Switched differential algebraic equations: Jumps and impulses

Stephan Trenn
Jan C. Willems Center for Systems and Control
University of Groningen, Netherlands
Supported by NWO Vidi grant 639.032.733
IT-EE PhD-seminar, University of Naples Frederico II, 1 June 2022

Why DAEs?

Electric circuit modelling

Basic circuit elements:
, Resistors: $v_{R}(t)=R i_{R}(t)$
, Capacitor: $C \frac{\mathrm{~d}}{\mathrm{~d} t} v_{C}(t)=i_{C}(t)$
, Inductor: $L \frac{\mathrm{~d}}{\mathrm{~d} t} i_{L}(t)=v_{L}(t)$
, Voltage source: $v_{S}(t)=u(t)$ (current i_{S} free)

Physical variables

voltage and current for each circuit element

Defining equations

- element behaviors (voltage-current relation)
- Kirchhoff laws (voltage-loops, current-nodes)

Kirchhoff laws:
, $i_{s}=i_{L}$
) $i_{L}=i_{R}+i_{C}$
) $v_{s}=v_{L}+v_{R}$
) $v_{R}=v_{C}$

We already have arrived at a DAE model!

$$
\text { With } x=\left(v_{R}, i_{R}, v_{C}, i_{C}, v_{L}, i_{L}, v_{S}, i_{S}\right) \text { we have } E \dot{x}=A x+B u
$$

Different circuit modeling frameworks

DAE-model:

ODE-model:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{i_{L}}{v_{c}} & =\left[\begin{array}{cc}
0 & \frac{-1}{L} \\
\frac{1}{C} & \frac{-R}{C}
\end{array}\right]\binom{i_{L}}{v_{c}}+\left[\begin{array}{c}
\frac{1}{L} \\
0
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\binom{i_{L}}{v_{c}}
\end{aligned}
$$

Transfer function: $\quad g(s)=\frac{R+C s}{C L s^{2}+L R s+1}$

Which is the best?

None! All have advantages and disadvantages.

Pros and Cons of DAE formulation

$\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & C & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & L & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \dot{x}=\left[\begin{array}{cccccccc}-1 & R & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & -1 & 0 & -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right] u$

DAE-models: Advantages

, Most natural and intuitive way to model (just write down all first-principal equations)
, Inputs do not need to be specified a priori ($m E \dot{x}=A x$ with rectangular E, A)
, Connecting two DAE models is trivial (just add new algebraic constraints)
, Sudden structural changes (switches or faults) can be modeled easily

DAE-models: Disadvantages

, Solution theory more complicated
, Not so many standard tools available for numerical solutions, control design, ...
, Harder to work with manually

DAEs are not ODEs

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] x+\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right) } \\
\dot{x}_{2} & =x_{1}+f_{1} \longrightarrow x_{1}=-f_{1}-\dot{f}_{2} \\
0 & =x_{2}+f_{2} \longrightarrow x_{2}=-f_{2} \\
0 & =f_{3} \quad \text { no restriction on } x_{3}
\end{aligned}
$$

Key differences to ODEs

，For fixed inhomogeneity，initial values cannot be chosen arbitrarily

$$
\left(x_{1}(0)=-f_{1}(0)-\dot{f}_{2}(0), x_{2}(0)=f_{2}(0)\right)
$$

，For fixed inhomogeneity，solution not uniquely determined by initial value（ x_{3} free）
，Inhomogeneity not arbitrary
－structural restrictions $\left(f_{3}=0\right)$
－differentiability restrictions（ \dot{f}_{2} must be well defined）

Content

Introduction

Solution properties of DAEs
Equivalence and four types of DAEs
Regularity and quasi-Weierstrass form
Wong sequences

Switched DAEs

Distributional solutions - Dilemma
Review: classical distribution theory
Piecewise smooth distributions
Distributional solutions
Impulse-freeness

