
Event Driven Model with an Objective to

Control Traffic Lights in the Netherlands

Marko Boon1, Mark van den Bosch2, Paul Breeuwsma,
Alessandro Di Bucchianico1, Mona Emampour1, Bart
van Ginkel3,
Tjebbe Hepkema4, Philipp Holzinger5, Rik Timmer-
man1, Stephan Trenn6

Abstract

The study group participants of SWI 2020 with regard to the challenge
proposed by the company Sweco were tasked to initiate a discrete-
event dynamic model into Smart Traffic. Smart Traffic is cloud driven
software developed by Sweco, implementing real-time predictive traf-
fic signal control. Currently, the microscopic traffic simulator SUMO
is being used within Smart Traffic to predict the traffic pattern for
the short-term future, with the purpose of optimising traffic signal set-
tings. However, in practice, microscopic traffic simulators appear to be
too slow and hence infeasible considering its application. We employ
discrete-event simulations as a tool to predict the future traffic state

1
Eindhoven University of Technology, The Netherlands

2
University of Leiden, The Netherlands

3
Delft University of Technology, The Netherlands

4
Utrecht University, The Netherlands

5
Vienna University of Technology, Austria

6
University of Groningen, The Netherlands

111

112 SWI 2020 Proceedings

both efficiently and effectively, even though those type of simulations
are usually employed in a different context.

We were in particular advised to focus on devising an event-driven
model for a single, general intersection. This enabled us to create a
thorough mathematical basic model. We are able to study various
performance characteristics of the traffic light, such as the total delay
or to the total squared delay.

Accompanied with the mathematical basic model, we deliver in cor-
respondence a fully functioning program written in Python. Our ar-
ticle includes a detailed yet relatively simple example based on this
program. This example additionally demonstrates the difference in an
optimal outcome when using the total delay or the total squared delay.

Ultimately, we note that our model is easily extendable and several
feasible extensions are proposed in this article.

Keywords: Smart Traffic, SUMO, Discrete-Event Simulation, Opti-
misation, Delay, Network, Control Applications

4.1 Introduction

Nowadays, everyone experiences traffic congestion – commonly char-
acterised by longer trip times, slower speeds, and increased queuing
of vehicles – which is severely problematic. Simply put, when traf-
fic demand is big enough that the interaction between vehicles start
to matter, the speed of the traffic flow is slowed and this will result
in (some) congestion. Currently, the traffic demand is very high, as
according to TomTom, there are more than a hundred cities around
the globe where a trip during an arbitrary moment of the day has an
increased duration of more than 30% compared to free flow TomTom
International BV (2019, accessed December 20th 2019).

Sweco is an European engineering consultancy company who are
mainly active in the fields of architecture, infrastructure and also in
environmental and traffic engineering. One of their products which is
currently in full development, is Smart Traffic: a real-time, data-driven
software package that can be used to control traffic lights more effi-
ciently, by making short-term predictions of the traffic pattern. Sweco

113

has already won prizes with this concept Sweco.nl (2019, accessed
February 19 2020). Using information from detector loops and vari-
ous other sources, Smart Traffic wants to achieve detailed predictions
for upcoming traffic conditions, in order to control traffic lights to op-
timise future traffic flow. Improving the traffic flow yields a decrease
in total delay and diminishes irritation levels, but simultaneously we
will also be able to decrease the amount of vehicle emissions. It is
commonly known that vehicles standing still and accelerating vehicles
cause the most emissions, and Sweco expects that with Smart Traffic
a decrease in emission of approximately 15% to 20% is possible. This
is already achieved at some places in the Netherlands, e.g. in Helmond
Sweco.nl (2020, accessed February 19 2020).

Smart Traffic is a tool to find good traffic light settings. Smart
Traffic takes input from loop detectors and various other sources and
predicts the future traffic state using various traffic light settings. Based
on this, the choice for the best traffic light setting is made. This pro-
cedure is repeatedly executed, to make sure that a good performance
is achieved. Currently, Smart Traffic is applied to each intersection
separately.

Figure 4.1: A fixed moment of a SUMO simulation. The intersection
visualised, made by Sweco, represents the crossing of the ‘Europaweg’
and the ‘Laan van Spitsbergen’ in Apeldoorn.

114 SWI 2020 Proceedings

One of the key tools that Sweco uses in their Smart Traffic appli-
cation, is the microscopic traffic simulator SUMO Lopez et al. (2018).
SUMO is able to accurately simulate traffic flows, taking vehicle-to-
vehicle interactions into account. SUMO is one of the fastest micro-
scopic traffic simulation tools, yet it is not fast enough for the purpose
of Sweco, namely predicting the future traffic state with the purpose
of operating nearly in real-time. Ideally, a whole network of intersec-
tions is considered, because the traffic demand and traffic light settings
at one intersection might influence the demand and settings at others.
Yet, because SUMO is not able to predict the future traffic state for
a whole network within a reasonable time, these dependencies in the
network are not taken into account.

In this project, we take a different approach and step away from the
common traffic simulators. Instead, we apply discrete-event simulation.
Discrete-event simulation has been widely applied in several technical
applications, but so far it has received little attention in the traffic light
control applications. An extensive overview of discrete-event simulation
can be found in the monograph Cassandras and Lafortune (2009). Jang
and Park (2018) applies discrete-event simulation to mission reliabil-
ity of traffic lights rather than traffic flow control. Sumaryo, Halim,
and Ramli (2013) develop an M/M/1 queuing model of a single junc-
tion with 4 entrances, each of them consisting of 2 lanes with signal
groups. The simulation model is implemented using the SIMULINK
environment and the SimEvents toolbox of MATLAB. No control sce-
narios are being investigated. Schanzenbacher et al. (2017) propose a
mathematical model for an event-based train dynamics with one junc-
tion. By using the Max-plus algebra model, the average of the train
frequency is a function of many parameters such as train travel time,
the total number of trains on the line and, the number of trains on
each branch. The results will be used for traffic control. Soh et al.
(2013) mentions a simple model of discrete event simulation (DES).
Applying the decomposition method from the queue theory caused a
simple model. The method enables us to decompose a big scale net-
work of roads into junctions and analyse them independently to come
up with overall results for the whole system. Jagnere and Bansal (2013)
also reports an event-driven simulation that updates the states of the
system as well as the time when an event takes place. Cha and Mun

115

(2014) design a discrete event model to update the dynamic change
of passengers for the Maglev, which is a new transportation system in
Korea, by predicting the demand of passengers and making a plan on
the operation of trains for each train station. Ben-Naoum et al. (1995)
describes and compares three mathematical methods, Petri net, Max
algebra, and Lagrangian relaxation, to model a discrete event. Zhang
et al. (2019) points out a discrete event and hybrid traffic simulation
by using MATLAB, Simulink and SimEvents for assessing an intelli-
gent transportation system (ITS). Miller, Peng, and Bowman (2017)
proposes a microscopic discrete event-based simulation to optimize the
traffic system characteristics such as inter-arrival time and traffic light
timing as well as forecasts the traffic system by applying ARIMA, re-
gression and, neural network to build a more reliable traffic prediction
system.

We will use discrete-event simulation, but apply it in a slightly dif-
ferent way than is usually done. Often, a discrete-event simulation
is employed to study certain steady-state performance characteristics
of the model at hand. However, we will use it as a tool to predict
the future traffic state and to control the traffic lights. Indeed, this is
one of the main advantages of using simulation compared to a mathe-
matical analysis. A time-dependent (or transient) analysis of queuing
systems is a notoriously hard problem, which is the reason why the
vast majority of papers in the queuing literature focus on steady-state
performance characteristics. Our discrete-event simulation is an ex-
cellent tool to study the transient behaviour of the system and make
short-term predictions of the traffic behaviour.

The paper is organised as follows. In Section 4.2 we describe the
problem. In Section 4.3 we subsequently introduce the model and as-
sumptions. Moreover, we also give a detailed description of the im-
plemented discrete-event simulation. In Section 4.4 we show in what
manner the model can be used and the output that it produces. In
the next section, we discuss several model extensions. Finally, in Sec-
tion 4.6 we present conclusions and recommendations.

116 SWI 2020 Proceedings

4.2 Context and Problem Description

Before we initiate and explain our basic model, we would like to briefly
describe how Sweco works currently. First of all, the process of Smart
Traffic with respect to the traffic light control can be divided into four
main blocks: monitoring, forecast, controlling and communication.

Figure 4.2: Current process of the traffic simulation and prediction
framework at Smart Traffic.

The block Controlling is where everything starts and everything
comes together. Sweco gathers all information they obtain from cam-
eras on the street, loop detector information – which will be of major
importance in our basic mathematical model – and data of local public
transportation movements (e.g. buses). The block Monitoring is for
simulating the actual current situation on the streets with the help of
the software SUMO. Forecast is the block, where the prediction for the
next T seconds is done. The last block Communication is then the
execution of the decisions of Sweco, where the communication with the
traffic lights is done.

Ultimately, Sweco wants to decide the schedule for the traffic lights
at e.g., one junction. The above described processes are used to obtain
this schedule. Sweco gathers the information and feeds the Monitoring
block with all relevant data to simulate the current situation at the
junction. At the same time they send numerous possible and useful
schedules of traffic lights to the Forecast block. The Forecast block
fetches the actual street view from the Monitoring block and starts to
predict all needed data for all schedules, like dilation times, position of
cars, or how many cars left the system, et cetera. All of this is currently

117

Figure 4.3: Current architecture of the traffic simulation framework at
Smart Traffic.

done with the software SUMO. Then the Forecast sends all predictions
back to the Controlling block and there Sweco decides what the best
schedule is, and sends the best schedule to the Communication block,
where the schedule will be delivered and executed on the traffic lights.
This process happens every 3 seconds.

One of the problems here is the complicated connection between
the three blocks, Controlling, Forecast and Monitoring and the involve-
ment of SUMO in these three blocks. Since SUMO simulations are very
detailed, taking e.g., vehicle-to-vehicle interactions into account, it pro-
duces more data than needed. This leads to high computation times
and the application of SUMO in Smart Traffic is thus rather limited.
One possible solution to this problem is merging the two blocks Mon-
itoring and Forecast, and create a new program that does both at the
same time, see the corresponding figure below.

Figure 4.4: Goal architecture of the traffic simulation framework at
Smart Traffic.

118 SWI 2020 Proceedings

Moreover, SUMO is time based. This means that every time step
every object in the simulation will be updated, which adds even more
to the processing time, next to the many details that are already taken
into account by SUMO.

The approach that we take here is not time based: we provide a
simulation that is event based. Instead of checking what happens in
every time step, we only check what happens if an event occurs, which
might drastically reduce the number of updates in the simulation. A
discrete-event simulation (DES) is a dynamic, asynchronous system,
where the state transitions are initiated by events that occur at dis-
crete instants of time. Typical examples of applications of DES are
flexible manufacturing systems, telecommunication networks and mul-
tiprocessor operating systems. Intuitively formulated: the algorithm
list all events that will happen, like changing of a traffic light, arrival
times of particular cars, departure times of particular cars, etc., and
sort them by their time. When an event is happening all objects that
are influenced by that event will be updated and eventually new events
will be added to the system and put in the list of events that will hap-
pen. With this new and simple approach, Sweco hopes for faster and
more useful outputs.

