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Abstract

As a powerful adaptive control method for the output tracking problem, funnel control has attracted considerable
attention in theoretical research and engineering practice. The funnel control strategy can guarantee both transient
behavior and arbitrary good accuracy. A noticeable shortcoming is however that the derivative of the tracking error
may become unnecessarily large resulting in a bouncing behavior of the tracking error between the funnel boundaries.
To avoid this phenomenon, we present a novel two stages funnel control scheme to solve the output-tracking control
problem for uncertain nonlinear systems with relative degree one and stable internal dynamics. This new scheme defines
the control input in terms of a desired error derivative while still ensuring that the tracking error evolves within the
prescribed funnel. In particular, we can quantify the range of the error derivative with a derivative funnel in terms of the
known bounds of the system dynamics. Furthermore, we extend our approach to the situation where input saturations
are present and extend the control law outside the funnel to ensure well-defined behavior in case the input saturations
are too restrictive to keep the error within the funnel.
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1. Introduction

Funnel control is a well-established universal control
method to achieve output tracking of unknown nonlin-
ear relative degree one systems with arbitrary prespecified
tracking accuracy. Compared to the other adaptive control
methods like λ−tracking [1] or high-gain adaptive control,
funnel controllers can ensure prespecified transient behav-
ior and the boundedness of the adaptive gain. After the
pioneering paper [2] there have been numerous extensions
on funnel controller; we refer the reader to the survey [3]
for the historical context and some early extensions and to
[4] for a recent unifying approach encompassing most ex-
isting extensions. Applications of funnel control and other
adaptive control strategies in a mechatronics context have
been extensively discussed in [5].

The key feature of funnel control is to guarantee the
transient behavior of the closed loop (see Figure 1 and
Figure 3) which usually can not be found in other con-
trol methods, like sliding mode control, PI control, and
fuzzy control. Transient behavior has been addressed in
the context of prescribed performance control (PPC) [6, 7],
which however requires a special (known) structure of the
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nonlinear dynamics and does not consider internal dynam-
ics. Furthermore, in contrast to PPC, the funnel controller
is an output-feedback controller and not a state-feedback
controller (and also does not invoke any observers), which
also distinguishes it from approaches utilizing barrier Lya-
punov functions [8] and model reference adaptive control
(MRAC) [9]; the more recent MRAC approach in [10] does
however address input contraints and prescribed perfor-
mance.

To motivate our novel approach and to highlight the
shortcomings of the existing funnel controller methods, we
consider the following simple scalar linear system

ẏ = ay + bu, a ∈ R, b > 0, y(0) = y0, (1)

with a = 2, b = 1, y0 = 0. This system has a so-called
high-gain property, i.e. the simple proportional feedback
u(t) = −ky(t) stabilizes the system for sufficiently large
gain k (here any k > a/b = 2 is suitable). If the system pa-
rameters a and b are unknown, it may not be immediately
clear which value for k is “sufficiently large”; furthermore,
the “correct” (and not too large) choice of k to achieve a
desired transient behavior and a desired final accuracy for
tracking an output reference yref is not straightforward.
Funnel control can resolve these problems by considering
an “adaptive” gain in the (error) feedback

u(t) = −k(t)e(t), (2)

where e(t) := y(t) − yref(t) and k(t) is chosen adaptively
based on a prespecified (time-varying) error bound ψ :
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[0,∞) → (0,∞):

k(t) :=
1

ψ(t)− |e(t)|
. (3)

The intuition behind this simple control law is that when-
ever the tracking error approaches the boundary of the
funnel

Fψ := { (t, e) ∈ R≥0 × R | |e(t)| < ψ(t) } ,

i.e. ψ(t)−|e(t)| becomes small, then the gain k(t) gets very
large and the high gain property of the system ensures that
the magnitude of the error decreases.

The funnel controller has been shown to ensure that the
error remains within the funnel and hence approximate
tracking is achieved with prespecified transient behavior
and any desired final accuracy. Interestingly, as a time-
varying feedback rule, the internal-model-principle does
not apply, i.e. it is possible to achieve asymptotic tracking
of an arbitrary reference signal, see [11, 12, 13]; however, in
practical applications, it may still be advantageous to add
an internal model if the generator of the reference signal
is known [5, Ch. 7].

For yref(t) := sin(50t) and ψ(t) := 0.8e−5t + 0.2 the
application of the funnel controller (3) to system (1) is
illustrated in Figure 1.
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Figure 1: Traditional funnel controller (3).

This simulation shows clearly that the funnel controller
(3) ensures that the error evolves within the prespecified
funnel; however, the funnel controller pays no attention
to the evolution of the error derivative, which results in a
possibly undesired bouncing behavior of the error signal
between the upper and lower funnel boundary.

The bouncing problem of funnel control may also occur
for input-saturated systems. For the simple scalar system
(1) with input saturation |u(t)| ≤ û it can be guaranteed

(straightforward worst-case analysis) that the error can be
kept in the funnel if û > 0 satisfies

bû ≥ |a|[||ψ||∞ + ||yref ||∞] + ||ẏref ||∞ + Λ =: Bψ,yref + Λ,

where Λ denotes the Lipschitz constant of ψ. However,
with this choice of û, the error derivative ė evolves in gen-
eral within a rather large range given by

|ė(t)| ≤ bû+ |a|[||ψ||∞+ ||yref ||∞]+ ||ẏref ||∞ = bû+Bψ,yref .

This range is much larger than the necessary range |ė(t)| ≤
Λ which is actually needed to stay within the funnel. Con-
sequently, an ad-hoc limiting of the input will not resolve
the bouncing problem. In fact, simulations in [13] already
showed that the bouncing behavior may lead to numerical
issues for tight funnels. Apart from the latter observation,
there seem to be no discussions in the literature to limit
the magnitude of the error derivative. However, by tak-
ing the future funnel into account as proposed in [14] the
magnitude of the error derivative may be reduced, but this
has only a significant effect when the funnel is shrinking
quickly and does not avoid bouncing in general.

