university of groningen

Funnel control

Origin and recent advances

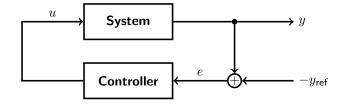
Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Control Lab Guest Lecture, University of Naples Federico II, 1 June 2022

Control Task

Introduction

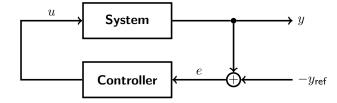


Goal: Output tracking $y(t) \approx y_{\text{ref}}(t)$

Applications

- > Flying to the moon
- > Robotics
- › (Adaptive) cruise control in cars
- > Chemical processes

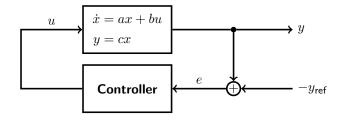
university of groningen



Goal: Output tracking $y(t) \approx y_{\text{ref}}(t)$

Challenge

- no exact knowledge of system model
-) no future knowledge or model for reference signal



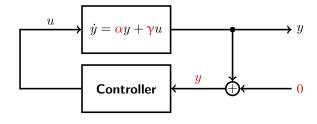
Assumptions

- ightarrow Known model structure, in particular, $a,b,c\in\mathbb{R}$
- Nown sign of high frequency gain $\gamma := cb$, assume $\gamma > 0$
- $y_{ref} = 0$

university of

Unknown system parameters α and γ

The scalar linear case: Stabilization



Goal

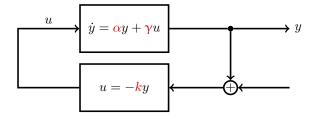
Design feedback u (depending on y) such that $y(t) \to 0$ as $t \to \infty$

If we would know α, γ , how would we choose $u? \longrightarrow \dot{y} \stackrel{!}{=} -\lambda y$ with $k := \frac{\alpha + \lambda}{\gamma}$

In general, with u = -ky we have $\dot{y} = (\alpha - \gamma k)y$

university of groningen

The scalar linear case: Stabilization



Hence we have arrived at our first high gain control result:

Theorem

The proportional negative feedback

$$u = -ky$$

achieves convergence for all $k > \frac{\alpha}{\gamma}$.

What happens for $y_{ref} \neq 0$?



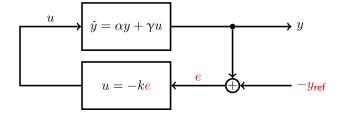
Error dynamics: $\dot{e} = \ldots = (\alpha - \gamma k)e + \alpha y_{\mathsf{ref}} - \dot{y}_{\mathsf{ref}}$

Equilibrium for constant y_{ref} :

$$0 = (\alpha - \gamma k)e + \alpha y_{\text{ref}} \iff e = \frac{\alpha}{\gamma k - \alpha} y_{\text{ref}}$$

 \rightarrow no convergence to zero anymore

What happens for $y_{ref} \neq 0$?



In general: Practical tracking with high gain control:

Theorem

Introduction

If y_{ref} and \dot{y}_{ref} are bounded, then

$$\forall \varepsilon > 0 \ \exists K > 0 \ \forall k > K : \lim \sup_{t \to \infty} |e(t)| < \varepsilon$$

High gain for relative degree one systems

Linear systems
Relative degree and zero dynamics
High gain stabilization
Nonlinear systems

Adaptive choice of gain

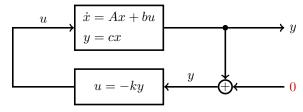
Adaptive stabilization λ -tracking

The funnel controller

The original funnel controller with proof sketch Relative degree two funnel controller Bang-bang funnel control Funnel synchronization

Summary

Higher order linear case with $y_{ref} = 0$



 $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^{1 \times n}$ unknown

Definition (Relative degree)

 $r \in \{1, 2, \dots, n, \infty\}$ is relative degree of system $(A, b, c) : \iff$

(i)
$$\forall i \in \{0, \dots, r-2\}: cA^ib = 0$$

(ii)
$$cA^{r-1}b \neq 0$$

university of groningen

In particular, (A, b, c) has relative degree one $:\iff \gamma := cb \neq 0$

 $r = \infty$: $cA^ib = 0 \ \forall i \in \{0, \dots, n-1\} \implies cA^jb = 0 \ \forall j \in \mathbb{N}$ (Cayley-Hamilton) \rightarrow input u has no influence on output y (recall variation of constant formula)

What is the meaning of the relative degree?

