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Abstract— The solvability of nonlinear nonswitched and
switched singular systems in discrete time is studied. We provide
necessary and sufficient conditions for solvability. The one-step
map that generates equivalent nonlinear (ordinary) systems for
solvable nonlinear singular systems under arbitrary switching
signals is introduced. Moreover, the stability is studied by
utilizing this one-step map. A sufficient condition for stability
is provided in terms of Lyapunov functions.

I. INTRODUCTION

The study on this paper focuses on the class of switched
systems where each mode is a discrete-time nonlinear sin-
gular system without input of the form

Eσ(k)x(k + 1) = Fσ(k)(x(k)) (1)

where k ∈ N is the time instant, x(k) ∈ Rn is the state,
σ : N → {0, 1, 2, ..., p} is the switching signal determining
which mode σ(k) is active at time instant k, Ei ∈ Rn×n

are singular and Fi : Rn → Rn are continuous nonlinear
functions. We refer to the pair (Ei, Fi) as the mode-i.

In some references, singular systems are also called
descriptor systems, semi-state systems, implicit systems,
differential-algebraic equations (in discrete time) or systems
with algebraic constraints. Many physical systems can be
modelled as a singular system, and this system class has
been widely applied to numerous practical applications,
such as electrical circuits [1], [2], industrial processes [3],
power systems [4], constrained mechanical systems [5], [6],
robotics [7], [8], [9], economic systems [10], discretization of
partial differential equations [11] and neural networks [12].

Solution theory for nonlinear singular systems, both in
continuous and discrete time domains, have been widely
studied; however, the existing studies consider both linear
and nonlinear terms in the equation, and the nonlinear
terms were considered as suitable disturbances such that the
solution theory for singular linear systems still applies (see
e.g. [13], [14]).

For (ordinary) nonlinear systems i.e. Ei in (1) being
invertible for all i, assuming only that Fi is well-defined
is sufficient to guarantee the existence of a unique solution
for any initial value x(0) = x0 ∈ Rn; the solution can be
calculated easily via recursive computation for k = 0, 1, ....
However, for the singular system (1), there may not be a
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solution; furthermore, if a solution exists, it may not be
unique; this still applies even though a stricter assumption of
considering the same subsystem/pair (E,F ) = (Ei, Fi) for
all modes is considered i.e. the system being nonswitched
(see the following example).

Example 1.1: Consider system (1) with

(E,F (x)) =

([
1 0
0 0

]
,

[
x2
1

x2
2 + 4

])
.

This system has no solutions since the pure singular subsys-
tem, or the algebraic constraint x2

2 + 4 = 0 has no (real)
solutions.

Replacing the second row of F with x2
2−4 clearly makes

the system solvable for any initial value x(0) ∈ S = {x ∈
Rn :

(
x2
1

x2
2−4

)
∈ span ( 10 )} = {x ∈ R2|x2

2 − 4 = 0}.
However, the solution is not unique since at every time
instant k, x2(k) could be −2 or 2. //

In this paper, we study the solution theory for system
(1) under arbitrary switching signals, and introduce the
one-step map that generates equivalent (ordinary) singular
systems. Furthermore, by utilizing these equivalent systems,
we formulate a necessary and sufficient condition for stability
in terms of Lyapunov functions.

II. PRELIMINARIES

We recall some notations and basic results about general-
ized inverse, preimage and projector, which will be used in
the one-step map formulation in the subsequent sections.

Definition 2.1 (Generalized inverse, cf. [15]): For a ma-
trix M ∈ Rm×n, a generalized inverse of M is defined as a
matrix M+ ∈ Rn×m that satisfies MM+M = M .

A generalized inverse always exists but is not unique in
general [16]. Let M−1X be the preimage of a (in general
singular) matrix M ∈ Rn×n over a set X , i.e. M−1X =
{ξ ∈ Rn : Mξ ∈ X}. The following lemma utilizes the
generalized inverse to represent the preimage.