4.3 Mathematical Basic Model Initiation

Before we are able to describe the basic model, see Subsection 4.3.3, we
first need to initialise the setup: we give several definitions and point
out major assumptions. Some assumptions are required for feasibility
of the model whereas other assumptions could be relaxed upon. We
refer to Subsection 4.5 for this.

In the Netherlands we usually have the following setup at an in-
tersection. As is being illustrated in Figure 4.5, there are three types
of sensors present on roads leading towards a signalised intersection,
which are called loops in the jargon of Smart Traffic.

More specifically, at each lane we have the enter loop (red), the long
loop (blue), and head loop (green). Whereas these are the official names
for the loops, within this article we will be calling them the arrival, long
and departure loop respectively. This suggestive terminology highlights

119

Figure 4.5: Visualisation of a T-junction with the arrival, long and de-
parture loops represented by red, blue and green ellipsoids respectively.
In this illustration, the (time-)distance between the red and green loop
is T = 10.

that the arrival loop produces a signal whenever a car passes that loop
and enters a (possible) queue on that lane. A departure loop, logically,
relates to vehicles departing from the queue. To be a bit more precise,
these two loops give us a value 1 when there is a car on top of the loop
and gives us a value 0 when this is not the case, thus the change from
1 to 0 gives us the indication that a car has passed the loop.

In addition, the long loop outwards a signal, i.e. gives us an 1,
whenever there is a car on top of it. Therefore, this loop tells us whether
there are cars present in front of a traffic light or not. We would
like to point out that the basic model does not use this loop, but we
definitely recommend to use this loop which is further elaborated upon
in Subsection 4.5.1.

Finally, according to Sweco, the arrival and departure loop on a
lane are often at most T = 10 seconds apart one another, meaning that
when you are allowed to drive with a speed at most 80 km/h – roughly
22 m/s – the distance between the two loops is at most 220 metres.
This also explains the forecasting range of T = 10 seconds.

120 SWI 2020 Proceedings

4.3.1 Definitions

Now that we have dealt with the setup of an intersection, we continue
with some definitions which we use throughout this article.

Definition 4.3.1. A system is a formal description of the intersection,
being the collection of lanes. Each lane consists of a traffic light, its
direction arrow, and their three loops. A signal group is a collection of
lanes with a coinciding direction arrow. This is visualised in Figure 4.6.

1
2
3

6

4
5

Figure 4.6: Sample of a system with six registered signal groups, where
signal group 1 and 5 contain two lanes.

Definition 4.3.2. A configuration of a system at time t, denoted by
Xt, is the state of all the traffic lights at time t of the intersection
considered. A scenario, also called stage, with respect to T seconds is
a possible sequence of configurations, i.e. a sequence X = {Xtk}Nk=0
with N 2 N the amount of changes in the configuration from the start
t0 (which usually is equal to 0) within a time span of T seconds (and
therefore t0 < t1 < ... < tN < T).

In order to perform the forecasting of the next 10 seconds, we will
be doing discrete-event simulations for a list of given scenarios, as re-
quested by Smart Traffic. Additional input data that we take into
account is the layout of the intersection; the traffic light configuration
at t0; and the arrival times of those cars who entered and not yet left
the system up to time t0, i.e. those cars that are beyond the arrival
loop but have not yet passed the departure loop.

121

Figure 4.7: Schematic illustration, with t0 = 0, of a traffic scenario
with T = 10 seconds on a T-junction. Here we have N = 2 changes and
the different configurations X0 = (0, 0, 1, 1, 0, 1); X5 = (0, 0, 0, 1, 0, 1);
and X8 = (1, 1, 0, 1, 0, 1). Importantly observe we have for example
Xt = X0 for 0 < t < 5.

As output data, we are interested in knowing the total (squared)
delay per signal group and the state at both times t0 and t0 + T , i.e.,
the queue lengths per signal group at times t0 and t0 + T .

Definition 4.3.3. The queue length in a signal group is defined as the
number of cars that are not driving in the corresponding signal group.
The beginning of the queue is at the departure loop, whenever the
queue length is non-zero. The end of the queue is not easily defined.
We assume that anyone who has not yet crossed the intersection and
who would have reached the departure loop if he/she would be traveling
at the maximum speed, is in the queue.

Note that our definition of the queue length is an underestimation
of the actual number of vehicles in the queue, as a vehicle is not able
to drive up to the departure loop if there already is a queue.

An advantage of our use of discrete-event simulations is that we
are able to keep track of each car individually, which is convenient for
tracking the queue length and the delay, which is our next definition:

Definition 4.3.4. Consider some signal group S. Denote ⌧S for the
time a car needs to go through the system in an ideal situation, i.e.
with green light and no other vehicles present. The delay of some car
i at time t, denoted by ci(t), is defined as max{0, ⌧i(t) � ⌧S} where ⌧i
is the total time car i is in the system up to time t. Suppose at time

122 SWI 2020 Proceedings

t0 there are N cars in the signal group S, then the total delay in S at
time t with t0  t  t0 + T is defined as the sum

P
N

i=1 ci(t). Let us
denote

delayS =

NX

i=1

ci(t).

Note that ⌧i(t1) = ⌧i(t1 + ✏) for all ✏ > 0 when the car has left the
system at t1. From a fuel consumption perspective the above definition
is reasonable, but it does not take into account the “frustration” factor
of car drivers who have to wait a very long time. In particular, when
optimizing the traffic flow with respect to the delay above, it might
happen, that one very busy signal group gets green all the time and a
single vehicle has to wait very long. This problem can circumvented by
choosing quadratic delays for each vehicle as a performance measure,
i.e. we define the squared total delay by

delay2
S

=

NX

i=1

ci(t)
2.

4.3.2 Assumptions

We note the following simplifying assumptions are implemented for the
single-junction model, i.e. the basic model (see Subsection 4.3.3). If
one would like to extend the basic model to one that covers multiple
intersections, one should pursue mostly the same assumptions below.
The main assumptions are:

1. There is one type of vehicles present in the system. We neglect
other vehicles or road users, e.g. pedestrians, in the basic model
(see also Subsection 4.5.5);

2. Cars neither accelerate nor decelerate. In other words, denote
vcars being the velocity of any car, it satisfies vcars = max(0, vmax)

with vmax 2 R+. This does not have any severe implications for
e.g. the delay of a vehicle, as long as the departure time is chosen
well, see Subsection 4.5.6 for an extension;

123

3. Vehicles stick to their signal group. The cars are assumed to stay
in the same signal group, thus after being recognised at the arrival
loop the car does not change to a lane with a different direction;

4. Loop sensors work perfectly. It is commonly known, according
to Sweco, that loop sensors sometimes are wrong: sometimes a
car is not recognised by a loop, the loop is damaged, or it gets
accidentally triggered. This might cause an overestimation or
underestimation of the number of cars present in the queue of a
signal group. Despite the above, we neglect this fact as we do not
have any detailed information on this (see also Subsection 4.5.1);

5. During a simulation for T seconds, no cars enter the system. In
line with the perspective of Sweco, we only make predictions on
aspects that we are certain of. This implies that we assume that
the arrival detectors are not triggered for the prediction hori-
zon T . Many existing (discrete-event) models let cars enter the
system during a simulation according to a Poisson process Soh
et al. (2013) and Sumaryo, Halim, and Ramli (2013), but we
do not make such assumptions. Note this could (and perhaps
also should) be implemented when the prediction horizon T is
ex- tended or if e.g. a network of intersections is considered (see
Subsection 4.5.3).

4.3.3 Basic Model
Based on the assumptions that we made in Subsection 4.3.2, we are able
to formulate a model based on discrete-event simulation. We will first
give an intuitive description of the basic idea of discrete-event simula-
tion; then we explain how we use such a simulation to do predictions;
present and explain all events that are in our implementation; and then
finally present some pseudocode that describes the simulation.

The key idea in discrete-event simulation is that, even though events
may happen at any moment in time, we do not continuously update
the system. Only at the specific moment that an event occurs, we
update the system. At such moments, we might also schedule new
events, depending on the type of the event that has occurred. As an
easy example, if the event is “arrival loop went off”, we know that after

124 SWI 2020 Proceedings

some travel time, the vehicle will either join the queue present in front
of it (event “join the queue”), or it will trigger the departure loop when
crossing the intersection (event “cross the intersection”). The events are
thus the most important part of the model: as soon as all events are
defined it is generally easy to implement the simulation.

To use discrete-event simulation, we initialise the system with the
input data, like number of vehicles present between the arrival and
departure loop and the moments at which those vehicles passed the
departure detector and the configuration of the traffic lights. After this
initialisation, we are able run the simulation for a prediction horizon T .
Every time we need to make a prediction, we re-initialise the system
in the same way, so using the same input data and a corresponding
configuration.

We are able to define the events now. To model a general intersec-
tion, we have chosen to work with seven events. We give first the name
of the event and subsequently provide a small description of the event.

• ARRIVAL_AT_SG: the event that a vehicle passes the arrival
loop at a considerable (known) distance from the intersection of
a certain signal group.

• ARRIVAL_AT_QUEUE: the event that a vehicle joins the queue
at the stop line of the intersection.

• DEPARTURE_FROM_SG: the event that a vehicle departs from
the signal group and crosses the intersection.

• DEPARTURE_FROM_QUEUE: the event that a vehicle de-
parts from the queue (which happens right before DEPARTURE_FROM_SG).

• TORED: this event switches the state of the traffic light from
amber to red.

• TOAMBER: this event switches the state of the traffic light from
green to amber.

• TOGREEN: this event switches the state of the traffic light from
red to green.

125

As the core part of the model is defined now (the events), we are
able to provide a pseudocode version of our algorithm. We start with
initialising the simulation, i.e. creating the junction, the signal groups
and the future event set (FES), with the arrivals at the arrival loop
that did not cross the departure loop yet and the switch events of the
traffic lights. After the initialisation, we keep checking the FES until
the prediction horizon has ended and the relevant items are updated.
The description of the algorithm can be found in Algorithm 1.

One part of the input for the model is the configuration that has
to be evaluated. These correspond to the event types TOGREEN,
TOAMBER and TORED. Several performance measures can be used
to evaluate the configuration. The two most important ones that we
implemented are the number of vehicles in the queue and the (squared)
delay of those vehicles. Depending on the event, we update those num-
bers or values. Based on all these values, Smart Traffic might base its
decision on the allocation of the green times for the traffic lights. We
will exploit this in a small case study in Section 4.4.

4.3.4 Rejected Ideas
The implemented algorithm builds up a queue from the available arrival
times at the beginning of the simulation (by initiating a suitable cascade
of events). Another idea we discussed was to initialize the simulation of
a signal group with a certain queue length which is obtained from the
simulation run in the past. While this approach probably leads to more
accurate results, it complicates the algorithm and it is not clear how the
actual measurements from the departure loop can be used to improve
the simulation. Therefore, we decided against an implementation of
a model with a given initial internal state, but rather just used the
available data from measurements to build the initial internal state in
an ad hoc way.

