

Switch observability: A novel approach towards fault detection

Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Joint work with my former PhD-student Ferdinand Küsters

Research seminar HM, München, Germany, 15.02.2023

Summary

Motivational example

Switch		obsv.
open	$y\equiv 0$ for arbitrary internal state	X
closed	equilibrium $i_1 = -i_2 = const \ o \ y \equiv 0$	X
closing	y=0 jumps to $ eq 0$	1
opening	non-equilibrium: $y \neq 0$ jumps to zero (+ Imp.)	1
	equilibrium: $y(t) = 0 \; \forall t$, but with impulse in y	✓

Transition "open \rightarrow close" ($y \not\equiv 0$ on $(t_S, t_S + \varepsilon)$) distinguishable from transition "close \rightarrow open" ($y \equiv 0$ on $(t_S, t_S + \varepsilon)$)

Discussion of example

Circuit is modelled by a switched differential-algebraic equation (DAE):

$$E_{\sigma}\dot{x} = A_{\sigma}x(+B_{\sigma}u)$$
$$y = C_{\sigma}x$$

 $\sigma: \mathbb{R} \rightarrow \{1, \dots, P\}$ is the switching signal

Nonobservability on switch-free intervals

Using measurements only from switch-free intervals:

- Mode (i.e. switch position) cannot be recovered for some $x_0 \neq 0$
- > Each individual mode is not state-observable

Observability around switch

- Modes before and after the switch can be recovered
-) Internal states can completely be recovered
- Dirac impulses in output needed for observability

The observability problem

Observability questions

- Is there a unique x_0 for any given σ , u, y? \rightarrow (t.v.) observability \checkmark
- Is there a unique (x_0, σ) for any given u and y?
 - $\rightarrow (x, \sigma)$ -observability
- Is there a unique σ for any given u, y and unknown x_0 ?
 - $\rightarrow \sigma$ -observability = fault detectability (+isolation)
- Is there a unique set $\{t_S\}$ of switching times for any u, y?
 - $\rightarrow t_S$ -observability = fault detectability

university of

Summary

System classes

Future work: Nonlinear versions thereof ...

Contents

Introduction

$$\dot{x} = A_{\sigma}x$$

$$\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

Observer design

Summary

Summary

The simplest system class $\sum_{(A,C)}^{\sigma}$: $\begin{vmatrix} \dot{x} = A_{\sigma}x \\ u = C_{\sigma}x \end{vmatrix}$

$$\dot{x} = A_{\sigma} x y = C_{\sigma} x$$

Formal Definition: (x, σ) - $/\sigma$ -Observability

$$\Sigma_{(A,C)}^{\sigma} \ (x,\sigma) \text{-observable} : \Leftrightarrow \forall \sigma, \widehat{\sigma} \quad \forall \text{ sol. } x,\widehat{x} \text{ with } (x,\widehat{x}) \neq (0,0) :$$

$$(x,\sigma) \neq (\widehat{x},\widehat{\sigma}) \implies y \neq \widehat{y}$$

$$\Sigma^{\sigma}_{(A,C)} \ \ {\pmb{\sigma}}\text{-observable} : \Leftrightarrow \forall \sigma, \widehat{\sigma} \quad \forall \ \text{sol.} \ x, \widehat{x} \ \text{with} \ (x, \widehat{x}) \neq (0,0) :$$

$$\sigma \neq \widehat{\sigma} \implies y \neq \widehat{y}$$

First (surprising?) result for $\Sigma_{(A|C)}^{\sigma}$

$$(x, \sigma)$$
-observability \iff σ -observability

State-observability of each mode

In the context auf fault detection/isolation we have:

Assuming (state-)observability for all faulty modes is not realistic.