Observability

Definition
The single switch result
Calculation of the four subspaces

Summary

Equivalence of matrix pairs and DAEs

Definition (Equivalence of matrix pairs)

$$
\begin{array}{r}
\left(E_{1}, A_{1}\right),\left(E_{2}, A_{2}\right) \text { are called equivalent }: \Longleftrightarrow \quad\left(E_{2}, A_{2}\right)=\left(S E_{1} T, S A_{1} T\right) \\
\text { short: } \quad\left(E_{1}, A_{1}\right) \cong\left(E_{2}, A_{2}\right) \quad \text { or } \quad\left(E_{1}, A_{1}\right) \stackrel{S, T}{\cong}\left(E_{2}, A_{2}\right)
\end{array}
$$

Equivalence and solution behavior

For $\left(E_{1}, A_{1}\right) \cong\left(E_{2}, A_{2}\right)$ and $B_{2}=S B_{1}, C_{2}=C_{1} T$ we have:

$$
(x, u, y) \text { solves }\left\{\begin{aligned}
E_{1} \dot{x} & =A_{1} x+B_{1} u \quad \stackrel{x=T z}{\Longleftrightarrow} \quad(z, u, y) \text { solves }\left\{\begin{aligned}
E_{2} \dot{z} & =A_{2} z+B_{2} u \\
y & =C_{1} x
\end{aligned} \quad \stackrel{C}{2} z\right.
\end{aligned}\right.
$$

Goal: Reveal inner structure of DAEs

Find S and T such that ($S E T, S A T$) has simple structure

Four types of DAEs

Definition

, (E, A) is of type ODE $: \Longleftrightarrow(E, A) \cong(I, J)$
, (E, A) is of type nDAE $: \Longleftrightarrow(E, A) \cong(N, I), N$ nilpotent (i.e. $\left.N^{\nu}=0\right)$
, (E, A) is of type uDAE $: \Longleftrightarrow(E, A) \cong\left(\operatorname{diag}\left(E_{1}, \ldots, E_{k}\right), \operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)\right)$, where $\left(E_{i}, A_{i}\right)=\left(\left[\begin{array}{lllll}1 & 0 & & \\ & \ddots & \ddots & \\ & & \ddots & \\ & & 1 & 0\end{array}\right],\left[\begin{array}{lllll}0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1\end{array}\right]\right) \quad$ underdetermined prototypes
, (E, A) is of type oDAE $: \Longleftrightarrow(E, A) \cong\left(\operatorname{diag}\left(E_{1}, \ldots, E_{k}\right), \operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)\right)$,

$$
\text { where } \quad\left(E_{i}, A_{i}\right)=\left(\left[\begin{array}{lll}
0 & & \\
1 & \ddots & \\
& \ddots & 0
\end{array}\right],\left[\begin{array}{lll}
1 & & \\
0 & \ddots & \\
& & \ddots
\end{array}\right]\right) \text { overdetermined prototypes }
$$

Every DAE can be decoupled in these four types! m Quasi-Kronecker form

Quasi-Kronecker form

Theorem (Quasi-Kronecker Form, Berger \& T. '12,'13)

For any $E, A \in \mathbb{R}^{\ell \times n}, \exists$ invertible $S \in \mathbb{R}^{\ell \times \ell}$ and invertible $T \in \mathbb{R}^{n \times n}$:

where
) $\left(E_{U}, A_{U}\right)$ is of type uDAE (underdetermined part)
) $\left(E_{J}, A_{J}\right)$ is of type ODE (ODE part)
, $\left(E_{N}, A_{N}\right)$ is of type nDAE (nilpotent part)
) $\left(E_{O}, A_{O}\right)$ is of type oDAE (overdetermined part)

Regularity

Definition

(E, A) is regular $: \Longleftrightarrow \quad \ell=n$ and $\operatorname{det}(s E-A) \not \equiv 0$

Theorem (Regularity characterizations)

