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Abstract

We consider switched linear systems with mode-dependent state-dimensions and/or state jumps and propose a method to obtain a
switched system of reduced size with identical input-output behavior. A key feature of our method is that only the mode sequence of
the switching signal needs to be known and not the exact switching times. Since simple examples show that a minimal realization
will depend on the switching times, our algorithm cannot result in a minimal realization in general, but we conjecture that it results
in a minimal realization for almost all switching times. Our approach is based on considering time-dependent reachability and
unobservability spaces as well as suitable extended reachability and restricted unobservability spaces together with the notion of a
weak Kalman decomposition.
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1 Introduction

Realization theory is a classical topic in control theory
and involves finding a (preferably) unique minimal system
which generates the specified input-output behavior of a
certain class, cf. [11, 26]. Moreover, realization theory
provides a theoretical basis for model reduction, system
identification and filtering/observer design. In [3], the
minimal state space realization problem for (continuous)
linear time-invariance systems was first studied based on
hidden pole-zero cancellation techniques and in [11], the
input-output description is revealed by considering the
reachable and observable part of a dynamical system.

Realization theory of switched systems has already been
discussed e.g. in [1, 2, 14, 16, 15, 17, 18, 20, 21] and the
references therein. In particular, in [14], the author com-
bines the theory of rational formal power series with the
classical automata theory to discuss the realization theory
of hybrid systems. Specifically, the cases of arbitrary and
constrained switching are discussed where the switching
signal is considered as an input. This consideration of the
switching signal as an “input” is a common viewpoint in
most of the existing works. In particular, in the case of
arbitrary switching signals, the (reduced) realization is
valid for all switching signals simultaneously, which limits
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the “reducability” since also mode sequences need to be
taken into account which may not be relevant in the cor-
responding application. Furthermore, it is often assumed
that the state-dimension of all modes is equal and no state-
jumps are considered; however, already simple examples
(e.g. the forthcoming Example 4) show that for a specific
switching signal, a minimal realization may have different
state-dimensions per mode and requires state-jumps.

Our approach resolves these shortcomings by focusing on
switching signal with a given mode sequence and also
allow for mode-dependent state-dimensions and state-
jumps. In particular, we view a switched linear system
as a piecewise-constant time-varying linear system; as a
consequence, a minimal or reduced realization in general
depends on the specifically given switching signal.

This viewpoint and our approach is strongly inspired by
[13, 19, 23, 22, 25], which study observability and reach-
ability of switched systems but do not discuss realization
theory.

To be more specific, we consider the switched linear sys-
tems (SLSs) with a given switching signal of the form

Σσ :

�
ẋk(t) = Aσ(t)xk(t) + Bσ(t)u(t), t ∈ (sk, sk+1)

xk(s
+
k ) = Jσ(s+k ),σ(s−k )xk−1(s

−
k ), k ∈Q

y(t) = Cσ(t)xk(t
+), t ∈ [sk, sk+1),

(1)

where σ : R → Q = {0,1, 2, . . . ,m} ⊆ N is the given
switching signal with finitely many switching times s1 <
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s2 < . . . < sm in the bounded interval [t0, t f ) be of in-
terest and xk : (sk, sk+1) → Rnk is the k-th piece of the
state (whose dimension nk may depend on the mode).
For notational convenience let s0 := t0, sm+1 := t f and let
the duration of mode k be denoted by τk := sk+1 − sk,
k ∈ {0, 1, . . . ,m}. In the context of realization theory it is
common to assume that the system starts with a zero ini-
tial condition, i.e. set x−1(t−0 ) := 0, however, it will turn
out that our approach can easily take into account the sit-
uation of a nonzero initial value. The input and output
are given by u : R → Rm and y : R → Rm, respectively.
Here, x(t−) and x(t+) denote, respectively, the left- and
right-sided limit at t, assuming they exist.

For each mode p ∈ {0,1, 2, . . . ,m}, the system matrices
Ap, Bp, Cp of appropriate size describe the (continuous)
dynamics corresponding to the linear system active on
the interval (sk, sk+1) where σ(t) = p. Furthermore, Jp,q :
Rnq → Rnp is the jump map from mode q to mode p. Note
that due to the different space dimensions the introduc-
tion of a jump map is necessary; on the other hand, in
case all state dimensions are equal, the consideration of
a jump map is “optional” and leads to so called impulsive
systems (in particular, our reduced realization results will
also provide novel results for this system class).

It is well known that finding a minimal realization (which
can be interpreted as removing unobservable and un-
reachable states) is a first step towards model reduction
(which furthermore reduces difficult to observe and dif-
ficult to reach states). In [6], a time-varying model re-
duction approach is presented for switched linear sys-
tems (with identical state-dimensions and without jumps).
However, the resulting reduced system is not a switched
system anymore, instead it is fully time-varying and it
is difficult to handle numerically. Therefore, the aim is
to gain insight into a more suitable model reduction ap-
proach by studying the minimal realization problem for
switched systems of the form (1) within this system class.
As already mentioned above, the process of going from
a non-minimal representation (with initial value zero) to
a minimal one can be seen as removing “unreachable”
and “unobservable” states; understanding what the no-
tions “unreachable” and “unobservable” exactly means in
this context allows to generalize these ideas to “difficult
to reach” and “difficult to observe” which then allows to
perform model reduction.

The main goal is to find a reduced size switched system
(with the same switching signal σ) of the form

bΣσ :

�
ḃxk(t) = bAσ(t)bxk(t) + bBσ(t)u(t), t ∈ (sk, sk+1)

bxk(s
+
k ) = bJσ(s+k ),σ(s−k )bxk−1(s

−
k ), k ∈Q

y(t) = bCσ(t)bxk(t
+), t ∈ [sk, sk+1),

(2)

which has the same input-output behavior as the original
system Σσ.

The single switch case was discussed in our conference
contributions [8, 7] and a preliminary version of this

manuscript is the conference submission [10], which
doesn’t contain all proofs and less details.