Weaker observability notion

$$\dot{x} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} x$$

$$y = C_{\sigma} x$$

with

$$C_1 = [1,0]$$
 $C_2 = [0,1]$ \rightarrow not observable

Switch observability ((x, σ_1) - $/\sigma_1$ -observability)

Recover $(x \text{ and}) \sigma$ from u and y, if at least one switch occurs

Again: σ_1 -observability $\iff (x, \sigma_1)$ -observability

Obs. characterizations for $\Sigma_{(A,C)}^{\sigma}$: $\begin{vmatrix} \dot{x} = A_{\sigma}x \\ u = C_{\sigma}x \end{vmatrix}$

$$\text{Kalman observability matrix of mode } k \colon \quad \mathcal{O}_k := \begin{bmatrix} C_k \\ C_k A_k \\ C_k A_k^2 \\ \vdots \end{bmatrix}$$

Theorem (cf. KÜSTERS & TRENN, Automatica 2018)

$$\sigma$$
-observability \iff $\forall i \neq j : \operatorname{rank}[\mathcal{O}_i \ \mathcal{O}_j] = 2n$

$$\sigma_1 \text{-observability} \iff \forall i \neq j, p \neq q, (i,j) \neq (p,q) : \underset{}{\operatorname{rank}} \begin{bmatrix} \mathcal{O}_i & \mathcal{O}_p \\ \mathcal{O}_j & \mathcal{O}_q \end{bmatrix} = 2n$$

$$t_S$$
-observability $\iff \forall i \neq j : \operatorname{rank}[\mathcal{O}_i - \mathcal{O}_j] = n$

Contents

Introduction

$$\dot{x} = A_{\sigma}x$$

$$\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

Observer design

Summary

Adding inputs

$$\dot{x} = A_{\sigma}x + B_{\sigma}u$$
$$y = C_{\sigma}x + D_{\sigma}u$$

Input-depending observability

$$\Sigma(A_{\sigma}, C_{\sigma})$$
 σ -observable \iff $\Sigma(A_{\sigma}, B_{\sigma}, C_{\sigma}, D_{\sigma})$ σ -observable

Strong vs. weak observability

observable for all $u \iff$ observable for some/almost all u

Further technicalities

Analytic vs. smooth inputs and equivalent switching signals

Strong obs. for $\Sigma^{\sigma}_{(A,B,C,D)}$: $\begin{vmatrix} \dot{x} = A_{\sigma}x + B_{\sigma}u \\ u = C_{\sigma}x + D_{\sigma}u \end{vmatrix}$

$$\dot{x} = A_{\sigma}x + B_{\sigma}u
y = C_{\sigma}x + D_{\sigma}u$$

Definition

$$\begin{array}{l} \Sigma^{\sigma}_{(A,B,C,D)} \text{ is strongly } (x,\sigma)\text{--}/\ \sigma\text{--}/\ (x,\sigma_1)\text{--}\ /\sigma_1\text{--}/t_S\text{-observable}: \Leftrightarrow \\ \forall u : \ \Sigma^{\sigma}_{(A,B,C,D)} \text{ is } (x,\sigma)\text{--}/\ \sigma\text{--}/\ (x,\sigma_1)\text{--}\ /\sigma_1\text{--}/t_S\text{-observable} \end{array}$$

Again it holds:

$$\begin{array}{lll} {\sf strong} \ (x,\sigma) {\sf -observability} & \Longleftrightarrow & {\sf strong} \ \sigma {\sf -observability} \\ {\sf strong} \ (x,\sigma_1) {\sf -observability} & \Longleftrightarrow & {\sf strong} \ \sigma_1 {\sf -observability} \end{array}$$

Zero-state problem

Property

$$x \equiv 0 \iff \exists t_0 \in \mathbb{R} : x(t_0) = 0$$

not valid anymore

Avoiding zero-state-problem, variant 1

Additional assumptions

(A2)
$$\ker \begin{bmatrix} B_i \\ B_j \\ D_i - D_j \end{bmatrix} = \{0\} \ \forall i \neq j$$

Notation:

Additional assumptions
$$(A1) \ u \text{ is real analytic}$$

$$(A2) \ \ker \begin{bmatrix} B_i \\ B_j \\ D_i - D_j \end{bmatrix} = \{0\} \ \forall i \neq j$$

$$\Gamma_k = \begin{bmatrix} D_k \\ C_k B_k & D_k \\ C_k A_k B_k & C_k B_k & D_k \\ C_k A_k^2 B_k & C_k A_k B_k & C_k B_k & D_k \\ \vdots & & \ddots \end{bmatrix}$$