Lemma 2.2 ([17]): For any matrix M ∈ Rn×n and x ∈
imM , we have that

M−1{x} = {M+x}+ kerM

where M+ is a generalized inverse of M .
In addition, the following lemma regarding an intersection

that results in a singleton will be used in formulating the
solvability conditions, and moreover, the second part of the
lemma will be used in formulating the one-step map.

Lemma 2.3 (cf. Lemma 3.4 in [18]): Consider set U ⊆
Rn and two subspaces V,W ⊆ Rn, then V ∩ ({u} + W)



is a singleton for all u ∈ U if, and only if, U ⊆ V ⊕W . In
that case

V ∩ ({u}+W) = {ΠW
V u}, (2)

where ΠW
V : V ⊕ W → V is the canonical projector from

V ⊕W to V .

III. (NONSWITCHED) NONLINEAR SINGULAR SYSTEMS

We present in this section the solution theory and stability
for nonswitched cases of (1) of the form

Ex(k + 1) = F (x(k)), k = 0, 1, ... (3)

where E is singular with rankE = r < n. Define S = {x ∈
Rn : F (x) ∈ imE}.

A. Solution Theory

We consider the following solvability notion in establish-
ing the one-step map for system (3).

Definition 3.1: We call (3) locally uniquely solvable (for
short just solvable) if, for all k ∈ N and for all x0 ∈ S there
exists a unique solution on [0, k] of (3) considered on [0, k]
with x(0) = x0.

The solvability notion above requires the existence of a
unique solution on any finite time interval [0, k1], which in
particular means that the final value at k1 does not depend
on the values x(k) for k > k1. This solvability notion is
stronger compared to the common solvability notion as for
ordinary systems where the unique solution is required on
[0,∞) for all (consistent) initial values. However, having the
former solvability notion will guarantee the existence of the
one-step map for system (3), and it is not always possible to
have a one-step map for the latter solvability notion (see the
forthcoming Remark 3.8). Furthermore, note that every non-
singular system (i.e. E is non-singular) is locally solvable,
in fact, solutions are already uniquely determined on [0, k]
by only considering (3) on [0, k − 1]. This is in contrast to
the singular case, where the algebraic constraints at k are
usually needed to determine uniquely the value of x(k).

From basic algebra, there exist invertible matrices S, T ∈
Rn×n such that SET =

[
Ir 0
0 0

]
. By using the state transfor-

mation T−1x(k) =
(

v(k)
w(k)

)
, v ∈ Rr, w ∈ Rn−r, system (3)

can be rewritten as

[ I 0
0 0 ]

[
v(k+1)
w(k+1)

]
= SF

(
T
[

v(k)
w(k)

])
=:
[
G(v(k),w(k))
H(v(k),w(k))

]
. (4)

The representation above decouples (1) into pure ordinary
subsystem in v and pure singular subsystem or algebraic
constraint in w. In this decoupled representation, system (3)
can be illustrated by Fig. 1.

v(k + 1) = G(v(k), w(k))

H(v, w) = 0

Fig. 1: Block diagram of (4)

To be able to ensure existence and solutions of solution
of the switched system (3), we will make the following
assumption.

Assumption 3.2: The set S := {x ∈ Rn : F (x) ∈ imE}
of (3) is a linear subspace in Rn.

On a first glance this assumption looks rather restrictive,
however, in general the set S is a differentiable manifold
at least locally and then a (local) nonlinear coordinate
transformation can be applied to obtain a linear subspace
S.