In many applications, the bouncing behavior signifi-
cantly degrades the control performance; in particular,
limiting the bouncing, or the magnitude of the error
derivative in general, is a desirable additional control ob-
jective. One of the major advantages of funnel control is
its simplicity and universality (it does not depend at all on
the to be controlled system model), but this feature is also
a disadvantage, because the available knowledge about the
system model cannot be utilized easily to further improve
the performance of the controller. Our approach resolves
this dilemma by directly incorporating known (not neces-
sarily tight) bounds on the systems dynamics in the control
design with the goal to additionally limit the range of the
error derivative.

Towards this goal we introduce a novel two stages error-
derivative-limiting (EDL) funnel controller for relative-
degree one systems (cf. Remark 1). The first step is the de-
sign of an “optimal” convergence rate eop(e(t), t) depend-
ing on the current tracking error and the current funnel.
The idea is to ensure that in the closed loop ė(t) is not too
far away from eop(t) because ė(t) = eop(e(t), t) would be
sufficient to stay within the funnel (see Definition 1). The
second step, which we call orientated funnel controller, is
then to calculate the input u(t) in terms of eop(e(t), t), the
reference signal, and known bounds on the system’s dy-
namics. The overall controller structure is illustrated in
Figure 2.

To illustrate this two stage design let us discuss a simpli-
fied version of the actual EDL funnel controller (presented
in Section 3) for the simple linear system (1). One possible
choice for eop is

eop(t) =
e(t)

ψ(t)
ψ̇(t). (4)

The intuition behind this choice is that if e(t) is close to the
funnel boundary ψ(t), then eop(t) is approaching ψ̇ (i.e. in
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Figure 2: Overall system structure.

case e(t) > 0, the error decreases as quickly as the fun-
nel), on the other hand, if e(t) is far away from the funnel
boundary or ψ̇ is small then also eop(t) is small. In fact, it
is easily seen that if ė(t) = eop(e(t), t) then the funnel Fψ
is positively invariant, i.e. if the initial error e(0) is in the
funnel, then the error e(t) will stay within the funnel for
all times. Under the assumption that we have full knowl-
edge of all parameters in (1) (which is only assumed here
for illustrating purposes and will not be assumed for the
actual controller proposed in Section 4) as well as access
to the derivative of the reference signal, we can define the
following oriented funnel controller

u(t) =
eop(t) + ẏref(t)− a · y(t)

b
. (5)

Plugging controller (5) into (1), we obtain

ė = ẏ − ẏref

= a · y + b
eop + ẏref − a · y

b
− ẏref

= eop.

Simulation results for this case are shown in Figure 3,
which clearly show that the error remains within the fun-
nel without exhibiting any bouncing behavior.

The remainder of this paper is structured as follows.
In Section 2 we present the actual system class with cor-
responding assumptions and highlight some boundedness
properties of this system class. Afterward, in Section 3 we
present our proposed optimal convergence rate for the two
stages EDL funnel controller. In Section 4 we motivate
and propose our oriented funnel controller in terms of the
optimal convergence rate and prove that this choice indeed
ensures that the error evolves within the funnel. Further-
more, we also analyze the behavior of the error derivative
and derive some bounds for the error derivative in Section
5. The theoretical results are illustrated with some sim-
ulations. Finally, in Section 6 we also study the case of
input saturations and how to adjust the EDL funnel con-
troller accordingly. In particular, we provide conditions
under which it can be guaranteed that the error remains
within the funnel. We also study the case, when the input
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Figure 3: Funnel controller (5) with eop (4).

saturations are too restrictive to keep the error within the
funnel; in this case, we provide an outer funnel in which
the error is guaranteed to stay within.

2. Problem formulation

We consider nonlinear system of the following input
affine form

ẏ = f
(
pf , y, z

)
+ g

(
pg, y, z

)
u, y(0) = y0, (6a)

ż = h
(
ph, y, z

)
, z(0) = z0, (6b)

where y : R≥0 → R represents the output of the con-
trolled system, u : R≥0 → R denotes the control in-
put and z : R≥0 → Rn−1 is the internal state of order
n − 1 ∈ N. The functions f, g: Rd × R × Rn−1 → R and
h: Rd × R × Rn−1 → Rn−1 are assumed to be locally
Lipschitz continuous; pf , pg, ph : R≥0 → Rd are locally
integrable perturbations (and/or unknown d-dimensional,
time-varying parameters).

Furthermore, we make the following additional assump-
tions for (6).

(A1) Relative degree one with positive “high frequency
gain”: g(pg, y, z) > 0 for all pg, y and z.

(A2) Bounded perturbations: pf , pg and ph are assumed
to be globally bounded on R≥0 and we assume
knowledge of these (not necessarily tight) bounds,
say pmax

f , pmax
g , pmax

h , respectively.

(A3) BIBO-stability of internal dynamics: There exists a
continuous function bz : R≥0 × R≥0 × R≥0 → R≥0

such that for all continuous ph, y the solutions of
(6b) satisfy

∥z(t)∥ ≤ bz
(
∥ph[0,t)∥∞, ∥y[0,t)∥∞, ∥z0∥

)
.
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Furthermore, assume z0 ∈ Z0 for some bounded
Z0 ⊂ Rn−1.