Furthermore, we also discussed to have multiple queues in one signal
group and to keep track of the vehicles in the queue (in order to more
accurately predict the time at which the vehicle leaves the signal group).
While these extensions can easily be implemented in the event-based
framework, we decided not to do so to keep the first model simple and
also because it is not clear whether the actual simulation results would

126 SWI 2020 Proceedings

Algorithm 1 Basic model – discrete-event simulation
T = 60 # length of prediction horizon;

t = 0 # starting time;

create junction with signal groups etc.;

create all events and add them to the events list (FES);

while t < T do
select next event from event list (FES);

save the time, t, of this event;

if event type == ARRIVAL_AT_SG: # not needed now, probably

needed when looking at a network of intersections then
create vehicle with arrival time “time at red detector”;

add vehicle to signal group;

else if event type == ARRIVAL_AT_QUEUE then
if queue length of sg == 0 and its current traffic light color == green

or amber then
the vehicle can just pass, hence they depart after driving from

the loop at the stop line to the traffic light;

schedule departure at time t + travelTime;

else
add vehicle to the queue;

if there are more vehicles in the signal group that are not in the

queue then
schedule the event ARRIVAL_AT_QUEUE of the next vehicle;

end if
end if

else if event type == DEPARTURE_FROM_QUEUE then
remove first vehicle from queue;

add the delay of the vehicle to the total intersection-wide delay;

if queue length of sg > 0 and its current traffic light color == green

then
there are still vehicles waiting and the light is green

schedule departure at time t + reactionTime;

end if
we also remove the vehicle from the signalgroup;

schedule DEPARTURE_FROM_SG at time t;
else if event type == DEPARTURE_FROM_SG then

we remove the vehicle from the signal group;

else if event type == TOGREEN then
turn light color of signal group to green;

if queue length of signal group > 0 then
there are vehicles waiting and the light just became green;

schedule departure at time t + reactionTime;

end if
else if if event type == TOAMBER then

turn light color of signal group to amber;

else if event type == TORED then
turn light color of signal group to red;

end if
end while

127

be more accurate (e.g., compared to simulations from SUMO).

4.4 Example Model Output

As ultimate goal we want to apply this model for relatively big inter-
sections, like Sweco currently does for intersections in Apeldoorn, such
as the one illustrated in Figure 4.1. In principle, our model can ap-
plied to such an intersection. However, to show some insights and as
a proof-of-concept, we assume that there are two streams of vehicles,
which share a common signalised intersection as in Figure 4.8.

4.4.1 Description of the Example
We assume that the current time is 0 and that all traffic lights are red
at that time. All vehicles that we take into account, crossed the arrival
detector at a negative time (we cannot look ahead, so any vehicles
arriving after time 0 are not taken into account when doing the discrete-
event simulation). At signal group 1, we have arrivals of vehicles at the
following times:

{�70,�69,�68,�29,�7,�5,�3}.

At signal group 2, we have the following times of arrival:

{�40,�35,�25,�15}.

Note that some vehicles are already waiting for quite a while, whereas
others are not even in the queue at time 0 (because the arrival time at
the signal group is smaller than the time needed to travel through the
whole signal group, which is five seconds in our example). If we perform
our simulation, we simulate until a predetermined time, T , which we
put to 60 in this example.
We evaluate three different configurations in this example, which are
as follows:

1. Signal group 1 receives green until there are no vehicles anymore
in the signal group. After that, we switch to signal group 2 after
an amber period for signal group 1.

128 SWI 2020 Proceedings

1

2

Figure 4.8: A schematic visualisation of the situation described above,
where both signal groups are represented by its number. Observe that
for this proof-of-concept example various intersection are probable, as-
suming that cars are not on the middle section of the junction when
the other signal group gets green.

2. Signal group 2 receives green until there are no vehicles anymore
in the signal group. After that, we switch to signal group 1 after
an amber period for signal group 2.

3. Signal group 1 receives green until the first four vehicles from the
signal group have crossed the intersection. Then we switch to
signal group 2 after an amber period, because those vehicles have
been waiting for a longer period than the last three vehicles in
signal group 1. After signal group 2 has become empty, we switch
back to signal group 1, again after an amber period.

4.4.2 Output of the Example
We present plots of the evolution of the queue length for both signal
groups for each of the three traffic light configurations as described in
the previous subsection (see Figures 4.9 until 4.11). The dots represent
events, while the colour indicates the colour of the traffic light of the
signal group. The height of the black line represents the number of
vehicles waiting at the stop line to cross the intersection. The height
of the gray coloured area is the number of vehicles present in the signal

129

group. Note that for signal group 1, this indicates that the last vehicle
is not in the queue yet at time 0 (it arrives around time 2).

Figures 4.9 until 4.11 give a good indication of what happens at
the intersection in the various configurations. It is easy to see if the
configurations give reasonable behaviour, yet it is difficult to select the
optimal settings based on those figures. For this purpose, we also keep
track of both the delay and the squared delay.

The results for the delay and the squared delay are presented in
Table 4.1. It is interesting to see that configuration 1 results in the
smallest delay. This seems logical, as we start at the signal group
with the most vehicles and stay there until all vehicles have left (and
they therefore do not have to wait for e.g. an amber light). Only
when the whole queue is cleared, we switch to the other signal group.
This, probably, relates to a known result in queuing theory, stating
that exhaustive strategies (keep serving until the queue is empty) are
optimal for these kind of problems Liu, Nain, and Towsley (1992).
This means that, once we start a green time at a signal group, we
have to clear the queue there, which is a reasonable explanation why
configuration 1 and configuration 2 are better than configuration 3.

This changes when we look at the squared delay. Then suddenly
configuration 3 is optimal. This can probably be explained by the fact
that a long delay becomes much larger once it is squared, whereas a
small delay only increases only a bit when squaring. This means that
the last three vehicles in signal group 1 have a smaller influence on the
total squared delay than the vehicles in signal group 2. It is better to
switch before clearing signal group 1 as a whole and to switch back
after clearing the vehicles in signal group 2.

130 SWI 2020 Proceedings

Figure 4.9: Evolution of the queues in configuration 1 (signal group 2
on top, signal group 1 at the bottom).

Table 4.1: Delay (in sec) and squared delay (in sec2) for configurations
1, 2 and 3.

delay sg 1 delay sg 2 total delay
2

sg 1 delay
2

sg 2 total

Config. 1 300.77 219.44 520.21 17044.08 12197.23 29241.31

Config. 2 402.27 125.44 527.71 27238.16 4092.55 31330.71

Config. 3 350.27 183.84 534.11 19653.72 8608.04 28261.76

131

Figure 4.10: Evolution of the queues in configuration 2 (signal group 2
on top, signal group 1 at the bottom).

4.5 Extensions to the Model

The current implementation is a first basic model. This model can
easily be improved upon or extended in a lot of ways. The main goal of
this section is to record the ideas that were obtained during the week
for such extensions (and sometimes for event-driven implementations).
Sweco could use this list as a starting point for a further development
of the basic model that we implemented.

In general we need to keep the goal in mind: we want to make
an as good as possible prediction of the relevant performance char-
acteristics, yet we want the computation time to be small. So, if an
extension makes very accurate predictions about traffic behavior, but
does not significantly improve the predicted delays, it mostly adds to
the complexity and (therefore) computation time and should thus be
discarded.

Below we describe some possible extensions with rough ideas of how
to implement them.

132 SWI 2020 Proceedings

Figure 4.11: Evolution of the queues in configuration 3 (signal group 2
on top, signal group 1 at the bottom).

4.5.1 Usage of Long Loops

In the basic model the long loop is not used. The reason is that the
only input information is the arrival and the departure loops and based
on that, the current location of the cars at the starting time of the
simulation is estimated. However, the long loops might be used by the
controller to validate that the cars that should have left according to the
model actually left. Moreover, one might want to use the information
obtained from the blue loop to make a more accurate initialisation of
the simulation.

4.5.2 Loops On and Off

In our model we regard the loop event as a moment in time when a
car passes. In reality a loop changes value when a car is above it and
changes back to the ground value when there is no car anymore. This
contains more information than only the passing of a car. Indeed, one
could consider to use the rest of the information for one or multiple

133

goals. Examples are:

• Estimate the speed of the car that is passing, this could enhance
the prediction of when a car will arrive at the queue;

• Estimate the length of the vehicle (i.e. if all passing vehicles
have a short signal and one has a long signal, it is likely that the
change in sign length is not due to the speed of the vehicle (since
the others around it went reasonably fast) but due to the length
of the vehicle). This could help recognising for example trucks
or buses and make a more accurate simulation of their future
behaviour;

• In the extreme case that a loop stays on for a long time, this
could indicate that the queue is so long that it has reached the
arrival loop (at least the tail of the queue, the front might already
be moving). This information may then be used to initialise the
simulation in a better way.

4.5.3 Multiple Junctions: a Network

Once we are done with one junction, we can model a whole network of
junctions. All junctions should do their independent simulations and
computations. However, some information based on the network can be
added. If we know in which direction a car leaves a certain junction, we
can estimate when it will arrive at the next junction. If this arrival is to
be expected within the next 10 seconds, it is relevant for the simulation
of the next junction and should appear there (note that in a network
setting, the 10 seconds might be extended to a longer time). Moreover,
based on this information, the controller could possibly be improved.
There are still some challenges left here.

First, cars could appear or disappear between junctions that are
controlled by Sweco, since there might be intersections without traffic
lights in between. Second, if a car comes from a nearby junction, it
will trigger the arrival loop. We should be careful not to count such
cars twice. Third, in principle we do not know in which direction cars
leave a junction. Like in the extension in Subsection 4.5.4, we could e.g.

134 SWI 2020 Proceedings

think of either assigning directions randomly based on known statistics
(based on historical data).

Note that in this case, it might be worthwhile to add an extra output
parameter: the amount of stops of a car during its journey. For reasons
of convenience for the driver and for environmental reasons, a car should
not have to stop too often. A possible mitigation strategy is that a car
adjusts its speed before it would join a queue. In a context with several
junctions the number of such steps and the mitigation strategy may
become quite significant. Depending on the information available in
the simulation, the amount of stops can be counted in different ways.
If we only know which cars are in queues, we can count how often
an individual car enters a queue. If we have a more advanced traffic
simulation, we might actually count all stops of vehicles.

4.5.4 Conflicting Lanes
In the basic model, we model the signal groups separately. There is no
interaction between them. In practice this is often true. Indeed, the
controller could make sure that the considered configurations are valid
and do not have conflicting green lights. An exception is the following:
in some cases the cars that want to go to the left are given a green light
together with the cars that want to go straight at the opposite side of
the junction. In this case the cars that want to go left, have to wait
for the cars from the opposite side. Such cases are not covered in the
basic model.

The interaction that was just described can happen in several ways
and can be dealt with in several way. We list some possibilities.

Situation 1: there are separate lanes for going left and going straight.
In this situation we can simply tell the left lane to be “red” temporarily
whenever the queue at the opposing straight lane is not empty.