Remark 3.3: The algebraic constraint H(v, w) = 0 in (4)
is, in general, nonlinear even if S is a subspace. However, if
S is a subspace in Rn, then ( v

w ) ∈ kerS⊥, where S⊥ is a
matrix whose columns span the orthogonal complement of S,
i.e. there exist matrices P ∈ R(n−r)×r, Q ∈ R(n−r)×(n−r)

such that H(v, w) = 0 if, and only if, Pv + Qw = 0.
Thus, for every k ∈ N, the nonlinear algebraic constraint
H(v(k), w(k)) = 0 can be replaced by the linear algebraic
constraint

0 = Pv(k) +Qw(k). (5)

As a consequence, the nonlinearity appears now only on
G(v, w). ⋄

The following lemma provides two characterizations for
solvability of system (3) under Assumption 3.2.

Lemma 3.4: The following are equivalent:
(i) System (3) under Assumption 3.2 is solvable in the

sense of the Definition 3.1
(ii) Q is nonsingular

(iii) T ⊆ S ⊕ kerE
where T = {E+F (ς) | ς ∈ S}, i.e. T is the range of
τ : S → Rn with τ(ς) = E+F (ς).
Proof: (i) ⇒ (ii): The set S being a subspace implies the

existence of the equivalent linear algebraic constraint of the
form (5), hence system (3) can now equivalently be rewritten
as {

v(k + 1) = G(v(k), w(k)), k = 0, 1, . . .

0 = Pv(k) +Qw(k)

Consider this system on [0, 1], then it reads

v(1) = G(v(0), w(0))

0 = Pv(0) +Qw(0)

v(2) = G(v(1), w(1))

0 = Pv(1) +Qw(1)

where (v(0), w(0)) is given, and thus v(1) is also given.
Seeking a contradiction assume that the square matrix Q
is singular. Then it is first of all not guaranteed anymore
that for the specific v(1) a solution w(1) exists with 0 =
P (v(1)+Qw(1). If w(1) exists at all it is not unique because
Q has a nontrivial kernel. Hence we have non-existence or
non-uniquess of solutions of (3) considered on the interval
[0, 1], contradicting (i).
(ii) ⇒ (i): Nonsingularity of Q implies that the algebraic
constraints are equivalent to w(k) = Q−1Pv(k), which then
leads to the uniquely solvable nonsingular system v(k+1) =
Ḡ(v(k)) with Ḡ(v) = G(v,Q−1Pv). Transforming this
unique solution back to its original coordinates provides a
unique solution x on any interval [0, k].



(i) ⇒ (iii): By assumption for any initial value x0 there exists
a unique solution on [0, 1], in particular x(1) is uniquely
determined by considering (3) for k = 0 and k = 1. By
Lemma 2.2 applied to (3) for k = 1 the value x(1) satisfies

x(1) ∈ E−1(F (x0)) = {E+F (x0)}+ kerE. (6)

On the other hand, considering (3) at k = 1 (not making any
assumptions about the unknown x(2)), x(1) must satisfy

x(1) ∈ {x ∈ Rn|F (x) ∈ imE} = S. (7)

Hence x(1) is uniquely determined for all x0 ∈ S if, and
only if,

S ∩ ({E+F (x0)}+ kerE) is a singleton.

Using Lemma 2.3 with U = T , V = S and W = kerE we
conclude (iii).
(iii) ⇒ (i): We prove inductively, that if for any x0 ∈ S
there exists a unique solution on [0, k], then there also
exist a unique solution on [0, k + 1]. This together with
the trivial observation that x(0) = x0 is the unique so-
lution of (3), x(0) = x0, considered only for k = 0
will prove (i). Now, given x(k), we choose x(k + 1) ∈
S∩({E+F (x(k))}+kerE) which is possible due to Lemma
2.3. Then x(k + 1) ∈ {E+F (x(k))} + kerE implies that
Ex(k + 1) = EE+F (x(k)). Since x(k) ∈ S (because x is
a solution on [0, k]), it follows that F (x(k)) ∈ imE, i.e.
there exists v such that F (x(k)) = Ev. Hence Ex(k+1) =
EE+Ev = Ev = F (x(k) which shows that x(k+1) satisfies
(3). Furthermore, x(k+1) also satisfies (3) for k+1 because
x(k + 1) ∈ S. This shows that x is indeed a solution of
(3) on [0, k + 1]. Uniqueness follows from the fact, that by
Lemma 2.3 the set S∩({E+F (x(k))}+kerE) is a singleton.