We will assume in the following that the switching sig-
nal is fixed, hence by suitable relabeling of the matri-
ces, we can assume that σ(t) = k on (sk, sk+1). Conse-
quently, we can simply write Jk := Jσ(s+k ),σ(s−k ) = Jk,k−1 and
bJk := bJσ(s+k ),σ(s−k ) =

bJk,k−1 in the following. Furthermore, in
some slight abuse of notation, we will speak in the follow-
ing of the solution x(·) instead of the different solution
pieces xk(·).

This paper is organized as follows. In Section 2, the prob-
lem formulation and preliminaries are given, in particu-
lar, the concept of a weak Kalman decomposition is pre-
sented. In Section 3, the time-varying reachability and
observability spaces are discussed for switched systems,
and we define suitable extended reachable and restricted
unobservable spaces. Section 4 discusses the main results
with the proposed reduction algorithm. Finally, some nu-
merical results are shown in Section 5.

2 Preliminaries

2.1 Reduced realization: definition

In this section, we introduce some notions and challenges
related to reduced realizations of switched linear sys-
tems (1). Let’s begin with the formal definition of reduced
realization.

Definition 1 (Cf. [14]) For Σσ as in (1) we define its total
dimension as follows

dimΣσ :=
∑

q∈Q
nq.

Furthermore, we define its input-output behavior as follows

Bio
σ :=

(

(u, y)

�

�

�

�

�

∃xq : (sq, sq+1)→ Rnq satisfying

(1) and x(t−0 ) = 0

)

.

A switched linear system bΣσ with corresponding input-
output behavior ÒBio

σ is said to be a reduced realization of
switched system Σσ if
1) Bio

σ = ÒB
io
σ and

2) dim bΣσ ≤ dimΣσ.

In the following we will also discuss minimal realizations,
which are reduced realization of smallest total dimension
under all reduced realizations. It should be noted that at
this point it is not clear that the sequence of reduced state
dimensions is unique for a minimal realization.

For non-switched linear systems, it is well known that a
realization is minimal if, and only if, it is reachable and
observable, however, for SLSs of the form (1) this is not
the case in general as the following example shows:
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Example 2 Consider a switched linear system with two
modes

(A0, B0, C0) =
�� 1 0 0

0 2 0
0 0 3

�

,
� 1

0
1

�

, [ 1 1 0 ]
�

,

(A1, B1, C1) =
�� 0 0 0

0 2 0
0 0 1

�

,
� 0

1
0

�

, [ 1 0 1 ]
�

and the switching signal

σ(t) =

�

0, on (t0, s1),
1, on (s1, t f ).

(3)

It is easily seen, that each mode is unreachable and unob-
servable. However, the switched system is reachable in the
sense that each value x(t−f ) ∈ R

3 can be reached from zero
by a suitable input and it is also observable in the sense that
(for a vanishing input) only a zero initial value leads to a
zero output. On the other hand, the second state is unreach-
able in the 1st mode and unobservable in the 2nd mode. In
particular, when starting with a zero initial value, for any
input the value of the second state does not effect the output
(because in the first mode it is identically zero and in the
second mode the corresponding coefficient in the C-matrix
is zero). Therefore, we can remove the second state without
altering the input-output behavior.

Remark 3 The above definition of reduced realization is
not specifying any method how to obtain a reduced realiza-
tion from a given switched system. In particular, it does not
take into account constraints like the requirement that the
reduced state is obtained via a uniform projection map (cf.
[4, 5] in the context of model reduction). In general, a re-
duced realization can only be obtained by considering each
mode individually (and by properly taking into account the
effect from the other modes). Furthermore, Example 4 in [7]
shows that by removing locally unreachable and unobserv-
able states in each mode does not preserve the input-output
behavior and hence does not lead to a reduced system.

Another important challenge for obtaining a reduced re-
alization is the fact, that even when we start with a classi-
cal switched system (i.e. all states have the same dimen-
sions and the jump map is the identity), a reduced real-
ization may have different state-space dimensions and/or
requires the definition of a jump map. This is illustrated
with the following example.

Example 4 Consider a switched linear system with two
modes

A0 = A1 =
� 0 0 0

1 0 0
0 0 0

�

, B0 = B1 =
� 1

0
0

�

,

C0 = [ 0 1 0 ] , C1 = [ 1 0 0 ] ,

with switching signal (3) and without jumps. It is easily seen
that the first mode corresponds to a double integrator, while

the second mode corresponds to a single integrator. Hence a
minimal realization is given by the following switched linear
system with mode-dependent state-dimensions:

on [t0, s1) :

ż0 =
�

0 0
1 0

�

z0 +
�

1
0

�

u,
y = [ 0 1 ] z0,

�

�

�

�

�

�

on [s1, t f ) :
ż1 = 0 · z1 + u,
y = z1,

with z1(s1) = [ 1 0 ] z0(s1).

The possible mode dependence of a reduced realization is
our main motivation to study switched systems (1) with
mode-dependent state-dimension and jumps, so that both
systems (original system and the reduced realization) are
from the same overall system class.

2.2 Weak Kalman decomposition

In order to obtain a reduced realization in the following,
we will utilize extended reachable and restricted unob-
servable spaces together with the following weak Kalman
decomposition.

Let’s first recall the classical Kalman decomposition (KD)
[11] for a linear system

Σ :

�

ẋ(t) = Ax(t) + Bu(t),
y(t) = C x(t), (4)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. Based on the reach-
ability and unobservable spaces 1 , it is possible to define
a coordinate transformation x = Tz which leads to the
following block triangular form (T−1AT,T−1B, CT) =

�� A11 A12 A13 A14
0 A22 0 A24
0 0 A33 A34
0 0 0 A44

�

,

� B1
B2
0
0

�

, [ 0 C2 0 C4 ]

�

,

where
�� A11 A12

0 A22

�

,
� B1

B2

��

is reachable and
�� A22 A24

0 A44

�

, [ C2 C4 ]
�

is observable.

It is then easily seen that a minimal realization of (4) is
now given by (A22, B2, C2).