Frequency domain interpretation

Transfer function
$$c(sI-A)^{-1}b=:\frac{p(s)}{q(s)}$$
, then $r=\deg(q(s))-\deg(p(s))$

Interpretation in time-domain:

Theorem (Byrnes-Isidori form)

(A,b,c) has relative degree $r\in\{1,\ldots,n\}$ if and only if there exists a coordinate transformation T such that $(\frac{\eta}{z})=Tx$ such that $y=\eta_1,\ \dot{y}=\eta_2,\ldots,\ y^{(r-1)}=\eta_r$

$$TAT^{-1} = \begin{bmatrix} 0 & 1 & & & & 0 \\ & \ddots & \ddots & & 0 \\ & a_{11} & & a_{12} \\ & A_{21} & & A_{22} \end{bmatrix}, Tb = \begin{bmatrix} 0 \\ \gamma \\ 0 \end{bmatrix}, CT^{-1} = [1, 0, \dots, 0],$$

with $a_{11} \in \mathbb{R}^{1 \times r}$, $a_{12} \in \mathbb{R}^{1 \times (n-r)}$, $A_{21} \in \mathbb{R}^{(n-r) \times r}$, $A_{22} \in \mathbb{R}^{(n-r) \times (n-r)}$

What is the meaning of the relative degree?

Frequency domain interpretation

Transfer function
$$c(sI-A)^{-1}b=:\frac{p(s)}{q(s)}$$
, then $r=\deg(q(s))-\deg(p(s))$

Interpretation in time-domain:

Theorem (Byrnes-Isidori form)

(A,b,c) has relative degree $r\in\{1,\ldots,n\}$ if and only if there exists a coordinate transformation T such that $(\frac{\eta}{z})=Tx$ such that $y=\eta_1,\ \dot{y}=\eta_2,\ldots,\ y^{(r-1)}=\eta_r$

$$y^{(r)} = a_{12} \begin{pmatrix} y \\ \vdots \\ y^{(r-1)} \end{pmatrix} + a_{22}z + \gamma u$$
$$\dot{z} = A_{21} \begin{pmatrix} y \\ \vdots \\ y^{(r-1)} \end{pmatrix} + A_{22}z$$

Zero dynamics

$$\dot{x} = Ax + bu$$
$$y = cx$$

$$y^{(r)} = a_{12} \begin{pmatrix} y \\ \vdots \\ y^{(r-1)} \end{pmatrix} + a_{22}z + \gamma u$$
$$\dot{z} = A_{21} \begin{pmatrix} y \\ \vdots \\ y^{(r-1)} \end{pmatrix} + A_{22}z$$

Question

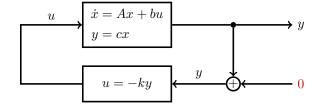
Which input u is needed to keep output y identically zero?

Byrnes-Isidori form for identically zero output:

$$0 = a_{22}z + \gamma u$$
 $\dot{z} = A_{22}z \quad \longleftarrow \text{zero dynamics}$

Answer: $u(t) = -\frac{1}{2}a_{22}e^{A_{22}t}z(0) \rightarrow \infty$ if A_{22} has "bad" eigenvalues!