Lemma 3.4 provides two alternatives for checking whether
system (3) is solvable in the sense of Definition 3.1. The
condition (ii) requires, first, transforming the original system
into (4)’s form, and then finding Q by using Remark 3.3.
Meanwhile, the condition (iii) uses data from the original
system directly, which requires less computation steps. In
particular, using Lemma 2.3 and the same arguments as in
the proof for Lemma 3.4 we arrive at the following one-
step map that allows to to obtain an equivalently “surrogate”
ordinary system for (3):

Corollary 3.5: Consider system (3) under Assumption
3.2. If solvable, its solution satisfies

x(k + 1) = Φ(x(k)) = ΠkerE
S E+F (x(k)) ∀k ∈ N. (8)

where E+ is a generalized inverse of E and ΠkerE
S is the

canonical projector from S ⊕ kerE to S. Furthermore, any
solution of (8) with x(0) ∈ S also solves (3).

Remark 3.6 (The nonuniqueness of generalized inverses):
Note that the generalized inverse matrix E+, in general,
is not unique, and thus applying different E+ could
provide different T in Lemma 2.3 and different one-step
maps. However, condition (iii) in Lemma 3.4 as well
as the restriction of Φ on S will give the same results

regardless of the choice of E+ used in the calculation, i.e.
the nonuniqueness of E+ has no effect on the solution
charactetization/formula; in fact the same arguments from
the linear case (see Remark 3.12 in [17]) also apply here.

Now it is possible to write the explicit solution of (3) i.e.

x(k) = (Φ ◦ Φ ◦ · · · ◦ Φ)︸ ︷︷ ︸
k times

(x0)

where Φ(·) is as given in (8). The following example
illustrates the above solution theory.

Example 3.7: Consider system (3) with

(E,F (x)) =

([
1 0
1 0

]
,

[
x

1
3
1 + x

1
3
2

x
1
3
1 − x

1
3
2

])
.

Simple computations provide kerE = span ( 01 ) and S ={
x ∈ Rn :

(
x

1
3
1 +x

1
3
2

x
1
3
1 −x

1
3
2

)
∈ span ( 11 )

}
= span ( 10 ). Since S⊕

kerE = Rn, the condition (iii) in Lemma 3.4 is satisfied
(independently of what T is), and thus this system is solvable
and has a unique solution for every initial value x0 ∈ S =
span ( 10 ). Furthermore, it is easily seen that ΠkerE

S = [ 1 0
0 0 ],

E+ =
[

1
2

1
2

0 0

]
, hence the the one-step map is given by

Φ(x) =
(

x
1
3
1
0

)
and each solution satisfies

x(k + 1) =
[

1
2

1
2

0 0

]
F (x(k)) =

(
x1(k)

1
3

0

)
. //

Remark 3.8: It is not always possible to establish a one-
step map for system (3) if only global solvability on [0,∞)
in assumed instead of the local solvability in the sense of
Definition 4.1. This is illustrated by the following “counter
example”:

[ 0 1
0 0 ]x(k + 1) =

(
x1(k)

1
3

x2(k)
1
3

)
, k = 0, 1, ... (9)

with S = im [ 10 ]. For this system, considered on [0,∞), the
unique solution is given by x(k) = 0 for all k > 0, because
x2(k) = 0 for all k and x1(k) = x2(k + 1) = 0 for all k.
However, if we consider the system on [0, 1], the system has
a non-unique local solution because x1(1) can be arbitrary.
This, in particular, shows that the solvability on [0,∞) does
not imply the solvability in the sense of Definition 3.1,
however, the converse is clearly true. Now, since x1(1) is
free, we cannot determine it only from the current and past
information, and thus the one-step map, which depends only
on the current and past information, cannot exist. Therefore,
the solvability notion given in Definition 3.1 is necessary for
the existence of the one-step map, which in turn is needed
to study switched systems (where at a given time k it may
not be clear yet what the mode at k + 1 will be.