Situation 2: there is a joint lane for going left and going straight.

• 2a: There is space in the middle of the junction for cars to wait
(so cars behind it can pass). In this case a car going left first
passes to the middle of the junction (if it is empty). The middle

135

of the junction can be modelled as a queue that can contain at
most 1 (or maybe 2, depending on the junction) cars and that can
be emptied whenever the opposing straight lane either is empty
or has a red light. Any car going straight can still pass this car
(or these cars) in the middle. However, when a second (or third)
car tries to go left when the middle of the junction is full, the
departure is cancelled (and hence all cars behind it automatically
wait too). The departure of a car from the middle of the junction
should in such a case schedule a new departure event from the
junction and from the lane.

• 2b: There is no such space (i.e. if the car in the front waits, all
the other cars wait). In this situation when a car tries to go to
the left at the same moment that the opposing straight queue is
not empty, the departure is cancelled. When the opposing queue
becomes empty, it should schedule a departure event for the car
that tries to go left. In this way all the cars behind the car trying
to go to the left are waiting (including those that want to go
straight).

This raises several conceptual/algorithmic problems:

• We only know where cars come from, not where they are going
(so whether they go left or straight). There are multiple possible
solutions:

– Assign directions to cars randomly (according to some known
statistics). The drawback is that the resulting calculated de-
lay is subject to randomness. This could be dealt with by
running the simulation many times and averaging, but of
course this adds to the computation time.

– Assigning an average delay to each car. However, it is not
directly clear what kind of delay would be reasonable.

– Working with non-integer amounts of cars (so a part of a
car goes left, the rest goes straight). However, since in the
current code each car is a separate object, this does not fit
well in the current architecture of the software.

136 SWI 2020 Proceedings

In conclusion, there a several ways to extend the basic model to
account for conflicting traffic flows.

4.5.5 Special Road Users
In the current model all the road users are treated the same. In reality,
this is not what we want. To make the model more realistic, one could
add the following additional road users:

• Buses/trams

• Cyclists

• Pedestrians

• Emergency services

• Motorbikes

• Heavy vehicles (such as
trucks)

With each of these road users, two questions have to be answered.
First: how do they react to the traffic lights (and possibly to other
traffic)? And second: what information do we have about their arrival
time at the traffic lights? Additionally, for some road users their delay is
more relevant then for others (public transport and emergency services
should get priority). We briefly discuss all the listed additional road
users. All of them can be implemented as different “car-like” objects in
the model.

Buses/trams. For buses there are two different possibilities. First
of all, they could be on the same lane as the rest of the traffic. In this
case, they can basically be treated as a car in how they react to the
traffic lights and traffic (although in case there are “heavy vehicles” is
implemented, buses should behave like one of those).

It could also be the case that buses have a separate signal group. In
this case they can be directed directly to this lane. In that sense they
are similar to trams, since they also have their own “lane” and signal
group. In this case, it is easy to prioritize them.

Then we need to answer the question how to schedule arrival events
for these objects. For buses (and probably trams) we have more in-
formation then for (non-smart) cars. They can e.g. tell us where they
are. This means that we can schedule their arrival at the junction in
advance, e.g. by using this distance and an average speed. However, a

137

bus will trigger the red loop as well. To solve this issue, one of the red
loop events should be assigned to be the bus.

As we have the above information, we might also prioritize such
vehicles. The controller should account for this.

Cyclists. Since bicycles often have separate lanes, they can be
added easily as extra signal groups to the junction. The only complexity
here is that cars turning right might get a green light at the same time
when cyclists going straight get green. This is a conflict of paths, which
is dealt with in the extension in Subsection 4.5.4.

The detection of bikes can be similar to the detection of cars (so a
loop at a distance and loops at the light itself). In this case the arrival
of bikes can be predicted using the loop at a distance. If the arrival
loops for bicycles are absent, no arrivals events are taken into account
and only the presence or absence of cyclists waiting at the traffic light
at the start of the simulation.

In case the cyclists are using an app like Schwung on their phones,
this information can be used to schedule future arrivals (using the dis-
tance of the cyclist to the light at the time of the start of the simulation
and an average cycling speed).

Pedestrians. This is similar to bikes, except that there is no way
to detect them with loops. This means that the only information that
is known at the start of the simulation is whether there are pedestri-
ans waiting or not (we might obtain this information from the button
at which pedestrians usually can press when they are at a signalized
intersection).

Emergency services. These vehicles (ambulances/fire trucks/po-
lice cars) can be part of the simulations, but this might not be necessary.
Since these vehicles have absolute priority, the controller might want
to take this into account by giving a green light to this vehicle as soon
as possible. In this way the traffic keeps flowing in the direction that
the emergency vehicle wants to go and there is no crossing traffic.

Motorbikes/heavy vehicles. Although this category is quite
broad, the main point is that the behaviour is different from cars in
a way that is determined by certain parameters. Here one can think
of the average speed, acceleration pattern or the reaction time at the
traffic light (the time between the vehicle knowing that it may go and
its actual departure, see also Subsection 4.5.6).

138 SWI 2020 Proceedings

In either of these two cases the main problem would be the detec-
tion of a special vehicle. It is not very straightforward to known from
the loop information whether a passing vehicle might be a truck or
a motorbike, so making a distinction is difficult, and hence making a
distinction in the simulation is difficult as well.

4.5.6 Non-constant Inter-Departure Times
In the basic model, cars pass a green traffic light with a constant time
between them. To be precise: whenever a car passes the traffic light,
a next departure event is scheduled after a fixed amount of time. In
practice this is not true. Due to the acceleration of vehicles, the time
between the first and the second car is rather large (since speeds are
low), and the time between later cars should be shorter (since they
already travel at a higher speed). Therefore we propose the following
extension:

• At a switch event where the light switches to green, the current
time is recorded (as an attribute of the signal group object), we
could call it tgreen.

• When a departure event occurs, a new departure event is sched-
uled. This is done at time t+f(t�tgreen), where f is a pre-specified
(often decreasing) function.

We make the following remarks. First of all, this function f can be
determined in a number of ways. We could look at the data obtained
from practice. Alternatively, we could use SUMO or even make our
own computations. Bottom line is that this function f is very easy to
include and to adjust. Second, it should be noted that it could be that
a light is already green at the start of the simulation. Therefore as
extra input data, we need to know from the past when all lights turned
green if they are green at the moment that the simulation starts.

4.5.7 Start/End Queues
Sweco is also interested in the length of the various queues in the con-
figurations that are tested. For this they have two different reasons,

139

which could lead to two different definitions of queue lengths (one in
number of vehicles, the other in meters).

The first reason for the interest of Sweco is that based on queue
lengths the controller can decide how long a traffic light should remain
green. In this sense, the corresponding queue length is the amount of
cars that want to pass the green light. This queue length is rather easy
to obtain from the simulation, since we already keep track of this.

The second reason for Sweco to know what the queue length is, has
to do with smart traffic applications. Sweco would like to know where
traffic is standing still to be able to inform smart cars about this delay
and help them plan their routes in a clever way. For this reason they
would like to know where the queues are and where slow driving traffic
is present. The slow traffic is not only situated just before the traffic
lights, since when standing traffic starts to move, it takes a while for
traffic at the back of the queue to start moving. We should measure
this queue length in meters or in the location where the queue begins
and ends. In order to know the latter, it is important to model how
cars behave when cars in front of them stop or start moving. One could
use SUMO to obtain such information.

4.6 Conclusions and Recommendations

We have suggested and implemented a basic model, based on discrete-
event simulation, as solution to the computationally intractable prob-
lem of controlling traffic lights that Sweco currently is facing when
applying the general traffic simulator SUMO.

Accompanied we have a fully operational program written in Python
that can be used as guidance for implementing it in Smart Traffic.
For instance, coding our mathematical basic model gave us insight in
the computational complexity of it and several interesting insights into
optimal traffic light settings. It is noteworthy that there might be
a considerable difference when looking at the total delay or the total
squared delay, as elaborated upon in Section 4.4.

Besides the latter revelation, we have not been able to thoroughly
test our model because of time-constraints. Yet, some suggestions are
made on how to tackle several problems/extensions in Section 4.5. This

140 SWI 2020 Proceedings

shows that our discrete-event simulation is very flexible and can be
made even more realistic when desiring to mimic actual traffic be-
haviour with a limited influence on the computational complexity.

Overall, we recommend Sweco to implement the concepts described
in this article, which are based on discrete-event simulation. This im-
plies that Sweco should discard their current approach. Our basic
model is easily extendable and, most importantly, it is way faster in
comparison with the current model, both based on the comments of
Sweco and our own findings.

References

Ben-Naoum, L et al. (1995). “Methodologies for discrete event dynamic
systems: A survey”. In: Journal A 36.4, pp. 3–14.

Cassandras, C. G. and S. Lafortune (2009). Introduction to Discrete
Event Systems. 2nd. Springer.

Cha, Moo Hyun and Duhwan Mun (2014). “Discrete event simulation
of Maglev transport considering traffic waves”. In: Journal of Com-
putational Design and Engineering 1.4, pp. 233–242.

Jagnere, P. and A. Bansal (2013). “Road Traffic Simulation - A Discrete
Event Driven Model”. In: International Conference on Reliability,
Infocom Technologies and Optimization (ICRITO - 2013).

Jang, J.S. and S.C. Park (2018). “Discrete Event Simulation-Based Re-
liability Evaluation of a Traffic Signal Controller”. In: Modelling and
Simulation in Engineering.

Liu, Z., P. Nain, and D. Towsley (1992). “On optimal polling policies”.
In: Queueing Systems 11.1-2, pp. 59–83.

Lopez, P. A. et al. (2018). “Microscopic traffic simulation using SUMO”.
In: 2018 21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE, pp. 2575–2582.

Miller, John A, Hao Peng, and Casey N Bowman (2017). “Advanced
tutorial on microscopic discrete-event traffic simulation”. In: 2017
Winter Simulation Conference (WSC). IEEE, pp. 705–719.

Schanzenbacher, F. et al. (Dec. 2017). “A discrete event traffic model
explaining the traffic phases of the train dynamics in a metro line

141

system with a junction”. In: 2017 IEEE 56th Annual Conference on
Decision and Control (CDC).

Soh, A. C. et al. (2013). “A discrete-event traffic simulation model for
multilane-multiple intersection”. In: 2013 9th Asian Control Con-
ference (ASCC). IEEE, pp. 1–7.

Sumaryo, S., A. Halim, and K. Ramli (2013). “Improved discrete event
simulation model of traffic light control on a single intersection”. In:
2013 International Conference on QiR. IEEE, pp. 116–120.

Sweco.nl (2020, accessed February 19 2020). Smart Mobility voor een
leefbare stad en minder CO2-uitstoot | Sweco.nl. url: https://www.
sweco.nl/innovaties/Smart-Mobility-voor-een-leefbare-

stad%20-en-minder-CO2-uitstoot/.
— (2019, accessed February 19 2020). Smart Traffic can Sweco wint

Cobouw Innovatieprijs | Sweco.nl. url: https://www.sweco.nl/
nieuws/nieuwsartikelen/smart-traffic-van-sweco-%20wint-

cobouw-innovatieprijs/.
TomTom International BV (2019, accessed December 20th 2019). Traf-

fic congestion ranking | TomTom Traffic Index. url: https://www.
tomtom.com/en%5C_gb/traffic-index/ranking/.