Remark 1. Our controller design actually works without
change for systems of the general form

ẋ = G(pG, x, u), y = H(pH , x), (7)

with G : Rd × Rn × R → Rn and H : Rd × Rn → R as
long as there is a (nonlinear) coordinate transformation
x 7→ (y, z) which transforms (7) into (6). The existence
of such a coordinate transformation is strongly related to
the property that (7) has relative degree one [15]. How-
ever, we need knowledge about some system bounds, see
Lemma 2, which are formulated in terms of the system
description (6), hence we only consider the latter instead
of the original form (7).

The overall control objective is to ensure that the output
y of (6) follows a given reference output yref : R≥0 → R
in such a way that the error e := y − yref satisfies the
time-varying error bound ψ−(t) ≤ e(t) ≤ ψ+(t) for some
given functions ψ± : R≥0 → R. In other words, we want
to achieve that the error evolves in the (possibly unsym-
metric) funnel

Fψ± := { (t, e) ∈ R≥0 × R | ψ−(t) ≤ e ≤ ψ+(t) } . (8)

We will make the following assumptions for the funnel
boundaries and the reference signal.

(PR1) The funnel boundaries ψ+ : R≥0 → (0,∞), ψ− :
R≥0 → (−∞, 0) are continuously differentiable
and bounded with bounded derivative. Further-
more, we assume that ψ+(−) is convex (concave).

(PR2) The reference signal yref : R≥0 → R is contin-
uously differentiable, bounded and with bounded
derivative.

(PR3) The initial tracking error e0 := y0−yref(0) satisfies
ψ−(0) ≤ e0 ≤ ψ+(0).

Note that the convexity/concavity assumption in (PR1)
(together with boundedness of ψ±) implies that

∀t ≥ 0 : ψ̇+(t) ≤ 0 and ψ̇−(t) ≥ 0 (9)

and consequently

∀t ≥ 0 : 0 < ψ+(t) ≤ ψ+(0) and 0 > ψ−(t) ≥ ψ0(0).

A consequence of the above assumptions is the existence
of certain bounds which we will later use in the controller
design and analysis of the closed loop.

Lemma 2. Consider a nonlinear system (6) satisfying as-
sumptions (A1)-(A3) together with funnel boundaries and
a reference signal satisfying (PR1)-(PR3). Then there

exist constants Ymax, Ymin, Zmax, Gmin, Fmax, Fmin ∈ R
such that

Ymax > sup
t≥0

yref(t) + ψ+(0),

Ymin < inf
t≥0

yref(t) + ψ−(0),

Zmax > max
∥ph∥≤pmax

h ,y∈[Ymin,Ymax],z0∈Z0

bz(∥ph∥, |y|, ∥z0∥),

0 < Gmin ≤ min
∥pg∥≤pmax

g ,y∈[Ymin,Ymax],|z|≤Zmax

g
(
pg, y, z

)
,

Fmax ≥ max
∥pf∥≤pmax

f ,y∈[Ymin,Ymax],|z|≤Zmax

f
(
pf , y, z

)
,

Fmin ≤ min
∥pf∥≤pmax

f ,y∈[Ymin,Ymax],|z|≤Zmax

f
(
pf , y, z

)
.

Proof. This is a direct consequence of the boundedness of
yref and the properties of continuous functions considered
on compact domains.

The utility of the above Lemma is that as long as e(t)
remains in the funnel, it can be concluded (utilizing mono-
tonicity of the funnel boundaries) that y(t) ∈ (Ymin, Ymax),
which then can be used to conclude that |z(t)| <
Zmax, g(pg(t), y(t), z(t)) ≥ Gmin and f(pf (t), y(t), z(t)) ∈
[Fmin, Fmax]. Furthermore, the bounds can be sharpened
by choosing Ymax and Ymin as follows:

Ymax > sup
t≥0

(yref(t) + ψ+(t)),

Ymin < inf
t≥0

(yref(t) + ψ−(t)).

However, the more conservative bounds in Lemma 2 are
required when considering input saturations in Section 6.

Remark 3. Existence of a solution of (6) considered on
the open domain D := (Ymin, Ymax) × { z | ∥z∥ < Zmax }
is guaranteed by standard ODE theory for any (contin-
uously defined) feedback rule; this solution is in general
only defined on a finite time interval [0, ω). Furthermore,
it is also well known that if ω < ∞ then the maximal
solution leaves any compact subset of the domain D; in
particular, by considering the compact set [Y ∗

min, Ymax∗]×
{ z | ∥z∥ ≤ Z∗

max } ⊆ D, where Y ∗
max := supt≥0 yref(t) +

ψ+(0), Y ∗
min := supt≥0 yref(t) + ψ−(0), Zmax :=

max∥ph∥≤pmax
h ,y∈[Ymin,Ymax],z0∈Z0

bz(∥ph∥, |y|, ∥z0∥), we can
then conclude that there exists t ∈ [0, ω) such that e(t) =
y(t) − yref(t) /∈ [ψ−(t), ψ+(t)]. Consequently, a maximal
solution which remains within the funnel for all t ∈ [0, ω)
implies that ω = ∞. Note that this is in contrast to classi-
cal funnel control theory, where the domain of the ODE is
usually restricted to the interior of the funnel (because the
classical funnel feedback rule is undefined on the bound-
ary), and hence necessarily any maximal solution evolves
within the funnel and showing ω = ∞ requires some extra
effort.

3. Optimal converging rate

As motivated in the introduction our approach is based
on designing a desired rate of the change of the error sig-
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nal such that the error remains in the funnel but at the
same time the error derivative is not unnecessarily large.
In particular, when the error is already in a (possibly
time-varying) neighborhood of zero then the error deriva-
tive should ideally be zero. On the other hand, closer to
the funnel boundary, the desired error derivative should
in magnitude be at least so large to prevent crossing the
funnel boundary, but not much larger. These intuitive re-
quirements are formalized by the following definition of
the “optimal” convergence rate.