B. Stability Based on Lyapunov Function

We can now study the nonlinear singular system (3)
for further analysis, stability in this paper, by utilizing its
”surrogate” ordinary system (8). Suppose Φ(0) = 0 i.e.
x = 0 is an equilibrium point for (8). This can also be
generalized for a nonzero equilibrium: when x = xe ̸= 0



is the equilibrium point we are investigating, the new state
x̂ = x − xe provides 0 as an equilibrium point in x̂
coordinate. However, this coordinate transformation is not
needed if F (0) = 0 since it directly implies that Φ(0) = 0.
To be precise, we present the stability notion used in this
study in the following.

Definition 3.9: The equilibrium x = 0 of system (8) (or
system (3)) is

• stable if for each ϵ > 0 there is δ = δ(ϵ) such that for
all solutions x of (3)

||x(0)|| < δ =⇒ ||x(k)|| < ϵ ∀k ≥ 0

• asymptotically stable if it is stable and δ can be chosen
such that for all solutions x of (3)

||x(0)|| < δ =⇒ lim
k→∞

x(k) = 0

• unstable if it is not stable.
Since the “surrogate” system (8) can be seen as an ordinary

system, we can utilize the stability theory for ordinary
systems. The following corollary for stability of 0 of (8)
is a simple consequence from the classical stability theorem
for ordinary systems in [19].

Corollary 3.10: Consider the solvable singular system (3)
via its surrogate ordinary system (8). Assume Φ : S → Rn is
continuous on S ⊂ Rn. If there exists a continuous function
V : S → R such that

V (0) = 0, V (x) > 0 ∀x ∈ S − {0}, and (10)
V (Φ(x))− V (x) ≤ 0 ∀x ∈ S (11)

then x = 0 is stable for (3). Furthermore, if

V (Φ(x))− V (x) < 0 ∀x ∈ S − {0} (12)

then x = 0 is asymptotically stable for (3).

IV. SWITCHED NONLINEAR SINGULAR SYSTEMS

A. Solution Theory

Recall system (1) and define

Si := {x ∈ Rn|Fi(x) ∈ imEi}. (13)

We first generalize the solvability notion for nonswitched
systems in Definition 3.1 to the following solvability notion
for switched systems.

Definition 4.1: We call (1) locally uniquely solvable (for
short just solvable) w.r.t. to a given switching signal σ :
N → {1, 2, . . . , p} if, for all k0, k1 ∈ N, k1 > k0 and for all
xk0 ∈ Sσ(k0) there exists a unique solution of (1) considered
on [k0, k1] with x(k0) = xk0 .

Note that the solvability notion above requires the exis-
tence of a unique solution considered on any time interval
with any arbitrary initial time and, furthermore, for any
consistent initial value at that initial time. For similar reasons
as discussed in Remark 3.8, we use this solvability notion
because it is not always possible to define the one-step map
for system (1) with the common solvability notion on [0,∞).

We extend Assumption 3.2 to the switched case as follows:

Assumption 4.2: Each Si given by (13) is a linear sub-
space in Rn for each i ∈ {0, 1, ..., p}.

The first important observation for switched systems is
that solvability for individual modes is, in general, not
sufficient for switched systems composed by those modes
to be solvable. This is illustrated by the following Example.

Example 4.3: Consider system (1) with

(E0, F0(x)) =

([
1 0
0 0

]
,

[
x

1
3
1

x
1
3
2

])
,

(E1, F1(x)) =

([
0 0
0 1

]
,

[
x2
1

x2
1 + x2

2

])
.