Theorem (cf. Lou and Si 2009)

$$\Sigma^{\sigma}_{(A,B,C,D)}$$
 with (A1), (A2) is strongly σ -observable $\;\Leftrightarrow\;$

$$\operatorname{rank}[\mathcal{O}_i \quad \mathcal{O}_j \quad \Gamma_i - \Gamma_j] = 2n + \operatorname{rank}(\Gamma_i - \Gamma_j) \quad \forall i \neq j$$

university of

Summary

Relationship to ui-observability

Theorem (see e.g. Kratz (1995) or Hautus (1983))

$$\begin{aligned} \operatorname{rank}[\mathcal{O}_{i} \ \mathcal{O}_{j} \ \Gamma_{i} - \Gamma_{j}] &= 2n + \operatorname{rank}(\Gamma_{i} - \Gamma_{j}) \\ \iff \\ \Sigma_{ij} : \begin{bmatrix} \dot{\xi} = \begin{bmatrix} A_{i} & 0 \\ 0 & A_{j} \end{bmatrix} + \begin{bmatrix} B_{i} \\ B_{j} \end{bmatrix} u \\ y_{\Delta_{i,j}} &= [C_{i} \ - C_{j}]\xi + (D_{i} - D_{j})u \\ \end{aligned}$$
 is unknown-input (ui-) observable

Strong t_S -/ σ_1 -observability (under (A1), (A2))

Theorem (Küsters and T. 2018)

$$\begin{split} \Sigma^{\sigma}_{(A,B,C,D)} \text{ is } \mathbf{t}_{S}\text{-observable} \iff \forall i \neq j \colon \\ & \operatorname{rank}[\mathcal{O}_{i} - \mathcal{O}_{j} \quad \Gamma_{i} - \Gamma_{j}] = n + \operatorname{rank}(\Gamma_{i} - \Gamma_{j}) \\ & \text{and} \\ & \mathcal{R}(\Sigma_{ij}) = \{0\} \\ \Sigma^{\sigma}_{(A,B,C,D)} \text{ is } \sigma_{1}\text{-observable} \iff \forall i \neq j, \ p \neq q, \ (i,j) \neq (p,q) \colon \\ & \operatorname{rank} \begin{bmatrix} \mathcal{O}_{i} \quad \mathcal{O}_{p} \quad \Gamma_{i} - \Gamma_{p} \\ \mathcal{O}_{j} \quad \mathcal{O}_{q} \quad \Gamma_{j} - \Gamma_{q} \end{bmatrix} = 2n + \operatorname{rank} \begin{bmatrix} \Gamma_{i} - \Gamma_{p} \\ \Gamma_{j} - \Gamma_{q} \end{bmatrix} \\ & \text{and} \\ & \mathcal{R}(\Sigma_{ij}) = \{0\} \end{split}$$

 $\mathcal{R}(\Sigma_{ij})$ is set of initial values which are controllable to zero while output is zero.

Avoiding (A1) and (A2)

Definition (Equivalent switching signal, c.f. Kaba (2014))

For $\Sigma^{\sigma}_{(A,B,C,D)}$, initial value $x_0 \in \mathbb{R}^0$, input u

$$\sigma \overset{x_0,u}{\sim} \widetilde{\sigma} \quad :\Leftrightarrow \quad x \equiv \widetilde{x}, \ y \equiv \widetilde{y} \ \text{and} \ \sigma(t) = \widetilde{\sigma}(t) \ \text{expect on}$$
 intervals where the state is identically zero

Corresponding equivalence class:
$$\left[\sigma_{x_0,u}\right]:=\left\{\widetilde{\sigma}\ \middle|\ \sigma\overset{x_0,u}{\sim}\widetilde{\sigma}\right\}$$

Definition

 $\Sigma^{\sigma}_{(A,B,C,D)}$ is called $(x,[\sigma])$ -, $[\sigma]$ -, $(x,[\sigma_1])$, $[\sigma_1]$ -, and $[t_S]$ -observable $:\Leftrightarrow$ replace in previos definitions $\sigma \neq \widehat{\sigma}$ by $[\sigma_{x_0,u}] \neq [\widehat{\sigma}_{x_0,u}]$

Exactly the same rank-conditions as before!