Definition 1. Consider a funnel with boundaries ψ± sat-
isfying (PR1) and a desired “zero error derivative region”

F0 := { (e, t) ∈ R× R≥0 | λ−(t) ≤ e ≤ λ+(t) } ⊆ Fψ±

for some λ−, λ+ : R≥0 → R with ψ−(t) < λ−(t) <
0 < λ+(t) < ψ+(t), for all t ≥ 0. Any function eop :
R × R≥0, (e, t) 7→ eop(e, t) is a suitable desired optimal
convergence rate if it satisfies the following properties:

(EO1) eop is locally Lipschitz continuous.

(EO2) eop(e, t) = 0 for all (e, t) ∈ F0, i.e. eop(e, t) = 0 if
λ−(t) ≤ e ≤ λ+(t).

(EO3) For any continuous non-negative e : [a, b] → R≥0

on some interval [a, b] ⊆ R≥0 with e(a) ≤ ψ+(a)
the solution η : [a, b] → R of

η̇(t) = eop(e(t), t), η(a) = e(a)

satisfies η(t) ≤ ψ+(t) for all t ∈ [a, b]. Analogously,
for any continuous non-positive e : [a, b] → R≤0

with e(a) ≥ ψ−(a) the solution η : [a, b] → R of

η̇(t) = eop(e(t), t), η(a) = e(a)

satisfies η(t) ≥ ψ−(t) for all t ∈ [a, b].

A possible choice for eop satisfying the above properties
is the following:

eop(e, t) =



e− λ+(t)

ψ+(t)− λ+(t)
ψ̇+(t), e ≥ λ+(t),

0, λ−(t) < e < λ+(t),

e− λ−(t)

ψ−(t)− λ−(t)
ψ̇−(t), e ≤ λ−(t).

(10)
The key idea is now to construct a controller which en-

sures that in the closed loop the following implications are
true:

e(t) ≥ λ+(t) =⇒ ė(t) ≤ eop(e(t), t),

e(t) ≤ λ−(t) =⇒ ė(t) ≥ eop(e(t), t),
(11)

because then property (EO3) ensures that the error re-
mains inside the funnel. This intuition is formalized in the
following theorem.

Theorem 4. Consider the nonlinear system (6), an out-
put reference signal yref : R≥0 → R and a funnel Fψ±

as in (8) satisfying (PR1)-(PR3). For a given optimal
convergence rate eop as in Definition 1 assume that there
exists a controller which ensures that in the correspond-
ing closed loop the implications (11) are satisfied on the
domain [0, ω) of a solution, then

ψ−(t) ≤ e(t) ≤ ψ+(t), ∀t ∈ [0, ω),

i.e. the objective of funnel control is achieved on [0, ω).

Proof. Let e : [0, ω) → R be a maximal solution of the
closed loop. By assumption, e0 ∈ [ψ−(0), ψ+(0)]. Seek-
ing a contradiction, assume there exists t1 > 0 such
that e(t1) /∈ [ψ−(t1), ψ+(t1)]. We consider only the case
e(t1) > ψ+(t1), the case e(t1) < ψ−(t1) is completely anal-
ogous and omitted. Then there exists t0 ∈ [0, t1) such that
e(t0) = ψ+(t0) and e(t) > ψ+(t) for all t ∈ (t0, t1]. Conse-
quently, e(t) > λ+(t) > 0 for all t ∈ [t0, t1] and by (EO3)
the solution η : [t0, t1] → R of η̇ = eop(e, t), η(t0) = e(t0) =
ψ+(t0) satisfies η(t) ≤ ψ+(t) for all t ∈ [t0, t1]. Further-
more, implication (11) yields that ė(t) ≤ eop(e(t), t) for
all t ∈ [t0, t1]. Hence (since e(t0) = η(t0)) it follows that
e(t) ≤ η(t) for all t ∈ [t0, t1], which leads to the contradic-
tion ψ+(t1) < e(t1) ≤ η(t1) ≤ ψ+(t1).

Remark 5. Under the assumptions of Theorem 4, we con-
cluded that ψ−(t) ≤ e(t) ≤ ψ+(t) for all t ∈ [0, ω) if im-
plications (11) are satisfied on the domain [0, ω). Based
on Remark 3, the funnel Fψ± is positively invariant, and
finite escape time can not occur; consequently, ω = ∞, i.e.
the existence of the solution of the closed loop is guaran-
teed on the on the whole positive time axis [0,∞).

Remarks 6. (i) Validity of Theorem 4 does not explic-
itly rely on the assumptions (A1)-(A3) for the non-
linear system (6). However, the existence of a con-
troller which ensures the implications (11) can only
be guaranteed when these assumptions are satisfied,
see Section 4.

(ii) The conclusion of Theorem 4 is independent of the
control action carried out when e(t) ∈ [λ−(t), λ+(t)].
This freedom allows to “switch” to a different con-
troller, whenever the error is sufficiently close to the
origin, e.g. using some form of PI-controller to re-
duce the steady state error. However, this “switch-
ing” must be carefully designed to avoid discontinu-
ities in the resulting overall control law, otherwise,
some sliding solutions may occur along the switch-
ing boundary, which could lead to chattering when
implemented.

(iii) If e0 > λ+(0) or e0 < λ−(0), then the closed loop
error satisfies

e(t) ≤ (≥)η(t, e0), for all t ≥ 0, (12)
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where η is the solution of

η̇(t, e0) = eop(η(t, e
0), t), η(0, e0) = e0, (13)

see Figure 4. The proof closely resembles that of
Theorem 4 and is omitted.

ψ+(t)

t

e(t)

λ+(t)

η(t, e0)

ω

Figure 4: Illustration of η(t, e0), e0 > λ+.