Zhang, Yue et al. (2019). “A discrete-event and hybrid traffic simula-
tion model based on SimEvents for intelligent transportation sys-
tem analysis in Mcity”. In: Discrete Event Dynamic Systems 29.3,
pp. 265–295.

4.A Appendix: Code

The code of the model can be found at:
https://bitbucket.org/Tjebbe/traffic/.

4.A.1 Main simulation files

run_simulation.py

The main file of the simulations, which loads the input data, sets up the
needed data-structures, starts the simulations and produces the output
files.

142 SWI 2020 Proceedings

1 from Junkt ionSimulat ion import Junkt ionSimulat ion
2 from SWI_Traffic_Objects import SignalGroup
3 from PlotResu l t s import PlotResu l t s
4 import j son , datetime , os , errno , sys
5
6 # Make f o l d e r for the output
7 datestamp = datet ime . datet ime . now() . s t r f t ime ("%d_%b_%Y_(%Hh%M)")
8 output f o lde r = ’ output/output_{}/ ’ . format (datestamp)
9 try :

10 os . makedirs (ou tput f o ld e r)
11 except OSError as e :
12 i f e . er rno != errno .EEXIST :
13 raise
14
15 # Read junct ion layout from json f i l e .
16 with open(’ input / junc t i on . j son ’ , ’ r ’) as f :
17 junct ionData = json . load (f)
18
19 sgIDs = junct ionData [" sgIDs"]
20
21 # Read scenario from input json f i l e s .
22 # Al t e rna t i v e l y one could make de input f i l e s . py f i l e s and j u s t

import the d i c t i ona r i e s d i r e c t l y .
23 with open(’ input / s c ena r i o1 . j son ’ , ’ r ’) as f :
24 s c ena r i o1 = json . load (f)
25 with open(’ input / s c ena r i o2 . j son ’ , ’ r ’) as f :
26 s c ena r i o2 = json . load (f)
27 with open(’ input / s c ena r i o3 . j son ’ , ’ r ’) as f :
28 s c ena r i o3 = json . load (f)
29 with open(’ input / s c ena r i o4 . j son ’ , ’ r ’) as f :
30 s c ena r i o4 = json . load (f)
31 with open(’ input / s c ena r i o5 . j son ’ , ’ r ’) as f :
32 s c ena r i o5 = json . load (f)
33
34 s c ena r i o s = [scenar io1 , s cenar io2 , s cenar io3 , s cenar io4 ,

s c ena r i o5]
35
36 # Read a r r i v a l times and time i t takes to enter and leave sg

when l i g h t i s green
37 with open(’ input / ar r iva lT imes . j son ’ , ’ r ’) as f :
38 ar r iva lT imes = json . load (f)
39
40 print (’ running . . . ’ , end=’ ’)
41 sys . s tdout . f l u s h ()
42 i = 0
43 for s c ena r i o in s c ena r i o s :
44 # make s i gna l groups and add them to the junct ion l i s t
45 # note tha t a f t e r one scenario the sg s t i l l has i t s h i s t o ry

of the previous .
46 # here we overwri te i t (tha t i s why t h i s i s in the for loop ;

maybe improve l a t e r) .
47 junc t i on = []
48 for sgID in sgIDs :
49 sg = SignalGroup (sgID , ar r iva lT imes [sgID] [" travelTime "] ,

a r r iva lT imes [sgID] [" ar r iva lT imes "])

143

50 # add s igna lgroups to junct ion
51 junc t i on . append (sg)
52
53 # make c l a s s for s imulat ion
54 sim = Junkt ionSimulat ion ()
55
56 # run simulat ion
57 RunTime = 60 # run time in seconds
58 r e s = sim . s imulate (RunTime , junct ion , s cenar io , verbose=

False)
59
60 #write output to f i l e
61 with open(ou tput f o lde r + ’ output . txt ’ , ’ a+’) as f :
62 f . wr i t e (’ Senar io �{} ’ . format (i +1))
63 f . wr i t e (’ � ({}) \n\n ’ . format (s c ena r i o [" d e s c r i p t i o n "]))
64 sumTotalDelay = 0
65 for sg in j unc t i on :
66 f . wr i t e (’ Total �delay � at � s i g n a l �group� {} : � { : 5 . 2 f }�

s ec \n ’ . format (sg . i d e n t i f i e r , r e s [sg . i d e n t i f i e r
] . t o ta lDe lay))

67 sumTotalDelay += re s [sg . i d e n t i f i e r] . t o ta lDe lay
68 f . wr i t e (’−−�+\

n ’)
69 f . wr i t e (’ ��������������������������������� { : 5 . 2 f }� s ec \n ’

. format (sumTotalDelay))
70 f . wr i t e (’ \n ’)
71 sumQuadraticDelay = 0
72 for sg in j unc t i on :
73 f . wr i t e (’ Quadratic �delay � at � s i g n a l �group� {} : � { : 5 . 2 f

}� s ec ^2\n ’ . format (sg . i d e n t i f i e r , r e s [sg .
i d e n t i f i e r] . quadrat icDelay))

74 sumQuadraticDelay += re s [sg . i d e n t i f i e r] .
quadrat icDelay

75 f . wr i t e (’
−−−
�+\n ’)

76 f . wr i t e (’ �� { : 5 . 2
f }� s ec ^2\n ’ . format (sumQuadraticDelay))

77 f . wr i t e (’ \n ’)
78 #p lo t s
79 p lo t = PlotResu l t s (r e s)
80 p lo t . plotQueueLengthVsTime (output f o ld e r + ’ scenar io_ {} . pdf ’ .

format (str (i +1))) # save p l o t s
81 # p lo t . plotQueueLengthVsTime () # show p l o t s
82
83 i += 1
84 print (’ f i n i s h e d ! ’)

JunktionSimulation.py

The event-driven simulation which goes through the event list, updates
the internal state accordingly and adds new events to the event list.

144 SWI 2020 Proceedings

1 from s c ipy import s t a t s
2 from c o l l e c t i o n s import deque
3 # from d i s t . D i s t r i bu t ion import Di s t r i bu t ion
4 from ggcQL . Event import Event
5 from ggcQL .FES import FES
6 from ggcQL . SimResults import SimResults
7 from SWI_Traffic_Objects import SignalGroup , B i cyc l e
8
9 class Junkt ionSimulat ion :

10
11 def importTra f f i cL ightEvents (s e l f , f e s , sg , times_turn_green

, times_turn_amber , times_turn_red) :
12 """
13 add t r a f f i c l i g h t events of s i gna l group sg to event

l i s t f e s
14 """
15 numGreens = len (times_turn_green)
16 numAmbers = len (times_turn_amber)
17 numReds = len (times_turn_red)
18
19 # i n i t i a l i z e t r a f f i c l i g h t changes
20 for i in range (numGreens) :
21 newEvent = Event (Event .TOGREEN, times_turn_green [i] ,

sg)
22 f e s . add (newEvent)
23 for i in range (numAmbers) :
24 newEvent = Event (Event .TOAMBER, times_turn_amber [i] ,

sg)
25 f e s . add (newEvent)
26 for i in range (numReds) :
27 newEvent = Event (Event .TORED, times_turn_red [i] , sg)
28 f e s . add (newEvent)
29
30
31 def s imulate (s e l f , T, junct ion , s cenar io , verbose=False) :
32 """
33 main simulat ion
34 """
35 t = 0 # current time
36 smal lde lay = 1e−2 # to schedule events ’now ’ , but

s t i l l a f t e r the current one
37
38 f e s = FES()
39
40 r e s = {} # re su l t s keys are i d e n t i f i e r of sg
41
42 for sg in j unc t i on :
43
44 # add t r a f f i c l i g h t events of s i gna l group sg to

event l i s t f e s
45 times_turn_green = sc ena r i o [sg . i d e n t i f i e r] [’

times_turn_green ’]
46 times_turn_amber = sc ena r i o [sg . i d e n t i f i e r] [’

times_turn_amber ’]

145

47 times_turn_red = sc ena r i o [sg . i d e n t i f i e r] [’
times_turn_red ’]

48 s e l f . importTra f f i cL ightEvents (f e s , sg ,
times_turn_green , times_turn_amber ,
times_turn_red)

49
50 sg . i n i t i a l i z e S imu l a t e dB i k e s () # copy rea l b i k e s

to sim b ike s
51
52 r e s [sg . i d e n t i f i e r] = SimResults () # c la s s for

r e s u l t s
53
54 f e s . add (sg . i n i t i a l Ev e n t (t)) # add i n i t i a l

event to f e s
55
56 # add c l o s i g event at time T
57 closingEventAttimeT = Event (Event .STOP_SIMULATION,T,

sg)
58 f e s . add (closingEventAttimeT)
59
60 while any ([sg . f i n i s h e d == False for sg in j unc t i on]) :
61 e = f e s . next () # jump to next

event
62 t = e . time # time of event
63 sg = e . sg
64
65 i f verbose : # signa l

group of event
66 print (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’)
67 print (’new� event : � ’ , end=’ ’)
68 print (e)
69 print (’ b e f o r e � event : �number� o f � sim� b ike s �=�{} ’ .

format (sg . numberSimBicycles ()))
70 print (’ b e f o r e � event : �queue� l ength �=�{} ’ . format (

sg . queueLength ()))
71 print (’ b e f o r e � event : � t r a f f i c � c o l o r �=�{} ’ . format (

sg . c u r r en tT ra f f i cL i gh t ()))
72
73 i f e . type == Event .ARRIVAL_AT_SG :
74 # event i s an a r r i v a l at s i gna l group :
75 a s s e r t False , ’ event � i s � a r r i v a l � to � s i g n a l �group�

(not� al lowed � f o r �now !) ’
76
77 i f e . type == Event .ARRIVAL_AT_QUEUE :
78 # event i s an a r r i v a l at queue
79
80 b i c y c l e = e . b i c y c l e # b i c y c l e

from event
81 i f sg . queueLength () == 0 and sg .

c u r r en tT ra f f i cL i gh t () in [sg .GREEN, sg .AMBER
] :

82 # i f queue l engh t i s zero , dont add to queue
but dr ive through

83 # schedule departure from s i gna l group

146 SWI 2020 Proceedings

84 dep = Event (Event .DEPARTURE_FROM_SG, t +
smal lde lay , sg , b i c y c l e)

85 f e s . add (dep)
86 else :
87 # e l s e add to queue
88 sg . addBicycleToQueue (b i c y c l e) # add

b i c y c l e to queue
89
90 nextBikeInSignalGroup = sg . nextB icyc l e (

b i c y c l e)
91 i f nextBikeInSignalGroup != None :
92 # i f there are more b i c y c l e s in sg

schedule the next a r r i v a l to queue
93 timeToNewEvent = max(0 , sg . travelTime − (

t−nextBikeInSignalGroup . arr iva lTime)
)