Simple computations provide that

kerE0 = span{(0, 1)⊤}
kerE1 = span{(1, 0)⊤}

S0 = span{(1, 0)⊤}
S1 = span{(0, 1)⊤}.

For each pair, as an individual system, we have that
kerEi⊕Si = Rn, i = 0, 1 i.e. individual system is solvable.
Their solutions are

(
x1(k)
x2(k)

)
=
(

x
1
3k
10
0

)
, k = 1, 2, ... and(

x1(k)
x2(k)

)
=
(

0
x2k
20

)
, k = 1, 2, ..., respectively. In particular,

when the switched system under the switching signal σ(k) =
0 for k < ks and 1 for k ≥ ks reads:

k < ks :

x1(k + 1) = x
1/3
1 (k),

0 = x
1/3
2 (k),

k ≥ ks :

0 = x2
1(k),

x2(k + 1) = x2
2(k).

From this it is clear that once the switch occurs at k = ks,
the only solution for x1 is x1(k) = 0 also before the switch,
although x1 was not restricted for k < ks. Furthermore,
x2(k

s) is not restricted by the above equations and hence
uniqueness of solutions with respect to x(0) is not satisfied.
//

We generalize the solvability condition for nonwsitched
systems to the condition for switched systems in the follow-
ing theorem, which provides a characterization of solvability
of system (1). Furthermore, the one-step map for switched
systems is also presented in this theorem.

Theorem 4.4: System (1) under Assumption 4.2 is solv-
able (in the sense of Definition 4.1) for all switching signals
σ : N → {1, 2, . . . , p} if, and only if,

Tj ⊆ Si ⊕ kerEj ∀i, j ∈ {0, 1, ..., p}, (14)

where Ti = {E+
i Fi(ς)|ς ∈ Si}. Moreover, if solvable, its

solution satisfies

x(k + 1) = Φσ(k+1),σ(k)(x(k)), ∀k ∈ N (15)

where Φi,j is the one-step map from mode-j to mode-i given
by

Φi,j(x) := Π
kerEj

Si
E+

j Fj(x) (16)

where E+
j is a generalized inverse of Ej and Π

kerEj

Si
is the

canonical projector from Si ⊕ kerEj to Si.



Proof: Step 1: Solvability
Necessity: We consider a solution on some interval [k, k+1]
where σ(k) = i and σ(k+1) = j. For a given x(k) ∈ Si, in
order to have a unique x(k+1) for any switching signal, the
following system of equations must have a unique solution
for x(k + 1):

Eix(k + 1) = Fi(x(k)), (17a)
Ejx(k + 2) = Fj(x(k + 1)), (17b)

Equation (17a) is equivalent to x(k + 1) ∈ E−1
i [Fi(x(k))

which by Lemma 2.2 is equivalent to

x(k + 1) ∈ {E+
i Fi(x(k))}+ kerEi. (18)

Since we only consider a solution on [k, k + 1], the value
x(k + 2) in (17b) is arbitrary, hence Equation (17b) is
equivalent to

x(k + 1) ∈ {x ∈ Rn : Fj(x) ∈ imEj} = Sj (19)

By applying U = Ti, V = Sj and W = kerEi to Lemma 2.3,
the uniqueness of x(k + 1) implies Ti ⊆ Sj ⊕ kerEi. Since
arbitrary switching signals can be considered, this condition
mus hold for all ∀i, j ∈ {0, 1, ..., p}.
Sufficiency: Identical arguments as for the non-switched case
allow us to inductively extend any solution x on [0, k]
uniquely to a solution on [0, k + 1] if (15) holds.
Step 2: One-step map
By applying formula (2) in Lemma 2.3 to (18) and (19) with
U = {E+

σ(k)Fσ(k)(x(k))}, V = Sσ(k+1) and W = kerEσ(k),
the solution x(k+1) satisfies the one-step map formula (8).