4. Oriented funnel controller

Consider the nonlinear system (6) with an output ref-
erence signal yref . Then the tracking error e := y − yref
satisfies

ė = ẏ − ẏref = f(pf , y, z)− ẏref + g(pg, y, z) · u. (14)

If we had full knowledge of the system dynamics (including
the internal states and perturbations), we could simply
choose u = uideal with

uideal(t) =
eop(e(t), t)− f(pf (t), y(t), z(t)) + ẏref(t)

g(pg(t), y(t), z(t))
,

because then the implication (11) would be satisfied with
equality ė(t) = eop(e(t), t) (and, in fact, independently of
e(t)). Of course, such detailed knowledge of the system
(including the perturbations and internal state) is unreal-
istic, instead, we will assume knowledge of the (not nec-
essarily tight) bounds from Lemma 2 guaranteed by the
structural assumptions (A1)-(A3). Since we will use dif-
ferent constants depending on the sign of the error, we
call this approach orientated funnel controller. In fact, we
define

u+(e, t, ẏref) := min

{
0,
eop(e, t) + ẏref − Fmax

Gmin

}
≤ 0,

u−(e, t, ẏref) := max

{
0,
eop(e, t) + ẏref − Fmin

Gmin

}
≥ 0,

and

u(t) :=


u+

(
e(t), t, ẏref(t)

)
, if e(t) ≥ λ+(t),

u−
(
e(t), t, ẏref(t)

)
, if e(t) ≤ λ−(t),

arbitrary, otherwise.

(15)

Remark 7. Our proposed oriented funnel controller as-
sumes knowledge of ẏref(t) at any current time t (in addi-
tion to the value yref(t) needed to calculate the tracking
error). Differentiation of a given signal may not be feasible
in all situations; however, the reference signal is often pro-
duced via a filter ẏref(t) = ayref(t)+vref(t) for some known
a and know vref(t) (to ensure the required boundedness of
ẏref), in which case ẏref can be assumed to be available for
the controller design. In case ẏref(t) is not available to the
controller, our approach can easily be adopted by replac-
ing ẏref(t) by constants Ẏ min

ref and Ẏ max
ref in u+(e, t, ẏref) and

u−(e, t, ẏref), respectively, where

Ẏ min
ref ≤ inf

τ≥0
ẏref(τ), Ẏ max

ref ≥ sup
τ≥0

ẏref(τ).

The key property of the proposed controller (15) is that
indeed implication (11) is guaranteed:

Lemma 8. Consider the closed loop of (6) with a contin-
uous error feedback (15) based on an optimal convergence
rate eop as in Definition 1 and under the assumptions
(A1)-(A3), (PR1)-(PR3). Furthermore, we consider so-
lutions only on the domain D as in Remark 3. Then every
maximal solution e : [0, ω) → R satisfies implication (11).

Proof. By considering the closed loop on the domain D
with continuous error feedback, we know from classical
ODE theory that there exists a maximal solution on some
interval [0, ω), for which y(t) ∈ (Ymin, Ymax) and ∥z(t)∥ <
Zmax for all t ∈ [0, ω). Consequently, for all t ∈ [0, ω),

Fmin ≤ f
(
pf (t), y(t), z(t)

)
≤ Fmax,

and

Gmin ≤ g
(
pg(t), y(t), z(t)

)
.

The latter implies that (omitting most time dependencies)

g(pg, y, z) · u+(e, t, ẏref)

=
g(pg,y,z)
Gmin

min{0, eop(e, t) + ẏref − Fmax}
≤ min{0, eop(e, t) + ẏref − Fmax}
≤ eop(e, t) + ẏref − Fmax.

Note that above we used
g(pg,y,z)
Gmin

≥ 1, which (because it is
multiplied with a non-positive number) results in an upper
bound. If u+(e, t, ẏref) would not be sign-semidefinite we
could not make this conclusion, which is the reason we
have to truncate all possible positive values occurring in
the definition of u+(e, t, ẏref) to zero. Hence if e(t) ≥ λ+(t)
we have

ė(t) = f(pf , y, z) + g(pg, y, z)u(t)

= f(pf , y, z) + g(pg, y, z)u+(e, t, ẏref)

≤ Fmax − ẏref + eop(e, t) + ẏref − Fmax

= eop(e, t).
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Analogously, if e(t) ≤ λ−(t), we have

ė(t) = f(pf , y, z) + g(pg, y, z)u(t)

= f(pf , y, z) + g(pg, y, z)u−(e, t, ẏref)

≥ Fmin − ẏref + eop(e, t) + ẏref − Fmin

= eop(e, t).

This concludes the proof.

In order to ensure the existence and uniqueness of solu-
tions it is crucial to define the oriented funnel controller as
a continuous function of e(t); this can easily be achieved
by e.g. just linearly interpolating the values in (15) for
e(t) ∈ [λ−(t), λ+(t)] as follows:

u(t) = uλ−(t) +
e(t)−λ−(t)
λ+(t)−λ−(t)

(
uλ+(t)− uλ−(t)

)
, (16)

where (using eop(λ±(t), t) = 0)

uλ−(t) := u−(λ−(t), t, ẏref(t)) = max
{
0, ẏref (t)−Fmin

Gmin

}
,

uλ+(t) := u+(λ+(t), t, ẏref(t)) = min
{
0, ẏref (t)−Fmax

Gmin

}
.

Combining Lemma 8, Theorem 4 and Remark 3 we ar-
rive at our desired main result of the section:

Corollary 9. Under the assumptions of Lemma 8, we
have that the oriented funnel controller (15) (with con-
tinuization (16)) based on a given desired convergence rate
eop as in Definition 1 ensures that all solutions of the
closed loop are defined on [0,∞) and that the tracking er-
ror evolves within the funnel for all times. Furthermore,
if eop is chosen to be bounded (e.g. as in (10)), then the
input is uniformly bounded.