94
95 a r r i v a l = Event (Event .ARRIVAL_AT_QUEUE,

t + timeToNewEvent + smal lde lay , sg
, nextBikeInSignalGroup)

96 f e s . add (a r r i v a l)
97
98 e l i f e . type == Event .DEPARTURE_FROM_SG :
99 # event i s departure from s i gna l group

100
101 # remove b i c y c l e from s i gna l group
102 removedBicycle = sg . r emoveFi r s tB icyc l e (t)
103 # check i f b i c y c l e of event i s in f ront of queue
104 a s s e r t (e . b i c y c l e == None or e . b i c y c l e ==

removedBicycle) , ’ removed� b i c y c l e � i s �not� the
� f i r s t �one ’

105
106 # add delay of removed b i c y c l e to t o t a l de lay
107 r e s [sg . i d e n t i f i e r] . r e g i s t e rTo ta lDe l ay (

removedBicycle)
108
109
110 e l i f e . type == Event .DEPARTURE_FROM_QUEUE :
111 # event i s departure
112
113 i f (sg . c u r r en tT ra f f i cL i gh t () == sg .GREEN) :
114 # remove b i c y c l e from queue
115 removedBicycle = sg .

removeFirstBicyc leInQueue (t)
116 # check i f b i c y c l e of event i s in f ront of

queue
117 a s s e r t (e . b i c y c l e == None or e . b i c y c l e ==

removedBicycle) , ’ removed� b i c y c l e � i s �not
� the � f i r s t �one ’

118
119 # schedule departure from s i gna l group
120 dep = Event (Event .DEPARTURE_FROM_SG, t +

smal lde lay , sg , removedBicycle)
121 f e s . add (dep)
122 i f (

147

123 sg . queueLength () > 0
124 and (sg . c u r r en tT ra f f i cL i gh t () == sg .GREEN)
125) :
126 # as long as the queue i s nonempty and the

l i g h t i s green
127 # make event for departure at time t +

react ion time of the b i c y c l e s
128 nextBicycleInQueue = sg .

ge tF i r s tB icyc l e InQueue ()
129 dep = Event (Event .DEPARTURE_FROM_QUEUE, t +

Bicyc l e . reactionTime , sg ,
nextBicycleInQueue)

130 f e s . add (dep)
131
132
133 e l i f e . type == Event .TOGREEN:
134 # event i s t r a f f i c l i g h t changed to green
135
136 sg . changeTra f f i cL ight (sg .GREEN, t) # change

t r a f f i c l i g h t to green
137
138 i f sg . queueLength () > 0 :
139 # i f l i g h t turns green and b i c y c l e s are

wait ing schedule departure
140 dep = Event (Event .DEPARTURE_FROM_QUEUE, t +

Bicyc l e . reactionTime , sg)
141 f e s . add (dep)
142
143 e l i f e . type == Event .TORED: # event i s

t r a f f i c l i g h t changed to red
144 sg . changeTra f f i cL ight (sg .RED, t) # change

t r a f f i c l i g h t to red
145
146 e l i f e . type == Event .TOAMBER: # event i s

t r a f f i c l i g h t changed to amber
147 sg . changeTra f f i cL ight (sg .AMBER, t) # change

t r a f f i c l i g h t to amber
148
149 e l i f e . type == Event .STOP_SIMULATION: #

simulat ion end reached
150 # remove a l l b i k e s from signa l−group (which

ca l c u l a t e s the de lays) , add a delay i f they
are in a queue and add t h e i r de lay

151 # ATTENTION: not f e a s i b l e i f the s imulat ion
should be continued af terwards with a warm
s t a r t

152 cumulativeDelay = 0 #addded up react ion times
for b i ke s in the queue

153 while sg . numberSimBicycles () > 0 :
154 removedBicycle = sg . r emoveFi r s tB icyc l e (t)
155 f i r s tB ike InQueue = sg . ge tF i r s tB icyc l e InQueue

()
156 i f removedBicycle == f i r s tB ike InQueue :
157 cumulativeDelay += Bicyc l e . react ionTime
158 removedBicycle . de lay += cumulativeDelay

148 SWI 2020 Proceedings

159 sg . removeFirstBicyc leInQueue
160
161 r e s [sg . i d e n t i f i e r] . r e g i s t e rTo ta lDe l ay (

removedBicycle)
162
163 # se t s i gna l f l a g to f i n i s h
164 sg . f i n i s h e d = True
165
166
167 i f verbose :
168 print (’ a f t e r � event : �number� o f � sim� b ike s �=�{} ’ .

format (sg . numberSimBicycles ()))
169 print (’ a f t e r � event : �queue� l ength �=�{} ’ . format (sg

. queueLength ()))
170 print (’ a f t e r � event : � t r a f f i c � c o l o r �=�{} ’ . format (

sg . c u r r en tT ra f f i cL i gh t ()))
171
172 r e s [sg . i d e n t i f i e r] . r eg i s t e rS igna lGroupLength (t , sg)

reg i s t e r the number of b i k e s in s i gna l group
at time t

173 r e s [sg . i d e n t i f i e r] . reg i sterQueueLength (t , sg)
reg i s t e r the queue l eng th a f t e r event at time
t

174 r e s [sg . i d e n t i f i e r] . r e g i s t e rT r a f f i c L i g h tCo l o r (t , sg)
reg i s t e r t r a f f i c l i g h t co lor a f t e r event at
time t

175
176 return r e s

PlotResults.py

Producing nice plots from the simulations results.
1 from numpy import NaN, isnan , array , concatenate
2 import matp lo t l ib . pyplot as p l t
3
4 class PlotResu l t s :
5
6 def __init__(s e l f , r e s) :
7 s e l f . r e s = r e s
8 s e l f . numberOfResults = len (s e l f . r e s)
9

10 def plotQueueLengthVsTime (s e l f , f igname = None) :
11 ’ ’ ’
12 p l o t s t eps of queue l eng th versus time
13 ’ ’ ’
14 f i g = p l t . f i g u r e (f i g s i z e =(10 ,8))
15 p l t . rcParams . update ({
16 ’ f ont . s i z e ’ : 18 ,
17 # ’ t e x t . usetex ’ : 1 ,
18 # ’ font . fami ly ’ : ’ s e r i f ’ ,
19 # ’ font . s e r i f ’ : ’ Computer Modern Typewriter ’
20 })

149

21
22 i = 0
23 for resu l t_id , r e s u l t in s e l f . r e s . i tems () :
24
25 l i s t s _ s g l = sorted (r e s u l t . numberSimBicyclesPlot .

i tems ()) # sorted by key , return a l i s t of
t up l e s

26 t_sgl , s g l s = zip (∗ l i s t s _ s g l) # unpack a l i s t o f
pa irs into two tup l e s

27
28
29 l i s t s_q l = sorted (r e s u l t . queueLengthPlot . i tems ()) #

sorted by key , return a l i s t of t up l e s
30 t_ql , q l s = zip (∗ l i s t s_q l) # unpack a l i s t o f pa irs

into two tup l e s
31
32 l i s t s_ c o l o r = sorted (r e s u l t . t r a f f i c l i g h t P l o t . i tems ()

) # sorted by key , return a l i s t o f t up l e s
33 t_color , c o l o r s = zip (∗ l i s t s_ c o l o r) # unpack a l i s t

of pa irs into two tup l e s
34
35 # asser t s e t (t_color) <= se t (t_ql) , ’ t_color i s not

part of t_ql ’
36 a s s e r t t_color == t_ql , ’ t_color � i s �not� the �same� as �

t_ql ’
37 t = array (t_ql)
38
39 red = array ([1 i f c == 0 else NaN for c in c o l o r s

])
40 amber = array ([1 i f c == 1 else NaN for c in c o l o r s

])
41 green = array ([1 i f c == 2 else NaN for c in c o l o r s

])
42 red_indx = ~isnan (red)
43 amber_indx = ~isnan (amber)
44 green_indx = ~isnan (green)
45
46 q l s = array (q l s)
47 s g l s = array (s g l s)
48 c o l o r s = array (c o l o r s)
49
50 ymax = max(s g l s)
51 # asser t ymax > 0 , ’ymax i s zero ’
52
53 # ax = p l t . subp lo t (s e l f . numberOfResults∗100 + 10 + i

+1)
54 ax = p l t . subplot (s e l f . numberOfResults ∗100 + 10 + (

s e l f . numberOfResults − i))
55 # ax . s e t_ t i t l e (resu l t_id)
56 ax . p l o t (t , q l s , drawsty le=’ steps−post ’ , c o l o r=’k ’ ,

l i n ew id th = 2)
57
58 # avoid to show f l u sh ing to ca l cu l a t e to ta lDe lay
59 s g l s = concatenate ((s g l s [: − 1] , [s g l s [−2]]))

150 SWI 2020 Proceedings

60 ax . f i l l_between (t , [0] ∗ len (s g l s) , s g l s , c o l o r=’
l i g h t g r ay ’)

61
62 ax . p l o t (t [red_indx] , q l s [red_indx] , ’ o ’ , c o l o r=’

crimson ’ , markers i ze =10)
63 ax . p l o t (t [amber_indx] , q l s [amber_indx] , ’ o ’ , c o l o r=’

darkorange ’ , markers i ze =10)
64 ax . p l o t (t [green_indx] , q l s [green_indx] , ’ o ’ , c o l o r=’

darkgreen ’ , markers i ze =10)
65
66 ax . set_ylim ([0 , 1 . 0 5∗ymax])
67 # ax . x t i c k s (t)
68 # ax . y l a b e l (u"queue l eng th \U0001F6B2")
69
70 # i f i == s e l f . numberOfResults − 1:
71 i f i == 0 :
72 ax . s e t_x labe l (’ time� [s] ’)
73 ax . s e t_y labe l ("queue� l ength � [b i ke s] ")
74 i+=1
75
76 i f f igname == None :
77 p l t . t ight_layout ()
78 p l t . show ()
79 else :
80 # f i g . s a v e f i g (’ output/senario_ {}. pdf ’ . format (figname

) , format=’pdf ’ , bbox_inches=’ t i g h t ’)
81 f i g . s a v e f i g (figname , format=’ pdf ’ , bbox_inches=’ t i g h t ’

)

4.A.2 Data structures

SWI_Traffic_Objects.py

Contains all junction related data structures.
1 from c o l l e c t i o n s import deque
2 from ggcQL . Event import Event
3
4 class Bicyc l e :
5 """
6 c l a s s for b i c y c l e
7 or C02 neutra l car i f you want
8 """
9

10 react ionTime = 3 # time the b i c y c l e needs to s t a r t dr i v ing
a f t e r see ing the l i g h t change to green

11
12 def __init__(s e l f , i d e n t i f i e r , arr ivalTimeGiven) :
13 a s s e r t type (i d e n t i f i e r)==str
14
15 s e l f . i d e n t i f i e r = i d e n t i f i e r # name of b i c y c l e

151

16 s e l f . a r r iva lTime = arr ivalTimeGiven # arr i v a l time of
the b i c y c l e