It should noted that the above minimal realization is only
valid for vanishing initial values; if arbitrary initial val-
ues are considered, only the unobservable part can be re-
moved without altering the corresponding input-output
behavior.

In the context of switched systems, all modes (apart from
the first) will in general have non-trivial initial states but
also not arbitrary initial states, which means that the clas-
sical KD cannot directly be used to obtain a reduced re-
alization. In addition to consider an extended reachable
space for each mode (due to the–partially–nonzero initial

1 In fact, T= [V 1, V 2, V 3, V 4], where im V 1 is the intersection of
the reachable and unobservable space, im[V 1, V 2] is the reach-
able space and im[V 1, V 3] is the unobservable space.
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state) also the local unobservable space may need to be
restricted, due to the fact, that an unobservable state in
the current mode may become observable in the future
and hence cannot be removed without altering the overall
input-output behavior of the switched system. This mo-
tivates us to define a weak KD which takes into account
an extended reachable space and restricted unobservable
space.

Lemma 5 Consider a classical LTI system (4) and let R ⊇
im B and U ⊆ ker C be two A-invariant subspaces (an ex-
tended reachable and a restricted unobservable space). For
any coordinate transformation T = [V

1
, V

2
, V

3
, V

4
] with

im V
1

:=R ∩U , im [V
1
, V

2
] :=R , im[V

1
, V

3
] :=U , we

have (T
−1

AT,T
−1

B, CT) =

��

A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

�

,

�

B1

B2

0
0

�

, [ 0 C2 0 C4 ]

�

. (5)

In particular, CeAt B = C2eA22 t B2 for all t ∈ R.

Proof. Since R ∩U = im V
1

is A-invariant there is a ma-

trix A11 of appropriate size such that AV
1
= V

1
A11. The

A-invariance of R implies that AV
2
⊆ im[V

1
, V

2
], hence

there exists A12, A22 such that AV
2
= V

1
A12+ V

2
A22. Sim-

ilarly, A-invariance of U implies AV
3
⊆ im[V

1
, V

3
], hence

there exists A13, A33 such that AV
3
= V

1
A13 + V

3
A33. Fi-

nally, im[V
1
, V

2
, V

3
, V

4
] = Rn implies existence of A14,

A24, A34, A44 such that AV
4
= V

1
A14 + V

2
A24 + V

3
A34 +

V
4
A44. Combining all of the above, we obtain

A[V
1

V
2

V
3

V
4
] = [V

1
V

2
V

3
V

4
]

�

A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44

�

,

which shows that T
−1

AT has the desired block structure.
Since im B ⊆R = im[V

1
, V

2
], there exists B1, B2 such that

B = V
1
B1 + V

2
B2 = [V

1
V

2
V

3
V

4
]

�

B1

B2

0
0

�

,

from which the desired block structure of T
−1

B follows.
Finally, ker C ⊇ U = im[V

1
V

3
] implies that C[V

1
V

3
] =

{0}, and hence, for C2 := CV
2

and C4 := CV
4
,

CT= C[V
1

V
2

V
3

V
4
] = [0 C2 0 C4].

With these block structure, simple matrix multiplication
leads to CeAt B = C2eA22 t B2 for all t ∈ R. �

For the formulation of forthcoming reduction method, we
will need the following notations of invariant subspaces.

Definition 6 For A∈ Rn×n and a subspace L ⊆ Rn, let

〈A | L 〉 :=L + AL + . . .+ An−1L

be the smallest A-invariant subspace containingL . Further-
more, let (here A−1 stands for the preimage, it is not assumed
that A is invertible)

〈L | A〉 :=L ∩ A−1L . . .∩ A−(n−1)L

be the largest A-invariant subspace contained in L . 4

Note that for any C ∈ Rm×n we have

〈ker C | A〉= ker[C>, (CA)>, . . . , (CAn−1)>]>.

Furthermore, it is well known that for a linear system
(A, B, C), the reachable spaceR is given byR = 〈A | im B〉
and the unobservable space U is given by 〈ker C | A〉.

Remark 7 Clearly, the choice R = R and U = U in
Lemma 5 leads to the well known KD. Furthermore, any
A-invariant subspace R ⊇ im B will be a superset of R ,
because R is the smallest A-invariant subspace containing
im B; analogously, any A-invariant subspaceU ⊆ ker C will
be contained in U . This is the motivation to call R ⊇ R
an extended reachable space and U ⊆U a restricted unob-
servable space in Lemma 5.

For a linear system (A, B, C) with given extended reach-
able space R and restricted unobservable space U the
weak KD (5) immediately leads to the reduced system
(A22, B2, C2) which can be obtained from (A, B, C) by suit-
able left and right projection defined as follows.

Definition 8 For any coordinate transformation T =
[V

1
, V

2
, V

3
, V

4
] as in Lemma 5, let

[(W
1
)>, (W

2
)>, (W

3
)>, (W

4
)>]> := T

−1

such that the sizes of (W
i
)> matches the size of V

i
, i =

1, 2,3, 4. Then W
2

and V
2

are called the weak-KD left-
projector and weak KD right-projector, respectively. 4

By definition of the weak-KD left- and right-projector, we
have W

2
V

2
= I and (A22, B2, C2) = (W

2
AV

2
, W

2
B, CV

2
).

3 Exact (time-varying) reachability / Unobservability
spaces

Our reduction approach relies on identifying suitable ex-
tended reachable and restricted unobservable spaces for
each mode of the switched system (1). Towards this goal,
we first provide expression for the exact (time-varying)
reachable and unobservable space for (1) in the follow-
ing. Before doing so, we briefly highlight that the solu-
tion of (1) is given recursively by, for t ∈ [sk, sk+1) and
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k = 1, . . . ,m,

x(t) := eAk(t−sk)Jk x(s−k ) +

∫ t

sk

eAk(t−s)Bku(s)ds. (6)

and the output equation is given by

y(t) := Ck x(t), t ∈ [sk, sk+1), k = 0, 1, . . . ,m. (7)

3.1 Exact (time-varying) reachability space

Definition 9 The reachable space of the switched sys-
tem (1) on time interval [t0, t) is defined by

Rσ[t0,t) :=

(

x(t−)

�

�

�

�

�

∃ solution (x , u) of (1)

with x(t−0 ) = 0

)

.