High gain stabilization for r.d.-one systems



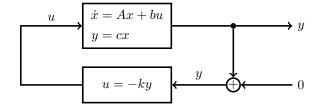
Assumptions:

Relative degree $r=1 \Leftrightarrow \gamma := cb \neq 0$, in particular:

$$\text{System} \quad \Leftrightarrow \quad \begin{aligned} \dot{y} &= a_{11}y + a_{12}z + \gamma u \\ \dot{z} &= a_{21}y + A_{22}z \end{aligned}$$

- \rightarrow positive high frequency gain $\Leftrightarrow \gamma > 0$
- stable zero-dynamics (minimum phase) \Leftrightarrow A_{22} Hurwitz

High gain stabilization for r.d.-one systems



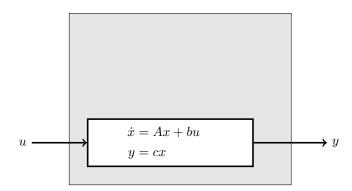
Theorem (High-gain stabilization)

cb>0 and stable zero-dynamics

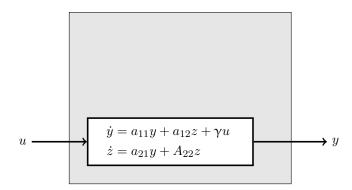
$$\Rightarrow \exists K > 0 \ \forall \ k \geq K$$
: Closed loop is asymptotically stable

Key idea of proof: Show that $\begin{bmatrix} a_{11} - \gamma k & a_{12} \\ a_{21} & A_{22} \end{bmatrix}$ is Hurwitz for sufficiently large k.

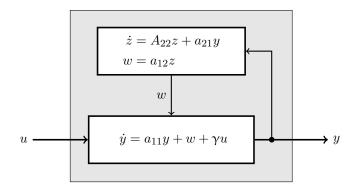
From linear to nonlinear systems



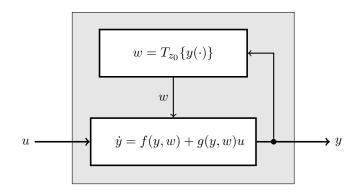
From linear to nonlinear systems



From linear to nonlinear systems



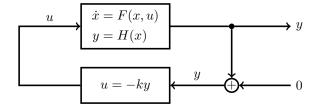
From linear to nonlinear systems



Assumptions:

- T_{z_0} is causal BIBO operator, i.e. $\exists \kappa(\cdot): \|w\| \leq \kappa(\|y\|)$
- f and g continuous and g > 0

High gain stabilization for nonlinear systems



Theorem

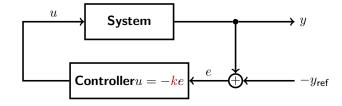
Assume there exists (nonlinear) coordinate transformation such that system is equivalent to

$$\dot{y} = f(y, w) + g(y, w)u, \quad w = T_{z_0}\{y(\cdot)\}\$$

with f, g continuous, T_{z_0} causal BIBO operator and g > 0, then

$$\forall y(0) \ \forall z_0 \ \exists K > 0 \ \forall k \geq K : \quad y(t) \to 0$$

Summary high gain feedback



Goal: Output tracking

Challenge: Unknown system parameters

Structural assumptions

- > Relative degree one with known sign of "high frequency gain"
- Stable zero dynamics

High gain feedback: u = -ke "works" for sufficiently large gain k > 0

Remaining challenge: When is k sufficiently large?

university of

High gain for relative degree one systems

Linear systems
Relative degree and zero dynamic
High gain stabilization
Nonlinear systems

Adaptive choice of gain

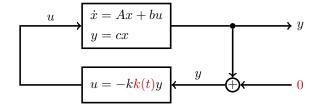
Adaptive stabilization

 λ -tracking

The funnel controller

The original funnel controller with proof sketch Relative degree two funnel controller Bang-bang funnel control Funnel synchronization

Summary



Theorem (High-gain stabilization)

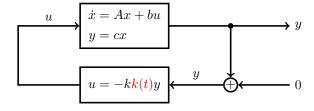
$$cb>0$$
 and stable zero-dynamics \Rightarrow $\exists K>0 \ \forall \ k\geq K: y(t)\to 0$

Key idea

university of

Why not make k time-varying with $\dot{k}(t) > 0$ as long as y(t) > 0?

Choosing gain adaptively, linear case



Theorem (Adaptive High-Gain Feedback, BYRNES & WILLEMS 1984)

cb>0 and stable zero-dynamics $\ \Rightarrow$

 $\dot{k}(t) = y(t)^2$ makes closed loop asymptotically stable

and $k(\cdot)$ remains bounded

Boundedness of $k(t) = \int_0^t y(s)^2 ds$ follows from final exponential decay of y.