17 s e l f . de lay = 0 # delay of t h i s
b i c y c l e

18
19 def __str__(s e l f) :
20 return s e l f . i d e n t i f i e r
21
22 class SignalGroup :
23
24 RED = 0
25 AMBER = 1
26 GREEN = 2
27
28 def __init__(s e l f , i d e n t i f i e r , travelTimeGiven , a r r iva lT imes) :
29 a s s e r t type (i d e n t i f i e r)==str
30
31 # pub l i c
32 s e l f . i d e n t i f i e r = i d e n t i f i e r # st r ing
33 s e l f . travelTime = travelTimeGiven # time needed to

dr ive from f i r s t loop to e x i t
34 s e l f . r e a lB i c y c l e s = deque () # l i s t of Bicyc les

tha t are phy s c i a l l y in the s i gna l group based on
sensor data

35 s e l f . f i n i s h e d = False # f l a g to check i f
sg s imulat ion i s f i n i s h ed

36
37 #pr iva te
38 s e l f . _s imulatedBicyc les = deque () # (empty) l i s t o f

Bicyc les tha t are simulated
39 s e l f . _ t r a f f i cL i gh t = s e l f .RED # red t r a f f i c

l i g h t
40 s e l f . _queue = deque () # l i s t of

Bicyc les in a queue
41
42 s e l f . importRea lBicyc l e s (a r r iva lT imes) # convert a r r i v a l

times to rea l b i k e s
43
44
45 def __str__(s e l f) :
46 return s e l f . i d e n t i f i e r
47
48 def importRea lB icyc l e s (s e l f , a r r iva lT imes) :
49 ’ ’ ’
50 arrivalTimes are a r r i v a l times of b i ke s in past
51
52 f i l l s the l i s t o f r ea lB i cyc l e s
53 ’ ’ ’
54
55 numArrivals = len (a r r iva lT imes) # number of b i c y c l e s

arr i ve the s i gna l group
56 # i n i t i a l i z e a r r i v a l s
57 for i in range (numArrivals) :
58 s e l f . r e a lB i c y c l e s . append (B i cyc l e (’ b ike {} ’ . format (i

+1) , a r r iva lT imes [i]))

152 SWI 2020 Proceedings

59
60
61 def i n i t i a l i z e S imu l a t e dB i k e s (s e l f) :
62 ’ ’ ’
63 copy rea l b i k e s to sim b ike s
64 ’ ’ ’
65 # copy rea lB i cyc l e s into simulatedCycles
66 for b i c y c l e in s e l f . r e a lB i c y c l e s :
67 newSimBicycle = Bicyc l e (’ {} sim{} ’ . format (s e l f .

i d e n t i f i e r , b i c y c l e . i d e n t i f i e r) , b i c y c l e .
ar r iva lTime)

68 s e l f . _s imulatedBicyc les . append (newSimBicycle)
69 # for b ike in s e l f . _simulatedBicycles :
70 # print (b ike)
71
72 def i n i t i a l Ev e n t (s e l f , currentTime) :
73 """
74 create the i n i t i a l event
75 """
76
77 f i r s t S imB i c y c l e = s e l f . _s imulatedBicyc les [0]
78 i f s e l f . _ t r a f f i cL i gh t in [s e l f .GREEN] :
79 # To do : make sure i t does not pass red (and add

s e l f .AMBER)
80
81 # schedule departure event of f i r s t Bicyc le
82 timeToNewEvent = max(B i cyc l e . reactionTime , s e l f .

travelTime − (currentTime−f i r s t S imB i c y c l e .
ar r iva lTime))

83 newEvent = Event (Event .DEPARTURE_FROM_SG, currentTime
+timeToNewEvent , s e l f , f i r s t S imB i c y c l e)

84 else :
85 # schedule a r r i v a l e at queue l i s t for f i r s t Bicyc le
86 timeToNewEvent = max(0 , s e l f . travelTime − (

currentTime−f i r s t S imB i c y c l e . ar r iva lTime))
87 newEvent = Event (Event .ARRIVAL_AT_QUEUE, currentTime+

timeToNewEvent , s e l f , f i r s t S imB i c y c l e)
88
89 return newEvent
90
91 def addBicyc le (s e l f , b i c y c l e) :
92 """
93 add b i c y c l e to s i gna l group
94 """
95 i f len (s e l f . _s imulatedBicyc les) >0:
96 a s s e r t b i c y c l e . ar r iva lTime > s e l f . _s imulatedBicyc les

[−1] . arr ivalTime , ’ Trying� to �add� b i c y c l e � to �
s i g n a l �group�which� a r r i v ed � be f o r e � the � l a s t �
Bicyc l e � a l ready � in � the � s i g n a l �group ’

97 s e l f . _s imulatedBicyc les . append (b i c y c l e)
98
99 def addBicycleToQueue (s e l f , b i c y c l e) :

100 """
101 add b i c y c l e to queue
102 """

153

103 a s s e r t b i c y c l e in s e l f . _s imulatedBicyc les , ’ Trying� to �
add� b i c y c l e �which� i s �not� in � s i g n a l �group� to �queue ’

104 s e l f . _queue . append (b i c y c l e)
105
106 def queueLength (s e l f) :
107 """
108 return the queue l eng th
109 """
110 return len (s e l f . _queue)
111
112 def numberSimBicycles (s e l f) :
113 """
114 return number of b i k e s in the s i gna l group
115 """
116 return len (s e l f . _s imulatedBicyc les)
117
118 def nextB icyc l e (s e l f , b ike) :
119 ’ ’ ’
120 return the b ike a f t e r the given b ike
121 ’ ’ ’
122 a s s e r t b ike in s e l f . _s imulatedBicyc les , ’ b i c y c l e � i s �not�

in � s i g n a l �group ’
123 i f bike == s e l f . _s imulatedBicyc les [−1] :
124 # i f the b ike was the l a s t b ike there i s no b ike

a f t e r t h i s one
125 return None
126 else :
127 # get index of b ike and return the next one .
128 index_bike = s e l f . _s imulatedBicyc les . index (b ike)
129 return s e l f . _s imulatedBicyc les [index_bike+1]
130
131 def r emoveFi r s tB icyc l e (s e l f , time) :
132 """
133 remove and return the f i r s t b i c y c l e from the s i gna l

group
134 """
135 f i r s t B i c y c l e = s e l f . _s imulatedBicyc les . p op l e f t ()
136 f i r s t B i c y c l e . de lay = (time − f i r s t B i c y c l e . ar r iva lTime) −

s e l f . travelTime # time needed − i d ea l time
137 return f i r s t B i c y c l e
138
139 def removeFirstBicyc leInQueue (s e l f , t) :
140 """
141 remove the f i r s t b i c y c l e from the queue
142 """
143 return s e l f . _queue . pop l e f t ()
144
145 def getF i r s tB icyc l e InQueue (s e l f) :
146 """
147 return the f i r s t b i ke in the queue
148 """
149 i f len (s e l f . _queue) == 0 :
150 return None
151 else :
152 return s e l f . _queue [0]

154 SWI 2020 Proceedings

153
154 def changeTra f f i cL ight (s e l f , newTraf f i cLight , time) :
155 """
156 change the t r a f f i c l i g h t co lor at time time
157 """
158 s e l f . _ t r a f f i cL i gh t = newTraf f i cL ight
159
160 # la t e r on we may do more s t u f f depending on the new

value
161
162 def cu r r en tT ra f f i cL i gh t (s e l f) :
163 """
164 return current t r a f f i c l i g h t co lor
165 """
166 return s e l f . _ t r a f f i cL i gh t
167
168 # to add l a t e r
169 # c la s s Junction :
170 # def __init__(s e l f , i d e n t i f i e r) :
171 # asser t type (i d e n t i f i e r)==s t r
172 # s e l f . i d e n t i f i e r = i d e n t i f i e r
173 # s e l f . signalGroups = []
174
175 # def addSignalGroup (s e l f , signalGroup) :
176 # s e l f . signalGroups . append (signalGroup)

Event.py in folder ggcQL

The event class.
1 # Based on code of l e c t u r e notes : S tochas t i c Simulation using

Python by Mark Boon a . o .
2
3 class Event :
4
5 TORED = 0 # constant for change of t r a f f i c −l i g h t to RED
6 TOAMBER = 1 # constant for change of t r a f f i c −l i g h t to

AMBER
7 TOGREEN = 2 # constant for change of t r a f f i c −l i g h t to

GREEN
8
9 ARRIVAL_AT_SG = 3 # constant for a r r i v a l type

10 ARRIVAL_AT_QUEUE = 4 # constant for a r r i v a l at queue
type

11 DEPARTURE_FROM_SG = 5 # constant for departure type
12 DEPARTURE_FROM_QUEUE = 6 # constant for departure from

queue type
13
14 STOP_SIMULATION = 7 # stop simulat ion
15
16 def __init__(s e l f , typ , time , sg , b i c y c l e = None) : # type

i s a reserved word
17 s e l f . type = typ # type of event

155

18 s e l f . time = time # time of event
19 s e l f . sg = sg # signa l group where

t h i s events takes p lace
20 s e l f . b i c y c l e = b i c y c l e # b i c y c l e of

event (op t iona l)
21
22 def __lt__(s e l f , o ther) : # compare to other

events
23 return s e l f . time < other . time
24
25 def __str__(s e l f) :
26 s = (
27 ’ToRed ’ ,
28 ’ToAmber ’ ,
29 ’ToGreen ’ ,
30 ’ Ar r i va l � f o r � sg ’ ,
31 ’ Ar r i va l � at �queue ’ ,
32 ’ Departure� from� sg ’ ,
33 ’ Departure� from�queue ’ ,
34 ’ Derminate� s imu la t i on ’
35)
36 s t r i n g = ’ { :20 s }� at � t �=� { : 3 . 2 f }� o f �{}� ’ . format (s [s e l f .

type] , s e l f . time , s e l f . sg)
37 i f s e l f . b i c y c l e :
38 s t r i n g += ’ o f �{} ’ . format (s e l f . b i c y c l e)
39 return s t r i n g

FES.py in folder ggcQL

The event list.
1 # Based on code of l e c t u r e notes : S tochas t i c Simulation using

Python by Mark Boon a . o .
2
3 import heapq
4
5 class FES :
6
7 def __init__(s e l f) :
8 s e l f . events = []
9

10 def add (s e l f , event) :
11 heapq . heappush (s e l f . events , event)
12
13 def next (s e l f) :
14 return heapq . heappop (s e l f . events)
15
16 def isEmpty (s e l f) :
17 return len (s e l f . events) == 0
18
19 def __str__(s e l f) :
20 # Note tha t i f you pr in t s e l f . events , i t would not

appear to be sorted

156 SWI 2020 Proceedings

21 # (although they are sorted i n t e rna l l y) .
22 # For t h i s reason we use the funct ion ’ sor ted ’
23 s = ’ ’
24 sortedEvents = sorted (s e l f . events)
25 for e in sortedEvents :
26 s += str (e) + ’ \n ’
27 return s