The following statements are equivalent:
, (E, A) is regular
, $(E, A) \cong\left(\left[\begin{array}{cc}I & 0 \\ 0 & N\end{array}\right],\left[\begin{array}{ll}J & 0 \\ 0 & I\end{array}\right]\right)$ (quasi-Weierstrass form)
, $E \dot{x}=A x+B u$ has solution for all u and is uniquely determined by $x(0)$
Regularity means existence and uniqueness of solutions
BUT not for all initial conditions $x(0)=x_{0}$!
Example: $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \dot{x}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] x+\left[\begin{array}{l}1 \\ 0\end{array}\right] u \leadsto \leadsto$ regular, but $x_{2}(t)=0$ for all t

Jump and flow

Questions

, How to find consistency space?
, What determines the jump $x\left(0^{-}\right) \mapsto x\left(0^{+}\right)$?

Wong-sequences and Wong limits

Definition (Wong sequences)

For $E, A \in \mathbb{R}^{\ell \times n}$ let

$$
\begin{aligned}
\mathcal{V}_{0}:=\mathbb{R}^{n}, & \mathcal{V}_{i+1}:=A^{-1}\left(E \mathcal{V}_{i}\right), & & i=0,1,2, \ldots \\
\mathcal{W}_{0}:=\{0\}, & \mathcal{W}_{j+1}:=E^{-1}\left(A \mathcal{W}_{j}\right) & , & j=0,1,2, \ldots
\end{aligned}
$$

Here $M \mathcal{S}:=\{M x \mid x \in \mathcal{S}\}$ and $M^{-1} \mathcal{S}:=\{x \mid M x \in \mathcal{S}\}$

Wong limits

$$
\begin{gathered}
\mathcal{V}_{0} \supset \mathcal{V}_{1} \supset \ldots \supset \mathcal{V}_{i^{*}}=\mathcal{V}_{i^{*}+1}=\mathcal{V}_{i^{*}+2}=\ldots \\
\mathcal{W}_{0} \subset \mathcal{W}_{1} \subset \ldots \subset \mathcal{W}_{j^{*}}=\mathcal{W}_{j^{*}+1}=\mathcal{W}_{j^{*}+2}=\ldots
\end{gathered}
$$

Then we can define: $\mathcal{V}^{*}:=\bigcap_{i \in \mathbb{N}} \mathcal{V}_{i}=\mathcal{V}_{i^{*}} \quad$ and $\quad \mathcal{W}^{*}:=\bigcup_{j \in \mathbb{N}} \mathcal{W}_{j}=\mathcal{W}_{j^{*}}$

Motivation of first Wong sequence

Definition (Consistency space)

The consistency space of $E \dot{x}=A x$ is

$$
\mathfrak{C}_{(E, A)}:=\left\{x_{0} \in \mathbb{R}^{n} \mid \exists \text { sol. } x \text { of } E \dot{x}=A x \text { with } x(0)=x_{0}\right\}
$$

Inductive refinement of consistency space

, Initially no knowledge $m \mathcal{V}_{0}=\mathbb{R}^{n} \supseteq \mathfrak{C}_{(E, A)} \leadsto \rightarrow$ trivial constraint $\dot{x} \in \mathcal{V}_{0}$
, $E \dot{x}=A x$ constraints x to $x \in A^{-1}\{E \dot{x}\} \subseteq A^{-1}\left(E \mathcal{V}_{0}\right)=: \mathcal{V}_{1} \supseteq \mathfrak{C}_{(E, A)}$
, $\dot{x}(t):=\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h} \in \mathcal{V}_{1}$
, $E \dot{x}=A x$ constraints x to $x \in A^{-1}\{E \dot{x}\} \subseteq A^{-1}\left(E \mathcal{V}_{1}\right)=: \mathcal{V}_{2} \supseteq \mathfrak{C}_{(E, A)}$
, $\dot{x} \in \mathcal{V}_{2} \rightsquigarrow x \in A^{-1}\left(E \mathcal{V}_{2}\right)=: \mathcal{V}_{3} \subseteq \mathfrak{C}_{(E, A)}$
, $\mathcal{V}^{*} \supseteq \mathfrak{C}_{(E, A)}, \quad$ in fact, it turns out that $\mathcal{V}^{*}=\mathfrak{C}_{(E, A)}$