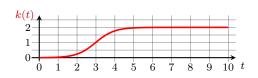
Simulations

Introduction

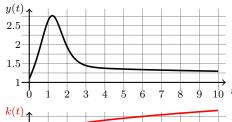
$$\dot{y} = y + u, \quad u(t) = -k(t)(y(t) - y_{\mathsf{ref}}(t)), \quad \dot{k} = (y - y_{\mathsf{ref}})^2$$

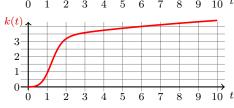
output and gain for $y_{ref} = 0$



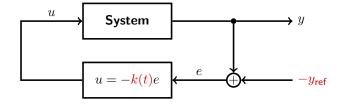


output and gain for $y_{\text{ref}} = 1$





High gain adaptive control and tracking?

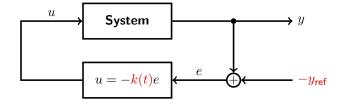


Unbounded gain

For $y_{\text{ref}} \neq 0$ the adaptation rule $\dot{k} = e^2$ leads to unbounded gain.

Recall: Constant gain for $y_{\text{ref}} \neq 0$ only leads to practical tracking, i.e. $e(t) \not \to 0$

High gain adaptive control and tracking?

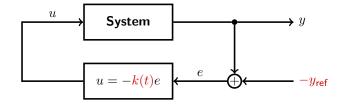


How to prevent unbounded growth?

Stop increasing gain when error is sufficiently small, e.g. via

$$\dot{k}(t) = \begin{cases} 0 & |e(t)| \le \lambda \\ |e(t)|(|e(t)| - \lambda) & |e(t)| > \lambda \end{cases}$$

High gain adaptive control and tracking?



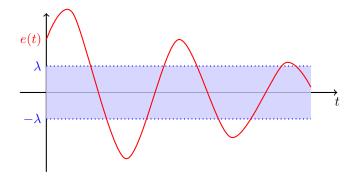
Theorem (λ -tracking, ILCHMANN & RYAN 1994)

Assume r.d.-one with " $\gamma > 0$ ", stable zero-dynamics and $y_{\text{ref}}, \dot{y}_{\text{ref}}$ bounded. For $\lambda > 0$ consider

$$\dot{k}(t) = \begin{cases} 0, & |e(t)| \le \lambda, \\ |e(t)| (|e(t)| - \lambda), & |e(t)| > \lambda. \end{cases}$$

Then the closed loop is practically stable, i.e. $\limsup_{t\to\infty} |e(t)| \leq \lambda$.

Remaining problems of λ -tracker



Problems:

- No guarantees when $|e(t)| \leq \lambda$
- > No bounds on transient behaviour
- Monotonically growing $k(\cdot) \Rightarrow$ Measurement noise unnecessarily amplified

High gain for relative degree one systems

Relative degree and zero dynamic High gain stabilization Nonlinear systems

Adaptive choice of gain

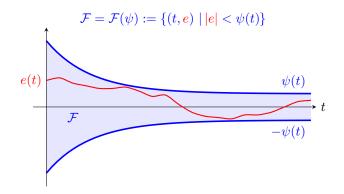
Adaptive stabilization λ -tracking

The funnel controller

The original funnel controller with proof sketch Relative degree two funnel controller Bang-bang funnel control Funnel synchronization

Summary

The funnel as time-varying error bound



Idea: k(t) large

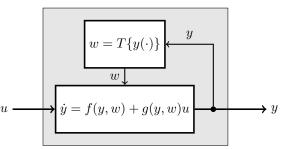
 \iff

Distance of e(t) to funnel boundary small

ightarrow Funnel gain:

 $k(t) = \frac{1}{\psi(t) - |e(t)|}$

Funnel controller works



System class

Equivalent to structure left:

- > T is causal and BIBO
- f, g continuous
- $\rightarrow q > 0$

Theorem (ILCHMANN, RYAN, SANGWIN 2002)

Assume $y_{\text{ref}}, \dot{y}_{\text{ref}}, \psi, \dot{\psi}$ bounded, $\liminf_{t\to\infty} \psi(t) > 0$ and $|e(0)| < \psi(0)$ where $e := y - y_{ref}$. Then

$$u(t) = -k(t)e(t)$$
 with $k(t) = \frac{1}{\psi(t) - |e(t)|}$

ensures that e(t) remains within funnel $\mathcal{F}(\psi)$ while k(t) remains bounded.

