathrm{imp}}}, T_{k}^{\mathrm{imp}}\right]$ such that

$$
\widehat{C}_{k}^{i} T_{k-1}^{\overline{\mathrm{mp}}}=0, \quad T_{k}^{-1} \widehat{A}_{k} T_{k}=\left[\begin{array}{cc}
A_{k}^{\overline{\mathrm{mpp}}} & 0 \\
0 & A_{k}^{\text {imp }}
\end{array}\right], \quad T_{k}^{-1} \widehat{J}_{k}^{x} T_{k-1}=\left[\begin{array}{cc}
J_{k}^{\overline{\mathrm{xmp}}} & 0 \\
0 & J_{k}^{x^{\text {imp }}}
\end{array}\right]
$$

Step 4 - Midpoint balanced truncation

$$
\begin{aligned}
\dot{z}^{\overline{\mathrm{mp}}} & =A_{k}^{\overline{\mathrm{imp}}} z^{\overline{\mathrm{imp}}}+B_{k}^{\overline{\mathrm{imp}}} u, \quad z^{\overline{\mathrm{imp}}}\left(t_{0}^{-}\right)=x_{0}^{\overline{\mathrm{imp}}} \in \mathcal{X}_{0}^{\overline{\mathrm{imp}}} \\
z^{\overline{\mathrm{imp}}}\left(s_{k}^{+}\right) & =J_{k}^{x^{\mathrm{imp}}} z^{\overline{\mathrm{imp}}}\left(s_{k}^{-}\right)+J_{k}^{v^{\overline{\mathrm{imp}}}} v_{k} \\
\widehat{w} & =C_{k}^{\overline{\mathrm{imp}}} z^{\overline{\mathrm{imp}}}
\end{aligned}
$$

Lemma (Input-dependent jumps)

$z^{\overline{\mathrm{mp}}}$ solves $(s w O D E) \Longleftrightarrow z^{\overline{\mathrm{imp}}}=z_{u}+z_{v}$, where
z_{u} is the solution of (swODE) with $v_{k}=0$ and $x_{0}^{\overline{\mathrm{imp}}}=0$ and
z_{v} is the solution of (swODE) with $u=0 \hookrightarrow$ discrete-time system

Step 4 - Midpoint balanced truncation

$$
\begin{aligned}
\dot{z}^{\overline{\mathrm{mp}}} & =A_{k}^{\overline{\mathrm{imp}}} z^{\overline{\mathrm{mp}}}+B_{k}^{\overline{\mathrm{imp}}} u, \quad z^{\overline{\mathrm{imp}}}\left(t_{0}^{-}\right)=x_{0}^{\overline{\mathrm{imp}}} \in \mathcal{X}_{0}^{\overline{\mathrm{imp}}} \\
z^{\overline{\mathrm{imp}}}\left(s_{k}^{+}\right) & =J_{k}^{x^{\overline{\mathrm{mp}}}} z^{\overline{\mathrm{mp}}}\left(s_{k}^{-}\right)+J_{k}^{v^{\overline{\mathrm{imp}}}} v_{k} \\
\widehat{w} & =C_{k}^{\overline{\mathrm{imp}}} z^{\overline{\mathrm{imp}}}
\end{aligned}
$$

Midpoint balanced truncation method

1. Calculate midpoint reachability and observability Gramians for z_{u}, cf. Hossain \& T. 2024, TAC
2. Calculate suitable discrete-time reachability Gramians for z_{v}
3. Define overall reachability Gramians as weighted sum of midpoint and discrete-time reachability Gramians
4. Apply balanced truncation with respect to Gramians, cf. Hossain \& T. 2023, Automatica

Example 2 (Illustration of Step 4)

(swODE) size: $n_{0}=50, n_{1}=60, n_{2}=40, m=p=1, \operatorname{dim} \mathcal{X}_{0}=5$
Truncation balance for Hankel singular values: $10^{-3} \leadsto \widehat{n}_{0}=8, \quad \widehat{n}_{1}=10, \quad \widehat{n}_{2}=6$
Simulations for input $u(t)=\cos (t)$ and with random initial value:

Summary

$$
\begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u, \quad x\left(t_{0}^{-}\right)=x_{0} \in \mathcal{X}_{0}, \\
y & =C_{\sigma} x+D_{\sigma} u
\end{aligned}
$$

, Model reduction method for general (regular) switched DAEs - arbitrary index
, Consideration of finite-time interval - no stability assumptions
, Properly handles jumps, Dirac impulses and non-zero initial values
, Matlab implementation available on Zenodo doi:10.5281/zenodo. 8133789

Remaining issues

1. No guaranteed error bounds
2. Steps 1 and 2 needs exact rank decisions
3. Decoupling assumption in Step 3 not constructive
4. Step 4 needs large matrix exponentials
5. Switching signal needs to been known a priori