SimResults.py in folder ggcQL

Class for storing the simulation results.
1 # Based on code of l e c t u r e notes : S tochas t i c Simulation using

Python by Mark Boon a . o .
2
3 from numpy .ma. core import z e ro s
4
5 class SimResults :
6
7 MAX_QL = 1000
8
9 def __init__(s e l f) :

10
11 s e l f . t r a f f i c l i g h t P l o t = {} # t r a f f i c l i g h t

co lor vs time
12 s e l f . queueLengthPlot = {} # queue l eng th s vs

event time
13 s e l f . numberSimBicyclesPlot = {} # number of b i k e s

in the sg vs event time
14
15 s e l f . queueLengthHistogram = ze ro s (s e l f .MAX_QL + 1) #

histogram output
16 s e l f . oldTime = 0 # save time of previous event for

histogram .
17
18 s e l f . t o ta lDe lay = 0 # to t a l de lay
19 s e l f . quadrat icDelay = 0 # to t a l quadrat ic de lay cos t
20 s e l f . sumQL = 0
21
22 def reg i sterQueueLength (s e l f , t , sg) :
23 ’ ’ ’
24 t i s time
25 sg i s s i gna l group
26
27 saves the queuelength of the s i gna l group at time t
28 saves histogram that shows d i s t r i b u t i on of queuelength

vs time
29 ’ ’ ’
30 q l = sg . queueLength () # queue leng th of

s i gna l group
31
32 s e l f . queueLengthPlot [t] = q l # save queue l eng th

at time t

157

33
34 s e l f . queueLengthHistogram [min(ql , s e l f .MAX_QL)] += (t −

s e l f . oldTime)
35 s e l f . sumQL += (t − s e l f . oldTime) ∗ q l
36 s e l f . oldTime = t # save previous time
37
38 def reg i s te rS igna lGroupLength (s e l f , t , sg) :
39 ’ ’ ’
40 t i s time
41 sg i s s i gna l group
42
43 saves the number of b i c y c l e s in the s i gna l group at time

t
44 ’ ’ ’
45 q l = sg . numberSimBicycles () # queue leng th

of s i gna l group
46
47 s e l f . numberSimBicyclesPlot [t] = q l # save queue

l eng th at time t
48 # s e l f . queueLengthHistogram [min(ql , s e l f .MAX_QL)] += (t

− s e l f . oldTime)
49 # s e l f . oldTime = t # save previous time
50
51 def r e g i s t e rT r a f f i c L i g h tCo l o r (s e l f , t , sg) :
52 ’ ’ ’
53 t i s time
54 sg i s s i gna l group
55
56 saves the current t r a f f i c l i g h t co lor of the s i gna l

group at time t
57 ’ ’ ’
58 c o l o r = sg . c u r r en tT ra f f i cL i gh t () # queue leng th

of s i gna l group
59 s e l f . t r a f f i c l i g h t P l o t [t] = co l o r # save queue

l eng th at time t
60
61 def r e g i s t e rTo ta lDe l ay (s e l f , b i c y c l e) :
62 ’ ’ ’
63 b i c y c l e i s a b i c y c l e
64
65 addes de lay of ind i v i dua l b i c y c l e to t o t a l de lay (and to

quadrat ic cos t as we l l)
66 ’ ’ ’
67 s e l f . t o ta lDe lay += b i c y c l e . de lay
68 s e l f . quadrat icDelay += b i c y c l e . de lay ∗ b i c y c l e . de lay #

quadrat ic de lay
69
70
71 def getMeanQueueLength (s e l f) :
72 return s e l f . sumQL / s e l f . oldTime
73
74 def getQueueLengthProbab i l i t i e s (s e l f) :
75 return [x/ s e l f . oldTime for x in s e l f .

queueLengthHistogram]
76

158 SWI 2020 Proceedings

77 def plotQueueLengthHistogram (s e l f , maxq=25) :
78 q l = s e l f . ge tQueueLengthProbab i l i t i e s ()
79 maxx = maxq + 1
80 p l t . f i g u r e ()
81 p l t . bar (range (0 , maxx) , q l [0 : maxx])
82 p l t . y l ab e l (’P(Q�=�k) ’)
83 p l t . x l ab e l (’ k ’)
84 p l t . show ()
85
86 # def plotQueueLengthVsTime (s e l f) :
87 # ’ ’ ’
88 # p lo t s t eps of queue l eng th versus time
89 # ’ ’ ’
90
91 # l i s t s_ s g l = sorted (s e l f . numberSimBicyclesPlot . items ())

sorted by key , return a l i s t o f t up l e s
92 # t_sgl , s g l s = z ip (∗ l i s t s_ s g l) # unpack a l i s t of pa irs

into two tup l e s
93
94
95 # l i s t s_ q l = sorted (s e l f . queueLengthPlot . items ()) #

sorted by key , return a l i s t of t up l e s
96 # t_ql , q l s = z ip (∗ l i s t s_ q l) # unpack a l i s t of pa irs

into two tup l e s
97
98 # l i s t s_co l o r = sorted (s e l f . t r a f f i c l i g h t P l o t . items ()) #

sorted by key , return a l i s t of t up l e s
99 # t_color , co lor s = z ip (∗ l i s t s_co l o r) # unpack a l i s t of

pa irs into two tup l e s
100
101 # # asser t s e t (t_color) <= se t (t_ql) , ’ t_color i s not

part of t_ql ’
102 # asser t t_color == t_ql , ’ t_color i s not the same as

t_ql ’
103 # t = array (t_ql)
104
105 # red = array ([1 i f c == 0 e l s e NaN for c in co lor s])
106 # amber = array ([1 i f c == 1 e l s e NaN for c in co lor s])
107 # green = array ([1 i f c == 2 e l s e NaN for c in co lor s])
108 # red_indx = ~isnan (red)
109 # amber_indx = ~isnan (amber)
110 # green_indx = ~isnan (green)
111
112 # q l s = array (q l s)
113 # sg l s = array (s g l s)
114 # co lors = array (co lor s)
115
116 # ymax = max(s g l s)
117 # # asser t ymax > 0 , ’ymax i s zero ’
118 # p l t . f i g u r e ()
119 # p l t . p l o t (t , q l s , drawsty le=’ steps−post ’ , co lor=’k ’ ,

l inewid th = 2)
120 # # p l t . f i l l_be tween (t , [0] ∗ l en (s g l s) , s g l s , co lor=’#373F51

’)
121

159

122 # # avoid to show f l u sh ing to ca l cu l a t e to ta lDe lay
123 # sg l s = concatenate ((s g l s [: −1] , [s g l s [−2]]))
124 # p l t . f i l l_be tween (t , [0] ∗ l en (s g l s) , s g l s , co lor=’ l i g h t g r a y

’)
125
126 # p l t . p l o t (t [red_indx] , q l s [red_indx] , ’ o ’ , co lor=’

crimson ’ , markersize=10)
127 # p l t . p l o t (t [amber_indx] , q l s [amber_indx] , ’ o ’ , co lor=’

darkorange ’ , markersize=10)
128 # p l t . p l o t (t [green_indx] , q l s [green_indx] , ’ o ’ , co lor=’

darkgreen ’ , markersize=10)
129
130 # p l t . ylim ([0 ,1 .05∗ymax])
131 # # p l t . x t i c k s (t)
132 # p l t . x l a b e l (’ time [s] ’)
133 # # p l t . y l a b e l (u"queue l eng th \U0001F6B2")
134 # p l t . y l a b e l (" queue l eng th [b i k e s]")
135 # p l t . show ()
136
137 # def __str__(s e l f) :
138 # q l = s e l f . getQueueLengthProbabi l i t ies ()
139 # s = ’Mean queue l eng th : ’ + s t r (s e l f .

getMeanQueueLength ()) + ’\n ’
140 # s += ’Queue−l eng th p r o b a b i l i t i e s : \n ’
141 # for i in range (21) :
142 # s += ’P(Q = ’ + s t r (i) + ’) = ’ + s t r (q l [i]) + ’\n

’
143 # return s
144
145 # t = [1 , 2 , 3.5 , 4 , 4.5 , 5]
146 # q = [4 , 5 , 5 , 4 , 4 , 4]
147 # c = [0 , 0 , 2 , 2 , 1 , 0]
148
149 # p i f = SimResults ()
150 # for i in range (len (t)) :
151 # p i f . queueLengthPlot [t [i]] = q [i]
152 # p i f . t r a f f i c l i g h t P l o t [t [i]] = c [i]
153
154 # p i f . plotQueueLengthVsTime ()

4.A.3 Input files

arrivalTimes.json

1 {
2 " sg1 " : {
3 " travelTime " : 5 ,
4 " ar r iva lT imes " : [−70 , −69, −68, −29, −7, −5, −3]
5 } ,
6 " sg2 " : {
7 " travelTime " : 5 ,

160 SWI 2020 Proceedings

8 " ar r iva lT imes " : [−40 , −35, −25, −15]
9 }

10 }

junction.json

1 {
2 " d e s c r i p t i o n " : " Junct ion �with�two� s imple � s i g n a l � groups " ,
3 " sgIDs" : [" sg1 " , " sg2 "]
4 }

scenario3.json

This is the first scenario as considered in the example of Section 4.4.
1 {
2 " d e s c r i p t i o n " : " sg1 � green � un t i l � sg1 � i s �empty" ,
3
4 " sg1 " : {
5 " times_turn_green" : [0 . 1] ,
6 "times_turn_amber" : [2 1 . 6] ,
7 " times_turn_red" : [2 3 . 6]
8 } ,
9

10 " sg2 " : {
11 " times_turn_green" : [2 3 . 6] ,
12 "times_turn_amber" : [3 8 . 4] ,
13 " times_turn_red" : [4 0 . 4]
14 }
15
16 }

scenario4.json

This is the second scenario as considered in the example of Section 4.4.
1 {
2 " d e s c r i p t i o n " : " sg2 � green � un t i l � sg2 � i s �empty" ,
3
4 " sg1 " : {
5 " times_turn_green" : [1 4 . 6] ,
6 "times_turn_amber" : [6 0] ,
7 " times_turn_red" : [6 2]
8 } ,
9

10 " sg2 " : {
11 " times_turn_green" : [0 . 1] ,
12 "times_turn_amber" : [1 2 . 5] ,
13 " times_turn_red" : [1 4 . 5]
14 }
15
16 }

161

scenario5.json

This is the third scenario as considered in the example of Section 4.4.
1 {
2 " d e s c r i p t i o n " : " f i r s t � l e t � sg1 �go� f o r �a�bit , � then� sg2 , � then�

sg1 � again " ,
3
4 " sg1 " : {
5 " times_turn_green" : [0 . 1 , 2 8 . 6] ,
6 "times_turn_amber" : [1 2 . 6 , 4 1 . 1] ,
7 " times_turn_red" : [1 4 . 6 , 4 3 . 1]
8 } ,
9

10 " sg2 " : {
11 " times_turn_green" : [1 4 . 7] ,
12 "times_turn_amber" : [2 6 . 8] ,
13 " times_turn_red" : [2 8 . 8]
14 }
15
16 }