We call the switched system (1) reachable (on [t0, t f )) if,
and only if,

Rσ[t0,t f )
= Rnm . 4

To calculate the reachability spaces of (1), the known
reachability information from the previous modes needs
to carry over appropriately to the current mode. LetRk =
〈Ak | im Bk〉 be the local reachable subspace for mode k.
We will show then that the reachable space at the end of
the k-th mode is defined by the following recursive equa-
tion, k = 1, 2, . . . ,m:

Mσ
0 :=R0,

Mσ
k :=Rk + eAkτk JkMσ

k−1.
(8)

The intuition behind the sequence (8) is as follows. By
starting with a zero initial value in the initial mode, clearly
Rσ[t0,s1)

=R0; continuing recursively, the reachable space
at the end of mode k, is obtained by propagating forward
the reachable spaceMσ

k−1 at the end of the previous mode,
i.e. first jump via Jk and then propagate according to the
matrix exponential (the time-evolution for a zero input).
Finally, to take into account the effect of the input, the
local reachable space of mode k is added. This intuition
is formalized as follows.

Lemma 10 (Cf. [12]) For all 0≤ k ≤ m,

Mσ
k =R

σ
[t0,sk+1)

.

In particular, (1) is reachable if, and only ifMσ
m = R

nm .

Proof. Clearly,Mσ
0 =R

σ
[t0,s1)

. Inductively, assume that for
some k ∈ {1,2, . . . ,m},

Mσ
k−1 =R

σ
[t0,sk)

,

we will then show that Mσ
k = R

σ
[t0,sk+1)

. Let xk+1 ∈ Mσ
k ,

then there exists xk ∈Mσ
k−1 and xu ∈ Rk such that xk+1 =

eAkτk Jk xk + xu. FromMσ
k−1 =R

σ
[t0,sk)

it follows that there
exists a solution (bx ,bu) on [t0, sk) with bx(0−) = 0 and
bx(s−k ) = xk.

In view of (6) the extension of (bx ,bu) on the interval
[t0, sk+1) via (bx(t),bu(t)) := (eAk(t−sk)Jk xk, 0) is a solu-
tion of (1) on the larger interval [t0, sk+1). Furthermore,
there exists a solution (ex ,eu) of mode k on (sk, sk+1) with
ex(s+k ) = 0 and ex(s−k+1) = xu.

By setting (ex(t),eu(t)) = (0, 0) for all t ∈ [t0, sk), it is
easily seen that (ex ,eu) is a solution of the switched system
(1) on [t0, sk+1) with ex(t−0 ) = 0.

Altogether, by linearity we have that (x , u) := (bx ,bu) +
(ex ,eu) is a solution of (1) on [t0, sk+1) with x(t−0 ) = 0 and

x(s−k+1) = bx(s
−
k+1) + ex(s

−
k+1) = eAkτk Jk xk + xu = xk+1,

which implies that xk+1 ∈ Rσ[t0,sk+1)
. Hence,

Mσ
k ⊆R

σ
[t0,sk+1)

.

To show the converse subspace relationship, let xk+1 ∈
Rσ[t0,sk+1)

, then there exists a solution (x , u) of (1) with
x(sk+1) = xk+1.

From x(s−k ) ∈ R
σ
[t0,sk)

=Mσ
k−1 and

xu :=

∫ sk+1

sk

eAk(sk+1−s)Bku(s)ds ∈ Rk,

it follows immediately from (6) that xk+1 = x(sk+1) =
eAkτk Jk x(s−k ) + xu ∈ eAkτk JkMσ

k−1 +Rk =Mσ
k .

Now if the system (1) is reachable then

Rσ[t0,sm+1)
= Rnm ,

and consequently,
Mσ

m = R
nm .

This completes the proof. �

From (8), it is clear that the reachable spaces depend
on the switching times (in fact, on the mode duration
τk) and this dependency cannot be avoided in general
as the following example shows. In particular, the overall
reachability of the switched system (1) on [t0, t f ) depends
on the switching times and how long each mode is active.

Example 11 (Dependency on the switching times)
Consider the switched system (1) given by

A0 = A2 =
�

0 0
0 0

�

, A1 =
�

0 −1
1 0

�

,

B0 = B2 =
�

1
0

�

, B1 =
�

0
0

�

,

with J1,0 = J2,1 = I . It is noted that none of the pairs
(Ai , Bi) are reachable. Consider the switching signal σ with
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the mode sequence 0→ 1→ 2 and switching times s1, s2.
Let {e1, e2} denote the natural basis vectors for R2.

Clearly, R0 = R2 := span{e1}, R1 := {0}, eA1τ =
�

cosτ − sinτ
sinτ cosτ

�

and eA2τ =
�

1 0
0 1

�

. Hence

Mσ
0 =R0 = span{e1},

Mσ
1 =R1 + eA1τ1 J1,0Mσ

0 = span
�� cosτ1

sinτ1

�	

,

Mσ
2 =R2 + eA2τ2 J2,1Mσ

1 = span{e1}+ span
�� cosτ1

sinτ1

�	

.

If τ1 = kπ for any k ∈ N thenMσ
2 = span{e1}, otherwise,

Mσ
2 = R

2. This clearly shows that the overall reachability
of a switched system depends on the switching times. 4

Note that although Mσ
k ⊇ Rk ⊇ im Bk, the space Mσ

k
is not a suitable extended reachable space for the mode
(Ak, Bk, Ck) in the sense of Lemma 5, because it is not Ak-
invariant in general. Before addressing this problem in
Section 3.3, we recall first the “dual” space of the reach-
ability spaces: the unobservable spaces.