Remarks 10. (i) Our framework covers asymptotic
tracking because the assumptions do not exclude that
ψ±(t) → 0 as t → ∞. In that case, a feasible
choice for F0 is e.g. λ±(t) = 1

2ψ±(t); note that eop
given by (10) remains bounded for t → ∞ (because

| e−λ±(t)
ψ±(t)−λ±(t) | ≤ 1 as long as e is in the funnel) and

hence also the control input u remains bounded.

(ii) In case only practical tracking is desired, i.e.
limt→∞ ψ±(t) ̸= 0, it is possible to choose a constant
zero error derivative region F0 via sufficiently small
constants λ+(t) := λc+ > 0 and λ−(t) := λc− < 0. In
that case we see that implication (11) results in

e(t) = λc+ =⇒ ė(t) ≤ eop(λ
c
+, t) = 0,

e(t) = λc− =⇒ ė(t) ≥ eop(λ
c
−, t) = 0,

i.e. the region F0 is positively invariant. In partic-
ular, the bouncing behavior in the transient phase
seen in Figure 1 is avoided.

We illustrate the theoretical result of this section by
revisiting the example from the introduction.

Example 1. Consider again the scalar example (1) with
an additional bounded disturbance term and specific con-
stants a and b:

ẏ(t) = 2 + 0.9 sin(t) + u(t), y0 = 1. (17)

As a reference signal, we consider yref(t) = sin(20t), which
we want to track with an accuracy given by the funnel
boundaries ψ+(t) = e−4t + 0.02, ψ−(t) = −ψ+(t). With
λ+(t) = 0.02, λ−(t) = −0.02, it is easily seen that all
assumptions of the EDL funnel controller approach are
satisfied and we can choose Fmin = 1.1, Fmax = 2.9,
Gmin = Gmax = 1. Simulation results for the classical
funnel controller (3) and the EDL funnel controller (15)
with eop given by (10) and with the input interpolation
(16) are shown in Figure 5. As expected both controllers
ensure that the error evolves within the funnel, however,
clearly the EDL funnel controller avoids a strong bouncing
behavior. The simulations also clearly show that the mag-
nitude of the error derivative is significantly reduced and
the input signal is much smoother.

Example 2. As a second example we revisit an example
from [16], given by

ẏ(t) =pf (t) + |y(t)|y(t) + z(t) + sat[u,u] u(t),

ż(t) =− z(t)− z3(t) + [1 + z2(t)]y(t),

y(0) =y0, z(0) = z0,

with reference signal yref(t) = ξ1(t) and perturbation
pf (t) = −ξ2(t) given by the solution of the chaotic Lorenz
system

ξ̇1(t) =ξ2(t)− ξ1(t),

ξ̇2(t) =
(28ξ1(t)

10

)
−

(ξ2(t)
10

)
− ξ1(t)ξ3(t),

ξ̇3(t) =ξ1(t)ξ2(t)−
(8ξ3(t)

30

)
,

ξ1(0) =1, ξ2(0) = 0, ξ3(0) = 3.

The reference signal and perturbation satisfy ∥yref∥∞ ≤ 2,
∥ẏref∥∞ ≤ 1 and ∥pf∥∞ ≤ 2.4. The prescribed fun-
nel boundaries are chosen as ψ+(t) = 2e−0.1t + 0.1, and
ψ−(t) = −ψ+(t). y0 = 2, z0 = 1. Suitable bounds for
Lemma 2 are given by Fmax = −Fmin = 27, Gmin =
Gmax = 1. The simulation results are shown in Figure 6.

5. Bounds for error derivatives

As explained above the idea of the EDL funnel controller
is to design a feedback controller in such a way that (in
addition to keeping the error within the funnel) the error
derivative is close to a prespecified “optimal” error conver-
gence rate eop(e, t). Lemma 8 shows that the oriented fun-
nel controller given by (15) indeed ensures that the error
derivate near the funnel boundary is upper/lower bounded
by eop(e, t). This section will provide further bounds on

7



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Error comparison within funnel.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-70

-60

-50

-40

-30

-20

-10

0

10

20

(b) Error derivative comparison.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-50

-40

-30

-20

-10

0

10

20

(c) Input comparison.

Figure 5: Simulation results for Example 1.
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Figure 6: Simulations for Example 2

the error derivatives, first (implicitly) in terms of eop and
then explicitly by defining a suitable error derivative fun-
nel

F e0
ψd

±
:=

{
(t, ė) ∈ R≥0 × R

∣∣ ψd−(t) ≤ ė ≤ ψd+(t)
}
,

whose boundaries will depend on the initial error e(0) =
e0.

The first result provides a bound for ė in terms of eop
in the form of a “band” around the desired value eop; this
band for ė is illustrated in Figure 7.

ψ+(t)

t

e(t)

λ+(t)

eop

band of ė with u as in (15)

Figure 7: Band of ė with certain u (e ≥ λ+).

Corollary 11. Under the assumption of Lemma 8 and
with Gmax > 0 being an upper bound of g(pg, y, z) anal-
ogously defined as Gmin, the error derivative ė(t) in the
closed loop satisfies (omitting the time dependencies)

Fmin − ẏref +
Gmax

Gmin
min{0, eop + ẏref − Fmax} ≤ ė ≤ eop

if e(t) ≥ λ+(t), and

eop ≤ ė ≤ Fmax − ẏref +
Gmax

Gmin
max{0, eop + ẏref − Fmin}

if e(t) ≤ λ+(t). In particular, if g is constant and known
(i.e. Gmax = Gmin) and u(t) ̸= 0, then either

eop − (Fmax − Fmin) ≤ ė ≤ eop

or

eop ≤ ė ≤ eop + Fmax − Fmin.