Proof

Step 1: Existence of solution

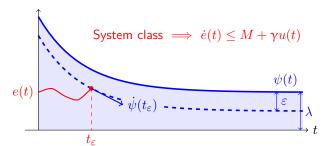
- Standard ODE theory: solution of closed loop exists on $[0,\omega)$ for $\omega\in(0,\infty]$
- \rightarrow Choose $\omega > 0$ maximal
-) If $\omega < \infty$ then " $|e(\omega)| = \psi(\omega)$ "

Step 2: We show that $\omega<\infty$ implies $|e(t)|-\psi(t)>\varepsilon$ for some $\varepsilon>0$ Error dynamics are given by

$$\dot{e} = f(y, w) - \dot{y}_{\mathsf{ref}} + g(y, w)u$$

 $\begin{array}{lll} \textit{Step 2a:} \; \text{Boundedness of } e, \, y, \, \text{and } w \\ e(t) \; \text{ within funnel for } t \in [0, \omega) & \textit{(domain of ODE)} \\ \Rightarrow e \; \text{bounded on } [0, \omega) & \textit{(because } \psi \; \text{is bounded)} \\ \Rightarrow y \; \text{bounded on } [0, \omega) & \textit{(because } y_{\text{ref}} \; \text{is bounded)} \\ \Rightarrow w \; \text{bounded on } [0, \omega) & \textit{(because } T \; \text{is BIBO)} \\ \Rightarrow f(y, w) \; \text{bounded and } g(y, w) \; \text{bounded away from zero on } [0, \omega) & \textit{(continuity)} \\ \Rightarrow \dot{e}(t) \leq M + \gamma u(t) \; \text{if } u(t) < 0 & \text{and} \quad \dot{e}(t) \geq -M + \gamma u(t) \; \text{if } u(t) > 0 \end{array}$

Step 2b: Funnel invariant (case e(t) > 0)



$$\mbox{Assumptions: } \varepsilon < \psi(0) - e(0) \qquad \quad \varepsilon < \lambda/2 \qquad \quad \psi(t) \geq \lambda$$

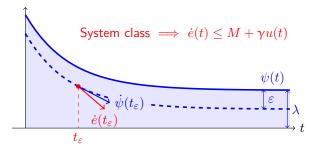
$$\varepsilon < \lambda/2$$
 $\psi(t) \ge \lambda$

$$e(t_{\varepsilon}) = \psi(t_{\varepsilon}) - \varepsilon \implies k(t_{\varepsilon}) = \frac{1}{\psi(t_{\varepsilon}) - |e(t_{\varepsilon})|} = \frac{1}{\varepsilon}$$

$$\implies u(t_{\varepsilon}) = -k(t_{\varepsilon})e(t_{\varepsilon}) \le -\frac{1}{\varepsilon}\frac{\lambda}{2}$$

$$\implies \dot{e}(t_{\varepsilon}) \le M - \frac{\gamma\lambda}{2\varepsilon}$$

university of



Assume
$$\dot{\psi}(t)>-\Psi$$
 and $\varepsilon\leq\frac{\gamma\lambda}{2(\Psi+M)}$ we have

$$\dot{e}(t_{\varepsilon}) \leq M - \frac{\gamma \lambda}{2\varepsilon} \leq -\Psi < \dot{\psi}(t_{\varepsilon})$$

Step 2b: Funnel invariant (case e(t) > 0)



Consequence: For sufficiently small $\varepsilon > 0$,

$$\mathcal{F}_{\varepsilon} := \{ (t, e) \mid |e(t)| < \psi(t) - \varepsilon \}$$

is positively invariant, i.e.

$$(0, e(0)) \in \mathcal{F}_{\varepsilon} \quad \Rightarrow \quad (t, e(t)) \in \mathcal{F}_{\varepsilon} \ \forall t \ge 0$$

and $\omega < \infty$ impossible!