3.2 Exact (time-varying) unobservability space

Definition 12 The unobservable space of the switched sys-
tem (1) on time interval [t, t f ) is defined by

U σ
[t,t f )

:=

(

x(t+)

�

�

�

�

�

∃ solution (x , u= 0) such that

y = 0 of (1) on [t, t f )

)

.

We call the switched system (1) observable (on [t0, t f )) if,
and only if,

U σ
[t0,t f )

= {0}. 4

Similar as for the reachable spaces, we aim to express
the unobservable spaces recursively. Starting from the last
mode it is clear that the unobservable space is the same
as the classical unobservable spaceUm = 〈ker Cm | Am〉. Re-
cursively, the unobservable space at switch number k+ 1
can now be propagated backwards in time by first taking
the preimage under the jump Jk+1 and then further prop-
agating it back with the continuous flow of mode k, i.e.
by e−Akτk . Finally, this propagated space needs to be com-
bined with the local unobservable space of mode k given
by Uk = 〈ker Ck | Ak〉. This motivates the definition of the
following sequence of subspaces, k = m− 1,m− 2, . . . , 0:

N σ
m :=Um,

N σ
k :=Uk ∩

�

e−Akτk J−1
k+1N

σ
k+1

�

.
(9)

Lemma 13 (Cf. [24, 12]) For all 0≤ k ≤ m,

N σ
k =U

σ
[sk ,t f )

.

In particular, (1) is observable if, and only if N σ
0 = {0}.

Proof.

For k = m, clearly N σ
m =U

σ
[sm,t f )

. Inductively, assume now

that for k ∈ {m− 1,m− 2, . . . , 0}

N σ
k+1 =U

σ
[sk+1,t f )

and we want to show that then N σ
k =U

σ
[sk ,t f )

.

Let xk ∈ N σ
k , then xk ∈ Uk and there exists xk+1 ∈ N σ

k+1 =
U σ
[sk+1,t f )

such that xk+1 = Jk+1eAkτk xk. Consequently, the

unique solution (x , u = 0) of (1) on [sk, t f ) with x(s+k )
satisfies y = 0 on [sk, sk+1) because xk ∈ Uk and y = 0 on
[sk+1, t f ) because x(sk+1) = xk+1 ∈ U σ

[sk+1,t f )
. This shows

that xk ∈ U σ
[sk ,t f )

.

Now, let xk ∈ U σ
[sk ,t f )

, then the unique solution (x , u= 0)
of (1) on [sk, t f ) with x(s+k ) = xk has zero output. Conse-
quently, xk+1 := x(s+k+1) ∈ U

σ
[sk+1,t f )

=N σ
k+1. From xk+1 =

Jk+1eAkτk xk, it follows that xk ∈ e−Akτk J−1
k+1{xk+1} ⊆

e−Akτk J−1
k+1N

σ
k+1 =N

σ
k , which concludes the proof. �

Similar as for the reachability, the observability of the
switched system in general depends on the switching time.
This is illustrated by considering again Example 11 with
an additional output.

Example 14 (Dependency on the switching times)
Recall Example 11 with output submatrices

C0 = C2 = [ 0 1 ] , C1 = [ 0 0 ] .

It is noted that none of the pairs (Ai , Ci) are observable.

Clearly, U0 = U2 = span{e1}, U1 = R2, e−A1τ =
�

cosτ sinτ
− sinτ cosτ

�

and e−A2τ =
�

1 0
0 1

�

. Hence

N σ
2 =U2 = span{e1},
N σ

1 =U1 ∩ e−A1τ1 J−1
2 N

σ
2 = R

2 ∩ span
�� cosτ1
− sinτ1

�	

,

N σ
0 =U0 ∩ e−A0τ0 J−1

1 N
σ

1 = span{e1} ∩ span
�� cosτ1
− sinτ1

�	

.

If τ1 = kπ for any k ∈ N, then N σ
0 := span{e1}, other-

wise N σ
0 = {0}. Therefore, the overall observability of (1)

depends on the switching time. 4
Note that similar to the reachability spaces, although the
unobservable spaces N σ

k satisfy N σ
k ⊆ Uk ⊆ ker C , they

are not Ak-invariant and hence, they are not restricted
unobservable spaces in the sense of Lemma 5.

3.3 Extended reachable / restricted unobservable spaces

So far, we have seen that the reachability spaces and ob-
servability spaces of (1) depend on the switching time.
Even worse, when looking at the reachable / unobserv-
able space at a particular time t ∈ (sk, sk+1) between two
switches, then it is easily seen that these spaces in gen-
eral also depend on the considered time t and a reduction
method based on the exact reachability / observability

6



spaces will necessarily result in general time-varying co-
ordinate transformations / projections (cf. our previously
proposed reduction method [6]) and would not lead to a
reduced system of the desired form (2).

To circumvent this problem, we introduce suitable ex-
tended reachable and restricted unobservable spaces for
the switched system (1). The key idea is based on the fact
that for any subspace H ⊆ Rn, any matrix A ∈ Rn×n and
any t ∈ R the following subspace relationship holds:

〈H | A〉 ⊆ eAtH ⊆ 〈A | H 〉. (10)

By replacing the matrix-exponentials in the constructions
of the reachable / unobservable spaces by the correspond-
ing A-invariant subspace we arrive at the following se-
quences (cf. [24] for the unobservable spaces):

R0 :=R0,

Rk :=Rk + 〈Ak | JkRk−1〉, k = 1, . . . ,m;
(11)

U m :=Um,

U k :=Uk ∩ 〈J−1
k+1U k+1 | Ak〉, k = m− 1, . . . , 0.

(12)

Note that Rk depends on all previous modes 0,1, . . . , k,
whereas U k depends on all future modes k, k+ 1, . . . ,m.

In view of (10), it is easy to see that

Rk ⊇Mσ
k ⊇Rk and U k ⊆N

σ
k ⊆Uk.

In particular, Rm = Rnm and U 0 = {0} respectively, are
necessary conditions for reachability and observability of
the overall switched system (5).