Overview for $\Sigma_{(A,B,C,D)}^{\sigma}$: $\begin{vmatrix} \dot{x} = A_{\sigma}x + B_{\sigma}u \\ y = C_{\sigma}x + D_{\sigma}u \end{vmatrix}$

$$\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$y = C_{\sigma}x + D_{\sigma}u$$

Contents

Introduction

$$\dot{x} = A_{\sigma}x$$

$$\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

Observer design

Summary

Switch-observability for switched DAEs

$$\Sigma^{\sigma}_{(E,A,B,C,D)}: \begin{bmatrix} E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u \\ y = C_{\sigma}x + D_{\sigma}u \end{bmatrix}$$

After guite a bit of new notations, theory and definitions ...

Theorem (Dissertation Küsters 2018)

$$\Sigma^{\sigma}_{(E,A,B,C,D)}$$
 is strongly $(x,[\sigma_1])$ -observable $\Leftrightarrow [t_S]$ -observability and

$$\begin{aligned} & \operatorname{rank} \begin{bmatrix} \mathcal{O}_{i}^{\operatorname{diff}} & \mathcal{O}_{p}^{\operatorname{diff}} & \Gamma_{i} - \Gamma_{p} \\ \mathcal{O}_{j}^{\operatorname{diff}} \Pi_{i} & \mathcal{O}_{q}^{\operatorname{diff}} \Pi_{p} & (\Gamma_{j} - \mathcal{O}^{\operatorname{diff}} M_{i}^{\operatorname{imp}}) - (\Gamma_{q} - \mathcal{O}_{q}^{\operatorname{diff}} M_{p}^{\operatorname{imp}}) \\ \mathcal{O}_{j}^{\operatorname{imp}} \Pi_{i} & \mathcal{O}^{\operatorname{imp}} \Pi_{p} & \mathcal{O}_{j}^{\operatorname{imp}} (M_{j}^{\operatorname{imp}} - M_{i}^{\operatorname{imp}}) - \mathcal{O}_{q} (M_{q}^{\operatorname{imp}} - M_{p}^{\operatorname{imp}}) \end{bmatrix} \\ & = \operatorname{dim} \overline{\mathcal{V}^{*}}_{i,p} - \operatorname{dim} \mathcal{M}_{i,j,p,q} + \operatorname{rank} \left(\begin{bmatrix} \Gamma_{i} - \Gamma_{p} \\ \Gamma_{j} - \Gamma_{q} \\ \Gamma_{j}^{\operatorname{imp}} - \Gamma_{q}^{\operatorname{imp}} \end{bmatrix} Z_{i,p}^{2} \right) & \forall i \neq j, p \neq q, \\ (i,j) \neq (p,q) \end{aligned}$$

Contents

Introduction

$$\dot{x} = A_{\sigma}x$$

$$\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

Observer design

Summary

"Trivial" observer design for (x, σ) -obs.

Instantenous observability

 (x,σ) -observability \Longrightarrow local state and mode observability

Observer design

- 1. For each mode run a classical state observer
- 2. Pick the one which converges \rightarrow mode and state estimation
- 3. Repeat

Nothing switch specific

Information at the switch (e.g. jumps) not utilized.