In the following, we provide explicit constant bounds on
ė for the situation that e0 ∈ [λ−(0), λ+(0)] and that the
zero error derivative region F0 has constant boundaries.
In that case, by Remark 10(ii), the region [λc−, λ

c
+] is pos-

itively invariant for the error signal and the input defined
by (16) satisfies u(t) ∈ [uλ−(t), u

λ
+(t)], from which the fol-

lowing constant bounds for the error derivative can easily
be derived.

Corollary 12. Consider a constant region F0 for eop,
i.e. λ±(t) = λc± ∈ R in Definition 1, and assume that
e0 ∈ [λc−, λ

c
+]. Then under the assumptions as in Corollary

11 together with the continuation (16) of the input we have

ψd,c− ≤ ė(t) ≤ ψd,c+ , ∀t ≥ 0, (18)

8



where ψd,c+ := Ψ−(0) and ψ
d,c
− := Ψ+(0) with

Ψd+(eop) :=Fmax − inf
τ≥0

ẏref(τ)

+Gmax max

{
0,
eop + supτ≥0 ẏref(τ)− Fmin

Gmin

}
,

Ψd−(eop) :=Fmin − sup
τ≥0

ẏref(τ)

+Gmax min

{
0,
eop + infτ≥0 ẏref(τ)− Fmax

Gmin

}
.

Utilizing the error bound from Remark 6(iii) in terms
of η(t, e0) given by (13) and using the specific choice (10)
for eop, we can conclude that

eop(e(t), t
)
≥ eop(η(t, e0), t) ∀t ≥ 0

if e0 > λc+ and

eop
(
e(t), t

)
≤ eop

(
η(t, e0), t

)
∀t ≥ 0

if e0 < λc−. Hence, we can derive an explicit bound (not
depending on the error signal) for the error derivative from
the previous two corollaries as follows.

Corollary 13. Consider the setup and notation of Corol-
lary 12 and for e0 > λc+ or e0 < λc− let η(t, e0) be the
solution of (13). Then the error derivative satisfies

ψd−(t) ≤ ė(t) ≤ ψd+(t) ∀t ≥ 0,

where

ψd+(t, e
0) =

{
Ψd+(0) = ψd,c+ , e0 > λc+,

Ψd+

(
eop

(
η(t, e0), t

))
, e0 < λc+,

ψd−(t, e
0) =

{
Ψd−

(
eop

(
η(t, e0), t

))
, e0 > λc−,

Ψd−(0) = ψd,c− , e0 < λc−.

The final result concerning the bounding of the error
derivative is illustrated in Figure 8.

0

ė(t)

ψd−(t)

ψd,c+

Figure 8: Illustration of Fψd
±
, e0 > λc+.

6. Input saturations

Consider now nonlinear system (6) with input saturation

u 7→ sat[u,u](u) =


u, u < u,

u, u ∈ [u, u],

u, u > u,

(19)

where the threshold values satisfy u < 0 < u.
For the feasibility of the tracking problem, the following

implications concerning the maximal control inputs should
hold for the error dynamics given by (14):

u(t) = u =⇒ ė(t) < 0,

u(t) = u =⇒ ė(t) > 0.

In view of input saturation, sufficient conditions to en-
sure the validity of the above implications are the following
two assumptions

(T1) 0 > d(u) := Fmax − infτ≥0 ẏref(τ) +Gminu,

(T2) 0 < d(u) := Fmin − supτ≥0 ẏref(τ) +Gminu.

Clearly, these two assumptions are satisfied if the input
bounds are sufficiently large in magnitude.

Even with assumptions (T1) and (T2) satisfied it cannot
be expected that the error can be kept in an arbitrary
funnel, because if the funnel boundaries are shrinking too
rapidly the input saturation may limit the ability of the
error to shrink sufficiently fast to stay in the funnel, see
Figure 9.

e(t)

t

ψ+(t)

ψ−(t)

σ+(t)

σ−(t)

ψout
+ (t)

Figure 9: Error signal (in black) leaves the funnel (blue) due to input
saturations. Proposed safety functions σ+ and σ− (dashed red) and
outer funnel given by ψout

+ (dashed green).

There are three ways to deal with this problem:

1) Funnel is strict. Ensure that the input is powerful
enough to keep the error within the desired funnel
shape, which is the case if d(u) ≤ inft≥0 ψ̇+(t) and

d(u) ≥ supt≥0 ψ̇−(t).

2) Input constraints are strict. Choose a funnel shape
that is sufficiently slowly shrinking, which is the case if
inft≥0 ψ̇+(t) ≥ d(u) and supt≥0 ψ̇−(t) ≤ d(u).

9



3) Given funnel shape is desired and input saturations are
strict. If possible, the error should be kept within the
funnel, however, temporarily leaving the funnel is al-
lowed.

In the remainder of this section, we will focus on the
third situation as this is in many practical applications the
most realistic and least conservative approach. There are
actually two aspects: a) stay in the funnel if possible, and
b) return to funnel as quickly as possible. The latter can
easily be achieved by applying the maximal input when-
ever outside the funnel, whereas the first property is not so
straightforward. For example, just applying the maximum
available input whenever the error is very close to the fun-
nel boundary may not be enough, because at that moment
the funnel boundary may shrink too quickly for the error
to stay within the funnel. However, by looking ahead one
could have applied a more aggressive control action earlier
to prevent the error from getting too close to the funnel
boundary in the first place. This idea is formalized by the
notion of a safety function defined as follows.