Finally, observe that by construction both Rk and U k are
Ak-invariant, i.e. they are extended reachable / restricted
unobservable spaces in the sense of Lemma 5 and we are
now ready to propose our main result about the reduction
of switched systems of the form (1).

We conclude this section by highlighting an interesting
special case, which is motivated by the following “appli-
cation”: Consider a large scale network whose dynamics
can be described by a linear ODE. The network can be
controlled through several actuators at different locations
and several sensors are distributed throughout the net-
work. However, due to resource limitation at any given
time only one or a limited number of actuators can be
used and the data of only one or a limited number of sen-
sors is available. This situation can be modelled by the
following switched system (without jumps)

ẋ = Ax + Bσu,
y = Cσx ,

(13)

where the switching signal is determined by the schedule
of the actuator and sensor usages. In this scenario it seems
rather natural that the mode sequence is fixed a priori (e.g.

to make sure that all sensors and actuators are equally
used), while the time duration may depend on the actual
measured outputs. For this setup we have the following
result:

Proposition 15 (Constant A-case) Consider the switched
linear system (13) with corresponding time-dependent
reachability space Rσ[t0,t) and unobservable space U σ

[t,t f )
.

Then for all t ∈ (sk, sk+1) we have

Rσ[t0,t) =Rk and U σ
[t,t f )

=U k,

i.e. the time-varying reachable and unobservable spaces are
piecewise constant and can be calculated recursively via (11)
and (12).

Proof. Inductively, it is easily seen that Rσ[t0,t) and U σ
[t,t f )

are A-invariant, from which the claim follows.

4 Main result: Proposed reduction method

We now propose a method to compute a reduced realiza-
tion (2) of (1) for a given switching signal.

Step 1. Compute the sequence of extended reach-
able R0,R1, · · · ,Rm and restricted unobservable subspaces
U 0,U 1, · · · ,U m as in (11) and (12).
Step 2. Apply Lemma 5 to (Ak, Bk, Ck) with (R k,U k) to com-

pute the weak-KD left- and right-projectors W
2

k, V
2

k , and let

�

bAk, bBk, bCk

�

=
�

W
2

kAkV
2

k, W
2

kBk, CkV
2

k

�

.

Step 3. Calculate the reduced jump map

bJk :=W
2

kJkV
2

k−1.

Before showing that the resulting reduced system (2) is
indeed a realization of (1), we first highlight an important
connection between the solutions of both systems.

Lemma 16 Consider the switched system Σσ as in (1) and
the reduced system bΣσ as in (2) obtained by the left- and
right-projectors W

2
σ(·), V

2
σ(·). If x(·) is a solution of Σσ then

bx(·) :=W
2
σ(·)x(·) is a solution of bΣσ.

Proof. Consider any time interval (sk, sk+1) between two
switches, then, for t ∈ (sk, sk+1),

ḃx(t) =W
2
k ẋ =W

2
kAk x(t) +W

2
kBu(t)

= [0, bAk, 0,∗]T
−1
k x(t) + B2

ku(t),

where T k = [V
1
k, V

2
k, V

3
k, V

4
k] is the coordinate transfor-

mation according to Lemma 5 for mode k. Since x(t) ∈
Rσ[t0,t) ⊆ Rk = im[V

1
k, V

2
k], it follows that T

−1
k x(t) =

[∗, bx(t)>, 0, 0]> and hence, as claimed, for all t ∈ (sk, sk+1)

ḃx(t) = bAkbx(t) + bBku(t).
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In particular, due to unique solvability of linear ODEs, for
any solutions x of Σσ and bx of bΣσ the following implica-
tion holds:

W
2
k x(s+k ) = bx(s

+
k ) =⇒ ∀t ∈ (sk, sk+1) : W

2
k x(t) = bx(t).

To show that bx =W
2
σx is indeed a global solution of bΣσ

it therefore remains to be shown that

W
2
k x(s+k ) = bJkW

2
k−1 x(s−k ). (14)

In fact,

W
2
k x(s+k ) =W

2
kJk x(s−k ) =W

2
kJk T k−1T

−1
k−1 x(s−k )

=W
2
kJk[V

1
k−1,V

2
k−1,V

3
k−1,V

4
k−1]

� ∗
W

2
k−1 x(s−k )

0
0

�

.

From (12) it is easily seen that JkU k−1 ⊆ U k, hence

im JkV
1
k−1 ⊆ im Jk[V

1
k−1, V

3
k−1] = JkU k−1 ⊆ U k =

im[V
1
k V

3
k] ⊆ ker W

2
k, i.e. W

2
kJkV

1
k−1 = 0, from which it

follows that

W
2
k x(s+k ) =W

2
kJkV

2
k−1W

2
k−1 x(s−k )

as desired. �

As a consequence of the above and of the uniqueness of
solutions it follows that every solution bx of bΣσ with zero
initial value and given input u satisfies bx = W

2
σx where

x is the solution of Σσ with zero initial value and the
same input u. We will now prove that the corresponding
outputs are indeed equal.

Theorem 17 Consider the switched system Σσ as in (1)
and the reduced system bΣσ as in (2) obtained by the above
reduction method. Then Σσ and bΣσ are input-output equiv-
alent in the sense that for all inputs u the output y of (1)
with initial condition x(t−0 ) = 0 equals the output by of (2)
with initial condition bx(t−0 ) = 0.

Proof. The output of Σσ on [sk, sk+1) is given by

y(t) = CkeAk(t−sk)Jk x(s−k ) +

∫ t

sk

CkeAk(t−s)Bku(s)ds

=: yJ(t) + yu(t).

Inserting suitable identity matrices we have that

yJ = CkTkeT
−1
k AkTk(t−sk)T

−1
k JkTk−1T

−1
k−1 x(s−k ),

yu(t) =

∫ t

sk

CkTkeT
−1
k AkTk(t−s)T

−1
k Bku(s)ds,

where Tk = [V
1
k, V

2
k, V

3
k, V

4
k] is the coordinate transforma-

tion according to Lemma 5 for mode k. The special block
structure of the matrices T

−1
k AkTk, T

−1
k Bk, CkTk implied

by Lemma 5 immediately leads to

yu(t) =

∫ t

sk

bCkebAk(t−s)
bBku(s)ds.