Overall observer design

- (0. Detect switching time t_S .)
- 1a. Run partial state observers on $(t_S \tau, t_S)$ for all modes.
- 1b. Run partial state observers on $(t_S, t_S + \tau)$ for all modes.
- 2. Combine partial information to find (i^*, j^*) and state estimation $\widehat{x}(t_S)$

Partial state observer

$$\dot{x} = A_p \dot{x} + B_p u,$$
 $y = C_p x + D_p u,$
 $\mathcal{O}_p := \begin{bmatrix} C_p \\ C_p A_p \\ \vdots \\ C_p A_p^{n-1} \end{bmatrix}$
 $r_p := \operatorname{rank} \mathcal{O}_p$

Choose orthogonal $Z_p \in \mathbb{R}^{n \times r_p}$ with $\operatorname{im} Z_p = \operatorname{im} \mathcal{O}_p^{\top}$, then

$$\dot{z}_p = \mathbf{Z_p}^{\top} A_p \mathbf{Z_p} z_p + Z_p^{\top} B_p u$$
 is observable
$$y = C_p \mathbf{Z_p} z_p + D_p u$$

Definition (Partial state observer)

Any observer for $z_p = Z_n^{\top} x$ is a partial state observer.

Mode dependence

 Z_n and size r_n are mode dependent.

Reasonable modes

Definition (Reasonable modes)

Mode i is reasonable on $(t_S - \tau, t_S)$:

$$\exists x_i^{t_S} : y = C_i x_i + D_i u$$
 where $\dot{x}_i = A_i x_i + B_i u$, $x_i(t_S) = x_i^{t_S}$

In particular, i^* is reasonable on $(t_S - \tau, t_S)$.

Crucial property of reasonable modes

Partial state observers "converge" for all reasonable modes, i.e.

$$y \approx C_i Z_i \hat{z}_i + D_i u$$
 on $(t_S - \varepsilon, t_S)$ \forall reasonable i

Analog definition for reasonable modes j on $(t_S, t_S + \tau)$, with

$$y \approx C_i Z_i \hat{z}_i + D_i u$$
 on $(t_S + \tau - \varepsilon, t_S + \tau)$ \forall reasonable j

Illustration of Steps 1 and 2

Combining partial state estimations

Question

How to combine the obtained information before and after the switch?

Obvious fact

$$\begin{array}{ll} (x,\sigma_1)\text{-observability} & \Longrightarrow & \text{observability for known } \sigma \text{ with one switch} \\ & \Longrightarrow & \ker \mathcal{O}_i \cap \ker \mathcal{O}_j = \{0\} \quad \forall i \neq j \\ \\ \Longrightarrow & \operatorname{rank}\left[Z_i,Z_i\right] = n \quad \forall i \neq j \end{array}$$

State estimation candidates

For
$$(i,j)=(i^*,j^*)$$
 we have

$$\begin{pmatrix} \widehat{z}_i^- \\ \widehat{z}_j^+ \end{pmatrix} \approx \begin{bmatrix} Z_i^\top \\ Z_j^\top \end{bmatrix} x(t_S) \implies x(t_S) \approx \begin{bmatrix} Z_i^\top \\ Z_j^\top \end{bmatrix}^\dagger \begin{pmatrix} \widehat{z}_i^- \\ \widehat{z}_j^+ \end{pmatrix} =: \widehat{x}_{ij}$$

university of

Final step

Theorem (Küsters & T. 2017)

For sufficiently accurate partial observers and for all reasonable (i, j)

$$(i,j) = (i^*, j^*) \qquad \Longrightarrow \qquad \begin{bmatrix} Z_i^\top \\ Z_j^\top \end{bmatrix} \widehat{x}_{ij} \approx \begin{bmatrix} \widehat{z}_i^- \\ \widehat{z}_j^+ \end{bmatrix}$$

$$(i,j) \neq (i^*,j^*)$$
 \Longrightarrow $\begin{bmatrix} Z_i^\top \\ Z_j^\top \end{bmatrix} \widehat{x}_{ij} \not\approx \begin{bmatrix} \widehat{z}_i^\top \\ \widehat{z}_j^+ \end{bmatrix}$

university of

Summary

- Classical mode-detection property too restrictive
 - State-observability required for each individual mode
 - Information around switch not utilized
 - Novel concept: switch-observability (σ_1 -observability)
- Characterizations in the form of simple rank-tests
- Observer design based on partial state-observers

Future work and topics:

- Extension to nonlinear cases
- Testing in "real" appplications
- Distributed design for large networks
- Using state- and mode-estimations for feedback-control