Regarding the nonuniqueness of the generalized inverse
matrix E+

i , the same phenomenon discussed in Remark 3.6
also applies i.e. the nonuniquness of E+

i has no effect to the
solution or the formula (15).

The following example illustrates the solution of (1)
calculated by using the one-step map formula introduced in
Theorem 4.4.

Example 4.5: Consider system (1) with

(E0, F0(x)) =

([
1 0
0 0

]
,

[
x

1
3
1

x
1
3
2

])
,

(E1, F1(x)) =

([
1 0
1 0

]
,

[
x2
1 + x2

2

x2
2

])
.

Simple computations provide that

kerE0 = span{(0, 1)⊤}
kerE1 = span{(0, 1)⊤}

S0 = span{(1, 0)⊤}
S1 = span{(1, 0)⊤}.

Few observations are discussed as follows:
• Since kerEi⊕Sj = Rn, ∀i, j ∈ {0, 1}, then clearly the

condition (14) holds, and thus the system is solvable.

• Choosing E+
0 = [ 1 0

0 0 ] and E+
1 =

[
1
2

1
2

0 0

]
provides the

following one-step maps Φi,j from mode-j to mode-i

Φ0,0(x(k)) = Φ1,0(x(k)) =

(
x

1
3
1 (k)
0

)

Φ1,1(x(k)) = Φ0,1(x(k)) =

(
1
2x

2
1(k) +

3
2x

2
2(k)

0

)
.

0 10 20 30 40 50
k

-1

-0.5

0

0.5

1

x
(k

)

x1(k)
x2(k)

Fig. 2: Solution of Example 4.5

Under the periodic switching signal σ(k) = 1 for k ∈
[0, 5) ∪ [10, 15) ∪ ... and = 0 for k ∈ [6, 10) ∪ [15, 20) ∪ ...,
and with x(0) = (− 1

2 , 0)
⊤, the solution is shown in Fig. 2.

//

B. Stability Theory

We analyze the stability of x = 0 of switched system (1)
via its ”surrogate” system (15) as follows. Suppose x = 0 is
an equilibrium for (1) i.e. Φi,j(0) = 0 ∀i, j ∈ {0, 1, ..., p}.

First note that requiring each mode to be (asymptotically)
stable is not sufficient to make sure that the switched system
is (asymptotically) stable; this is a well known challenge in
the stability analysis of switched systems, cf. [20].

The first approach that can be used to study the stability
of x = 0, even though it is conservative, is the common
Lyapunov function approach. The following corollary is
derived from the common Lyapunov stability theorem for
the general time-varying nonlinear systems of the form
x(k + 1) = fk(x(k)) in [21].

Corollary 4.6 (Common Lyapunov function approach):
Consider system (1) under Assumption 4.2 and assume that
for all switching signals it is solvable and x = 0 is an
equilibrium. Then x = 0 is asymptotically stable if there is
exists a function V : Rn → R such that

• V is a positive–definite and radially unbounded;
• V (x(k + 1))− V (x(k)) < 0 for all solutions x of (15)

and all switching signals.
Note that in order to check the condition V (x(k + 1))−

V (x(k)) < 0 one could require that

V (Φi,j(x))− V (x) < 0 ∀i, j ∈ {1, 2, . . . , p}∀x ∈ Rn.

But this means that (15) is considered as a switched system
with p2 independent different modes (one for each pair
(i, j)). However, this viewpoint is too conservative in our
situation, because the mode sequences in (15) are restricted
to those where at time k + 1 the mode pair (ik+1, jk+1) is
related to the mode pair (ik, jk) at time k via ik = jk+1. This



motivates us to introduce the following switched Lyapunov
function approach.