Extensions of funnel controller

- Asymptotic tracking (LEE & TRENN 2019)
- Multi-Input Multi-Output (MIMO) (already in ILCHMANN ET AL. 2002)
- Higher relative degree (ILCHMANN ET AL. 2007, BERGER ET AL. 2018)
- > Input saturation (ILCHMANN ET AL. 2004, HOPFE ET AL. 2010)
- Bang-Bang funnel control (LIBERZON & TRENN 2013)
- Funnel synchronization for multi-agent systems (SHIM & TRENN 2015)
- > For DAE-systems (BERGER 2016)

Relative degree two via backstepping

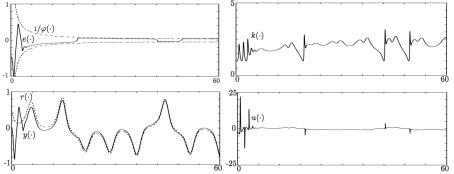
For rel. deg. two systems, Funnel Controller is given by (ILCHMANN ET AL. 2007):

$$u(t) = -k(t)e(t) - (\|e(t)\|^2 + k(t)^2)k(t)^4(1 + \|\xi(t)\|^2)(\xi(t) + k(t)e(t))$$

$$k(t) = 1/(1 - \varphi(t)^2 \|e(t)\|^2)$$

$$\vdots (t)$$

$$\dot{\xi}(t) = -\xi(t) + u(t)$$



Taken from: ILCHMANN, RYAN, TOWNSEND 2007, SICON

Alternative Approach for relative degree two

Use two funnels, one for error and one for derivative of error

Simple Control Law

$$u(t) = -k_0(t)^2 e(t) - k_1(t)\dot{e}(t)$$

$$k_i(t) = \frac{1}{\psi_i(t) - |e(t)|}, \quad i = 0, 1$$

System class:
$$\ddot{y}(t) = f(p_f(t), T_f\{y, \dot{y}\}(t)) + g(p_g(t), T_g\{y, \dot{y}\}(t))u(t)$$

Theorem (HACKL ET AL. 2012)

The above Funnel Controller for relative-degree-two-systems works (under mild assumptions on ψ_0 and ψ_1).

Experimental verification

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ \gamma \end{bmatrix} (u(t) + u_L(t) - (Tx_2)(t)),$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t),$$

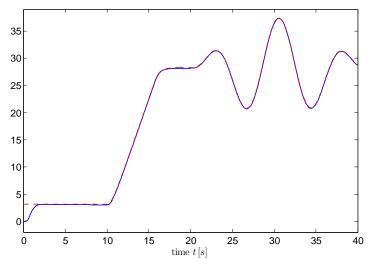
 x_1 : angle of rotating machine

 $x_2 = \dot{x}_1$: angular velocity

 u_L : unknown load

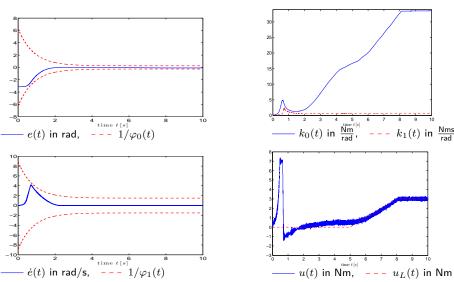
 $T: \mathcal{C}(\mathbb{R}_{\geq 0} \to \mathbb{R}) \to \mathcal{L}^{\infty}_{loc}(\mathbb{R}_{\geq 0} \to \mathbb{R})$ friction operator