Hence, for showing by(t) = y(t) = yJ(t)+ yu(t) it remains
to be shown that

yJ(t) = bCkebAk(t−sk)
bJkbx(s

−
k ). (15)

With similar arguments as used to establish (14) in Lemma
16 we can show that

T
−1
k JkTk−1T

−1
k−1 x(s−k ) =

� ∗
bJkW

2
k x(s−k )
0
0

�

.

Using the already established fact in Lemma 16, that
W

2
k x(s−k ) = bx(s−k ) together with the special block struc-

tures of T
−1
k AkTk, T

−1
k Bk, CkTk we can conclude that (15)

holds. �

Remark 18 (Non-zero initial values) Our method can
easily be adjusted to account for non-zero initial values.
Assume x(t−0 ) ∈ X0 for some subspace X0 ⊆ Rn, then in
(8) we just have to replace the initial definition by

Mσ
0 :=R0 + eA0τ0 J0X0

and in (11) the initial space needs to be adjusted to

R0 :=R0 + 〈A0 | J0X0〉,

while the definition of the other subspaces remain un-
changed.

A key feature of our method is that it is independent of
the actual switching times (or mode durations) and only
requires knowledge of the mode sequence. The following
example shows however that the size of a minimal real-
ization depends on the mode durations, hence we cannot
expect that our method results in a minimal realization in
general.

Example 19 Consider a switched system with modes

A0 = A2 =
� 0 0 0

0 0 0
0 0 0

�

, A1 =
� 0 0 0

0 0 −1
0 1 0

�

, B0 =
� 1

1
0

�

,

B1 = B2 =
� 1

0
0

�

, C0 = C1 = [ 1 0 0 ] , C2 = [ 1 1 0 ] .

with J1,0 = J2,1 = I . Assume the mode sequence 0→ 1→ 2.
Fix the switching time duration τ1 = π/2 for mode 1. Then
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the original solution x and output y of each time interval
can be characterized as follows:

t ∈ (t0, s1) : x(t) =
� ∗
∗
0

�

, y(t) = C0 x(t) = [ 1 0 0 ]
� ∗
∗
0

�

,

t∈(s1, s1+
π
2 ) : x(t) =

� ∗
∗
∗

�

, y(t) = C1 x(t) = [ 1 0 0 ]
� ∗
∗
∗

�

,

x(s2) = x(s1 +
π
2 ) =

� ∗
0
∗

�

t ∈ (s2, t f ) : x(t) =
� ∗

0
∗

�

, y(t) = C2 x(t) = [ 1 1 0 ]
� ∗

0
∗

�

.

Clearly, the second and third states do not affect the output
for this specific switching signal. In particular, it is easily
seen that the overall input-output behavior is described by
the (nonswitched) system ḃx = u, y = bx. However, if we
apply our proposed method, then the sequence of reachable
and unobservable spaces are given by

Mσ
1 = im B0, N σ

0 = {0},
Mσ

2 = R
3, N σ

1 = {0},
Mσ

3 = R
3, N σ

2 = span{e3}.

Indeed, the sequences produce a switched system with modes
in dimensions 1, 3 and 2, respectively, instead of a one di-
mensional minimal system. Nevertheless, one should note
that for τ1 6= kπ/2, our method actually produces a mini-
mal realization. 4
The previous example however leads to our believe that
our method results in a minimal realization for almost all
switching times. While we have not been able to prove
this conjecture, we are able to show that our method is
optimal in the sense that a repeated application doesn’t
lead to a further reduction.
Theorem 20 Consider the switched system Σσ and the
reduced switched system bΣσ resulting from our proposed

method. Let ÒRσ(·) and cU σ(·) be the sequences of reachabil-

ity and unobservability spaces, respectively, of bΣσ. Then

ÒRσ(·) = Rbnσ(·) , cU σ(·) = {0}.

In particular, the left- and right-projectors for a potential
further reduction are given by identity matrices, i.e. no fur-
ther reduction occurs.
Proof. Our proposed methods yields for each mode k a co-
ordinate transformation Tk such that (Ak, Bk, Ck) is trans-
formed to









A11
k A12

k A13
k A14

k

0 bAk 0 A24
k

0 0 A33
k A34

k

0 0 0 A44
k



 ,

�

B1
k
bBk
0
0

�

, [ 0 bCk 0 C4
k ]



 , (16)

where (bAk, bBk, bCk) is the input-output equivalent reduced
system for mode k. By construction, the extended reach-
able and restricted unobservable spaces of (Ak, Bk, Ck) are

given by Rk = Tk

� I 0
0 I
0 0
0 0

�

, U k = Tk

� I 0
0 0
0 I
0 0

�

, respectively.

Seeking a contradiction assume ÒRk ( Rbnk (Case I), or
cU k 6= {0} (Case II) for some k.

Case I: For k = 0 we see that fromR0 =R0 it follows that

the pair (bA0, bB0)must be reachable and hence ÒR0 = ÒR0 =
Rbn0 . Assume now inductively that for some k we have
ÒRk−1 = Rbnk−1 and ÒRk ( Rbnk . Since ÒRk is bAk-invariant and
contains im bBk we can choose a coordinate transformation
bTk such that (bAk, bBk) is transformed to

�h

bA1
k ∗

0 bA2
k

i

,
�

bB1
k

0

�
�

(17)

and im bTk

�

I
0

�

= ÒRk. By adjusting the original coordinate
transformation Tk we can assume in the following that
(bAk, bBk) is actually equal to (17). In particular, we then
have

im
�

I
0

�

= ÒRk = ÒRk + 〈bAk | bJk ÒRk−1〉.