Theorem 4.7 (Switched Lyapunov function approach):
Consider the singular switched system (1) via its
surrogate ordinary switched system (15). Assume for
all i ∈ {0, 1, ..., p}, Φi : Si → Rn is continuous on Si ⊂ Rn

and each mode is (asymptotically) stable with corresponding
Lyapunov function Vi. If for all i, j ∈ {0, 1, ..., p} the
following conditions hold,
(i) Vi(x) = Vj(x) ∀x ∈ Si ∩ Sj and

(ii) Vi(Φi,j(x))− Vj(x)(<) ≤ 0 ∀x ∈ Sj − {0}
then x = 0 is (asymptotically) stable for arbitrary switching
signals.

Proof: We construct the following Lyapunov function
for (1) from the Lyapunov functions of all individual modes
as follows:

V : Rn → R, V (x) =

{
Vi(x) if x ∈ Si

0 otherwise.

Note that condition (i) is necessary for having V being well
defined. Then for all solutions x(k) of (15) at any k ∈ N

V (x(k + 1))− V (x(k))

= Vσ(k+1)(x(k + 1))− Vσ(k)(x(k))

= Vσ(k+1)(Φσ(k+1),σ(k)(x(k))− Vσ(k)(x(k)) ≤ (<)0.

which by Corollary 4.6 guarantees the (asymptotic) stability
of the equilibrium x = 0 for arbitrary switching signals.

It can be seen that the condition (ii) above is necessary
only for certain switches i.e. after Φi,j , and the condition is
checked only for switches to Φi,j and not for all switches
to any other one-step map matrix. This makes the stabil-
ity theorem above more relaxed compared to the common
Lyapunov approach. The following example illustrates the
stability analysis by using the condition provided by the
theorem above.

Example 4.8: Consider system (1) composed of the fol-
lowing two modes:

(E0, F0(x)) =

([
1 0
0 0

]
,

[
(x1 + 1)

1
3 − 1

x
1
3
2

])
,

(E1, F1(x)) =

([
1 0
0 0

]
,

(
(x2 + 1)

1
5 − 1

x
1
5
1

))
.

Basic computations provide

kerE0 = span{(0, 1)⊤}
kerE1 = span{(0, 1)⊤}

S0 = span{(1, 0)⊤}
S1 = span{(1, 0)⊤}.

Since kerEi⊕Sj = Rn, ∀i, j ∈ {0, 1}, clearly the condition
(14) holds i.e. the system is solvable for arbitrary switcbing
signals. Choosing E+

0 = [ 1 0
0 0 ] and E+

1 = [ 1 0
0 0 ] and with

ΠkerE0

S1
= ΠkerE1

S0
= [ 1 0

0 0 ] provide

Φ0(x(k)) = Φ0,0(x(k)) = Φ1,0(x(k)) =

[
(x1 + 1)

1
3 − 1

0

]

and

Φ1(x(k)) = Φ1,1(x(k)) = Φ0,1(x(k)) =

[
(x1 + 1)

1
5 − 1

0

]
.

0 2 4 6 8 10
0

1

2

Fig. 3: A solution of the switched system in Example 4.8

As an individual system, x = 0 of each mode is stable
with Lyapunov function e.g. Vi(x) = x2

1 + x2
2, i = 0, 1.

Clearly, the conditions (i) and (ii) in Theorem 4.7 with
strict inequality are satisfied, and moreover V0(x) = V1(x)).
Hence, x = 0 of the switched system is asymptotically
stable for arbitrary switching signals. With σ(k) = 0 if
k = 0, 2, 4, ... and = 1 if k = 1, 3, 5, ..., the trajectory of
the solution is illustrated in Fig. 3. //

V. SUMMARY

The solution theory and stability analysis for nonlinear
singular systems in discrete time, both for nonswitched
and switched cases, were studied in this paper. Solvability
conditions have been proposed, and the corresponding one-
step map has been introduced to get the equivalent “surro-
gate” ordinary system. Moreover, by utilizing the one-step
map representation, sufficient conditions for stability have
been proposed via common Lyapunov function and switched
Lyapunov function. The second stability condition is more
convenient than the first which is rather conservative.
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