Tracking control in experiment

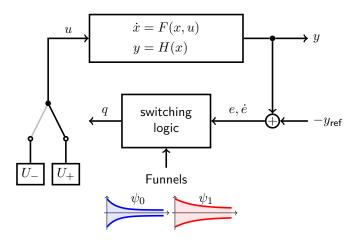


— Measured angle y(t) in rad, --- reference angle $y_{ref}(t)$ in rad

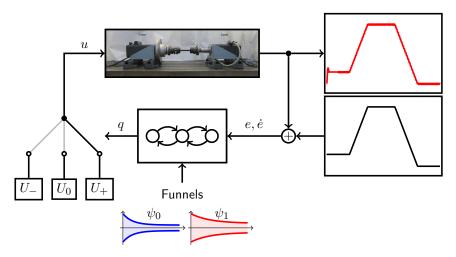
Experiment: Error, gains, input



Bang-Bang Funnel Control



Bang-Bang Funnel Control



Funnel synchronization - setup

Given

N agents with individual n-dimensional dynamics:

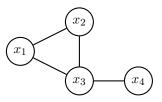
$$\dot{x}_i = f_i(t, x_i) + u_i$$

- undirected connected coupling-graph G = (V, E)
- \rightarrow local feedback $u_i = \gamma_i(x_i, x_{\mathcal{N}_i})$

Desired

Control design for practical synchronization

$$x_1 \approx x_2 \approx \ldots \approx x_n$$



$$u_1 = \gamma_1(x_1, x_2, x_3)$$

$$u_2 = \gamma_2(x_2, x_1, x_3)$$

$$u_3 = \gamma_3(x_3, x_1, x_2, x_4)$$

$$u_4 = \gamma_4(x_4, x_3)$$

Let $\mathcal{N}_i := \{j \in V \mid (j,i) \in E\}$ and $d_i := |\mathcal{N}_i|$ and \mathcal{L} be the Laplacian of G.

Diffusive coupling

$$u_i = -k \sum_{j \in \mathcal{N}_i} (x_i - x_j)$$
 or, equivalently, $u = -k \mathcal{L} x$

Theorem (Practical synchronization, ${ m Kim}$ et al. 2013)

Assumptions: G connected, all solutions of average dynamics

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t))$$

remain bounded. Then $\forall \varepsilon > 0 \ \exists K > 0 \ \forall k \geq K$: Diffusive coupling results in

$$\limsup_{t \to \infty} ||x_i(t) - x_j(t)|| < \varepsilon \quad \forall i, j \in V$$

Remarks on high-gain result

Common trajectory

It even holds that

$$\limsup_{t \to \infty} |x_i(t) - s(t)| < \varepsilon/2,$$

where
$$s(\cdot)$$
 solves
$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^N f_i(t,s(t)), \quad s(0) = \tfrac{1}{N} \sum_{i=1}^N x_i.$$

Independent of coupling structure and amplification k.

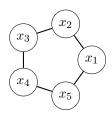
Error feedback

With $e_i := x_i - \overline{x}_i$ and $\overline{x}_i := \frac{1}{d_i} \sum_{j \in \mathcal{N}_i} x_j$ diffusive coupling has the form

$$u_i(t) = -ke_i(t)$$

Attention: $e_i \neq x_i - s$, in particular, agents do not know "limit trajectory" $s(\cdot)$

Example (taken from Kim et al. 2015)



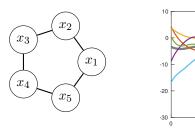
Simulations in the following for ${\cal N}=5$ agents with dynamics

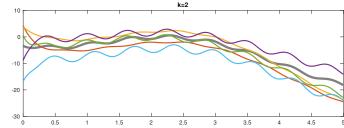
$$f_i(t, x_i) = (-1 + \delta_i)x_i + 10\sin t + 10m_i^1\sin(0.1t + \theta_i^1) + 10m_i^2\sin(10t + \theta_i^2),$$

with randomly chosen parameters $\delta_i, m_i^1, m_i^2 \in \mathbb{R}$ and $\theta_i^1, \theta_i^2 \in [0, 2\pi]$.

Parameters identical in all following simulations, in particular $\delta_2 > 1$, hence agent 2 has unstable dynamics (without coupling).