Since ÒRk = 〈bAk | bBk〉 ⊆ im
�

I
0

�

we can conclude that,

im
�

I
0

�

⊇ 〈bAk | bJk ÒRk−1〉 = 〈bAk | im bJk〉 ⊇ im bJk. Therefore
(Ak, Bk, Jk) is actually transformed to









∗ ∗ ∗ ∗

0

�

bA1
k ∗

0 bA2
k

�

0 ∗

0 0 ∗ ∗
0 0 0 ∗



 ,





∗
�

bB1
k

0

�

0
0



 ,





∗
�

J1
k
0

�

0
0







 .

From this we arrive at the following contradiction:

im
� I 0

0 I
0 0
0 0

�

=Rk =Rk + 〈Ak | JkRk−1〉 ⊆ im

� I 0
0
�

I 0
0 0

�

0 0
0 0

�

.

Hence we have inductively shown that ÒRk = Rbnk for all
mode k.

Case II: Assume cU k 6= {0}. Analogously as in Case I, the
contradiction

U k 6= im
� I 0

0 0
0 I
0 0

�

,

arises, the details are omitted. �

For the special case of constant A-matrices, our method
does in fact result in a minimal realization.

Corollary 21 Consider the switched system (13) with
mode-independent A-matrix. Then the reduced switched
system obtained via our proposed reduction method is
minimal.

Proof. This is a simple consequence from Proposition 15,
because in any mode a smaller reduced model would nec-
essarily remove some reachable and observable states and
hence cannot lead to the same input-output behavior.
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5 Numerical results

In this section, we demonstrate the operation of the pro-
posed reduction method for the switched linear system.
The proposed method is illustrated by means of numerical
examples. The source code for the numerical examples is
available from [9].

Example 22 Consider a switched linear system with modes:

(A0, B0, C0) =
�� 2 0 1

0 1 0
0 0 −1

�

,
� 1

0
0

�

, [ 1 0 1 ]
�

,

(A1, B1, C1) =
�� 0 −1 0 0

1 0 0 0
0 0 1 0
0 0 0 2

�

,
� 0

1
0
0

�

, [ 0 0 0 1 ]
�

,

(A2, B2, C2) =
�� 1 0 1

0 1 0
0 −1 2

�

,
� 0

1
1

�

, [ 0 1 0 ]
�

,

J1,0 =
� 1 1 0

0 2 1
0 0 1
0 −1 1

�

, J2,1 =
� 2 1 0 0

0 1 0 1
0 0 2 1

�

.

Assume the mode sequence 0→ 1→ 2. We apply the pro-
posed reduction method and the reduced switched system
can be obtained as follows.

Step 1. Here, R0 =
� 1

0
0

�

, R1 =
� 1 0

0 1
0 0
0 0

�

, R2 =
� 1 0

0 1
0 1

�

, U0 =
� 0

1
0

�

, U1 =
� 1 0 0

0 1 0
0 0 1
0 0 0

�

, U2 =
� 1 0

0 0
0 1

�

. Now we compute the se-

quence of reachable and unobservable spaces:

R0 =R0 =
� 1

0
0

�

,

R1 =R1 + 〈A1 | J1,0R0〉=
� 1 0

0 1
0 0
0 0

�

,

R2 =R2 + 〈A2 | J2,1R1〉= R3,

U 2 =U2 =
� 1 0

0 0
0 1

�

,

U 1 =U1 ∩ 〈J−1
2,1 U 2 | A1〉=

� 0
0
1
0

�

,

U 0 =U0 ∩ 〈J−1
1,0 U 1 | A0〉= {0}.

Step 2. Via the proposed method, the sequence of left- and
right-projectors are obtained by

(W
2
0, V

2
0) =

�

� 1
−2
−2

�>
,
� 1

0
0

�

�

,

(W
2
1, V

2
1) =

�

� 1 0
0 1
0 0
0 0

�>

,
� 1 0

0 1
0 0
0 0

�

�

,

(W
2
2, V

2
2) =

�

� 0
−1
0

�>
,
� 0
−1
−1

�

�

.

The reduced switched system is given by

(bA0, bB0, bC0) = (W
2
0A0V

2
0, W

2
0B0, C0V

2
0) = (2, 1,1) ,

(bA1, bB1, bC1) =
�

W
2
1A1V

2
1, W

2
1B1, C1V

2
1

�

=
��

0 −1
1 0

�

,
�

0
1

�

, [ 0 0 ]
�

,

(bA2, bB2, bC2) =
�

W
2
2A2V

2
2, W

2
2B2, C2V

2
2

�

= (1,−1,−1) .

Step 3. The reduced jump maps are given by

bJ1 =
�

1
0

�

, bJ2 = [ 0 −1 ] .

Figure 1 shows the output of the original and its minimal
switched linear system for input u(t) = 1 with switching
times s1 = 2 and s2 = 5 over [0, 6] and clearly both outputs
coincide.

0 1 2 3 4 5 6

Time(sec)

0

5

10

15

20

25

30

O
ut

pu
t

Original

Reduced

Fig. 1. Outputs of original system and the proposed reduced
system.

6 Conclusions

In this paper, we have proposed a method for obtain-
ing a reduced realization for switched linear systems
with jumps and mode-dependent state-dimensions; the
switching signal is assumed to be fixed with known mode
sequence. Our reduction method is independent of the
switching times and hence in principle also applicable for
state-dependent switched systems if a certain mode se-
quence is known a-priori. The proposed reduction method
is based on a weak Kalman decomposition of each mode
by defining suitable extended reachable and restricted
unobservable spaces. We believe, that our method results
in a minimal realization for almost all switching times,
however, a definite answer to this question is still ongo-
ing research. It cannot be expected that our method will
result in a minimal realization for all switching times, we
provided an example for which the dimension of the min-
imal realization depends on the specific switching times.
We have so far assumed that all subspace related oper-
ations (intersections, sums, . . . ) can be carried out with
exact arithmetics, however, for large scale systems and/or
for systems with numerical coefficient matrices the in-
volved subspace calculations are in general ill-posed.
A suitable adaption of our algorithm utilizing e.g. the
singular value decomposition to carry out the subspace
calculations approximately is a topic of future research.
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