Definition 2. Consider a nonlinear system (6) satisfying
assumptions (A1)-(A3), prescribed funnel boundary and
reference signal satisfying (PR1)-(PR3). Furthermore,
consider input saturations that satisfy (T1) and (T2). Let

t+d := min
{
t ≥ 0

∣∣∣ ψ̇+(t) ≥ d
}
,

t−d := min
{
t ≥ 0

∣∣∣ ψ̇−(t) ≤ d
}
,

which are well defined since by assumption (PR1)
limt→∞ ψ̇±(t) = 0. Then the safety function is defined
as

σ+(t) :=

{
d(u) · (t− t+d ) + ψ+(t

+
d ), t ∈ [0, t+d ],

ψ+(t), t ∈ [t+d ,∞),

σ−(t) :=

{
d(u) · (t− t−d ) + ψ−(t

−
d ), t ∈ [0, t−d ],

ψ−(t), t ∈ [t−d ,∞).

(20)

The safety functions are illustrated in Figure 9. Based
on the safety region we can now define a saturation-aware
optimal convergence rate as follows.

Definition 3. For prescribed funnel satisfying (PR1), in-
put saturation values satisfy (T1) and (T2), let the satu-
ration aware optimal converging rate be given as

esatop (e, t) =



d(u), e > σ+(t),

e(t)− λ+(t)

σ+(t)− λ+(t)
σ̇+(t), σ+(t) ≥ e ≥ λ+(t),

0, λ+(t) > e > λ−(t),

e(t)− λ−(t)

σ−(t)− λ−(t)
σ̇−(t), λ−(t) ≥ e ≥ σ−(t),

d(u), σ−(t) > e.
(21)

The intuition behind (21) is that within the safety re-
gion, we simply replace the original funnel boundaries in
(10) by the safety boundaries and outside the safety region
the optimal convergence rate is set to the guaranteed de-
crease/increase rate in view of the input saturations. With
this choice we immediately have the following result:

Corollary 14. Consider a nonlinear system (6) satisfying
assumptions (A1)-(A3), prescribed funnel boundary and
reference signal satisfying (PR1)-(PR3). Furthermore,
consider input saturations that satisfy (T1) and (T2) with
corresponding safety functions (20). Then the EDL funnel
controller (15) (with continuation (16)) based on the sat-
uration aware optimal convergence rate esatop given by (21)
achieves the following properties in closed loop:

1. The solution of the closed loop exists on [0,∞).

2. The safety region is positively invariant for the error
signal; in particular, if e(0) ∈ [σ−(0), σ+(0)] then the
error will remain within the funnel for all times.

3. The input (before saturation) satisfies u(t) ∈ [u, u] for
all t ≥ 0.

If the initial error is not in the safety region, we cannot
guarantee that the error evolves within the originally given
funnel, however, we are able to define the following “outer”
funnel (depending on e0) for which it can be guaranteed
that the error remains within:

F e0

out :=
{
(t, e) ∈ R≥0 × R

∣∣ ψout
− (t) ≤ e(t) ≤ ψout

+ (t)
}
,

(22)
where

ψout
+ (t) = max{e0 + d · t, ψ+(t)},

ψout
− (t) = min{e0 + d · t, ψ−(t)}.

Note that ψout
+ (t) = ψ+(t) for all t ≥ 0 if e0 ≤ σ+(0) and

ψout
− (t) = ψ−(t) if e0 ≥ σ−(0). The case e0 > σ+(0) is

illustrated in Figure 9.

Note that from e0 ∈ [ψ−(0), ψ+(0)] and monotonicity of
ψ± it follows that

ψ+(t) ≤ ψout
+ (t) ≤ ψ+(0) and

ψ−(t) ≥ ψout
− (t) ≤ ψ−(0).

In particular, as long as e(t) ∈ [ψout
− (t), ψout

+ (t)] we can
still conclude that y(t) ∈ [Ymin, Ymax] and hence the same
bounds for z, g and f hold as before. Furthermore, the
choice of esatop satisfies the properties (EO1)-(EO3) w.r.t.

the outer funnel F e0

out, hence we arrive at the following
result:

Corollary 15. Under the same assumptions as in Corol-
lary 14, we have that the closed loop satisfies

ψout
− (t) ≤ e(t) ≤ ψout

+ (t), ∀t ≥ 0.
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Remark 16. It should be noted that eop(e(t), t) = d(u)
does not in general imply that u(t) = u, this is because in
general, if e(t) > λ+,

u(t) = u+(e, t, ẏref(t)) ≥
d(u) + ẏref(t)− Fmax

Gmin

= u+ ẏref(t)− inf
τ≥0

ẏref(τ) > u.

In particular, if e(t) is outside the funnel, our approach is
not using the full force to push the error back into the fun-
nel. This can easily fixed by redefining the control input
in such a way that (t) = u whenever e(t) > ψ+(t) (or even
if e(t) > σ+(t)). In order to keep a continuous input rule
(to guarantee existence of solutions in the closed loop) it
is then however necessary to add an additional “buffer”
region, which in principle is easily done but adds another
level of technicality and therefore is not presented here.

7. Conclusion

To avoid the error bouncing between prescribed funnel
boundaries, a novel funnel control scheme has been pro-
posed in this paper. In addition, to keep to error within
the funnel, we have proposed the error derivative limiting
(EDL) funnel controller as a two stages controller, where
we first introduced the concept of the desired optimal con-
vergence rate and then the oriented funnel controller which
is defined in such a way that it tries to match the error
derivative as close as possible to the desired convergence
rate. We prove that this approach indeed achieves the
desired control objectives: The error evolves within the
funnel and the error derivative is limited to a band whose
width is expressed in terms of uncertainty about the sys-
tem. Furthermore, we exploit the structure of this EDL
funnel controller to handle input saturation. In case the
input saturations are too restrictive, our controller allows
the error to temporarily leave the funnel and the return to
the inside of the funnel is guaranteed.

Future work is concerned with extending these ideas to
the multi-input multi-output setting as well as to higher
relative degree systems.
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