Example (taken from KIM et al. 2015)





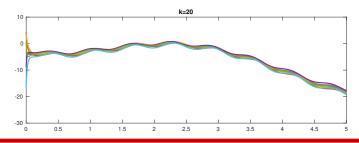
$$u = -k \mathcal{L} x$$

Introduction

gray curve:

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t))$$

$$s(0) = \frac{1}{N} \sum_{i=1}^{N} x_i(0)$$



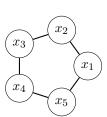
Funnel synchronization: Initial idea

Reminder diffusive coupling: $u_i = -k_i e_i$ with $e_i = x_i - \overline{x}_i$.

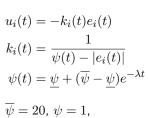
Combine diffusive coupling with Funnel Controller

$$u_i(t) = -k_i(t) e_i(t)$$
 with $k_i(t) = \frac{1}{\psi(t) - |e_i(t)|}$

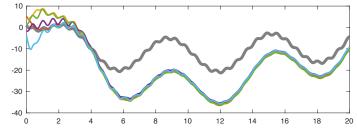
First simulations

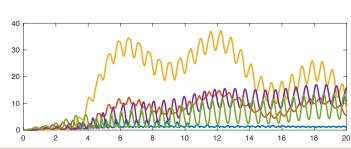


Introduction



 $\lambda = 1$





Observations from simulations

Funnel synchronization seems to work

- > errors remain within funnel
- practical synchronizations is achieved
- \rightarrow limit trajectory does not coincide with solution $s(\cdot)$ of

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t)), \qquad s(0) = \frac{1}{N} \sum_{i=1}^{N} x_i(0).$$

What determines the new limiting trajectory?

- Coupling graph?
- > Funnel shape?
- Gain function?

Diffusive coupling revisited

Diffusive coupling for weighted graph

$$u_i = -k \sum_{i=1}^{N} \alpha_{ij} \cdot (x_i - x_j) \longrightarrow u_i = -\sum_{i=1}^{N} k_{ij} \cdot \alpha_{ij} \cdot (x_i - x_j)$$

where $\alpha_{ij} = \alpha_{ji} \in \{0,1\}$ is the weight of edge (i,j)

Conjecture

If $k_{ij} = k_{ji}$ are all sufficiently large, then practical synchronization occurs with desired limit trajectory s of average dynamics.

Proof technique from KIM et al. 2013 should still work in this setup.

university of groningen

Summary

Edgewise Funnel synchronization

Diffusive coupling \rightarrow edgewise Funnel synchronization

$$u_i = -\sum_{i=1}^{N} k_{ij} \cdot \alpha_{ij} \cdot (x_i - x_j) \longrightarrow u_i = -\sum_{i=1}^{N} \frac{\mathbf{k}_{ij}(\mathbf{t})}{\mathbf{k}_{ij}} \cdot (x_i - x_j)$$

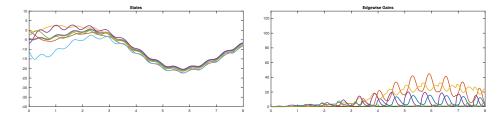
Edgewise error feedback

$$k_{ij}(t) = \frac{1}{\psi(t) - |e_{ij}|}, \quad \text{with} \quad e_{ij} := x_i - x_j$$

Properties:

- \rightarrow Decentralized, i.e. u_i only depends on state of neighbors
- \rightarrow Symmetry, $k_{ij} = k_{ji}$
- \rightarrow Laplacian feedback, $u = -\mathcal{L}_K(t, x)x$

Simulation (from $TRENN\ 2017$)

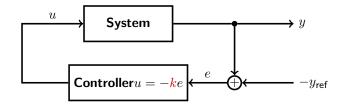


Properties

- + Synchronization occurs
- + Predictable limit trajectory (given by average dynamics)
- + Local feedback law

Summary

Summary high gain feedback and funnel control



Goal: Output tracking

Challenge: Unknown system parameters

Structural assumptions

- > Relative degree one with known sign of "high frequency gain"
- Stable zero dynamics

High gain feedback: u = -ke "works" for sufficiently large gain k > 0

Funnel gain: $k(t) = \frac{1}{\psi(t) - |e(t)|}$ achieves tracking with prescribed perforance