Regularity and Wong limits

Theorem (Ilchmann et al. 2012)

, (E, A) is regular $\Longleftrightarrow \mathcal{V}^{*} \oplus \mathcal{W}^{*}=\mathbb{R}^{n}$ and $E \mathcal{V}^{*} \oplus A \mathcal{W}^{*}=\mathbb{R}^{\ell}$
, $T:=[V, W], S=[E V, A W]^{-1}$ where $\operatorname{im} V=\mathcal{V}^{*}$ and $\mathrm{im} W=\mathcal{W}^{*}$ gives QWF

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
I & 0 \\
0 & N
\end{array}\right],\left[\begin{array}{ll}
J & 0 \\
0 & I
\end{array}\right]\right)
$$

Definition (Consistency projector and differential/impulsive selectors)
, Consistency projector $\Pi_{(E, A)}:=T\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right] T^{-1}$
, Differential selector $\Pi_{(E, A)}^{\text {diff }}:=T\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right] S$
, Impulse selector $\Pi_{(E, A)}^{\mathrm{imp}}:=T\left[\begin{array}{ll}0 & 0 \\ 0 & I\end{array}\right] S$

Explicit solution formula for regular DAEs

$$
E \dot{x}=A x+B u \quad(E, A) \stackrel{S, T}{\cong}\left(\left[{ }^{I}{ }_{N}\right],\left[{ }^{J^{\prime}}{ }_{I}\right]\right)
$$

Theorem (Solution formula, T. 2012)
(x, u) is a smooth solution of $E \dot{x}=A x+B u \Longleftrightarrow$

$$
\begin{aligned}
& x(t)=e^{A^{\text {diff }} t} \Pi_{(E, A)} x(0)+\int_{0}^{t} e^{A^{\text {diff }}(t-s)} B^{\text {diff }} u(s) \mathrm{d} s-\sum_{i=0}^{\nu-1}\left(E^{\mathrm{imp}}\right)^{i} B^{\mathrm{imp}} u^{(i)}(t) \\
& \Longleftrightarrow x=x^{\text {diff }} \oplus x^{\text {imp }} \text { where } \\
& \dot{x}^{\text {diff }}=A^{\text {diff }} x+B^{\text {diff }} u, \quad x^{\text {diff }}(0) \in \operatorname{im} \Pi_{(E, A)}, \quad x^{\text {diff }}(t) \in \mathcal{V}^{*} \\
& E^{\mathrm{imp}} \dot{x}^{\mathrm{imp}}=x^{\mathrm{imp}}+B^{\mathrm{imp}} u, \quad x^{\mathrm{imp}}(t) \in \mathcal{W}^{*}
\end{aligned}
$$

Here $\nu>0$ is smallest number such that $N^{\nu}=0$ and is called index of DAE

Consistency projector

Corollary (Response to inconsistent initial value)

For $u=0$ we have

$$
x\left(0^{+}\right)=\Pi_{(E, A)} x\left(0^{-}\right), \quad \Pi_{(E, A)}=T\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] T^{-1}=\Pi_{\mathcal{V}^{*}}^{\mathcal{V}^{*}}
$$

Other jump rules

Wong-sequence based jump rule coincides with (Costantini et al. 2013):
, passivity based energy minimization jump rule (Frasca et al. 2010)
, Conservation of charge/flux (Liou 1972)
, Laplace transform approach (Opal \& Vlach 1990)

Content

Introduction
Solution properties of DAEsEquivalence and four types of DAEsRegularity and quasi-Weierstrass formWong sequences
Switched DAEs
Distributional solutions - Dilemma
Review: classical distribution theory
Piecewise smooth distributions
Distributional solutions
Impulse-freeness
ObservabilityDefinitionThe single switch result
Calculation of the four subspaces
Summary

Motivating example

inductivity law:
switch dependent: $0=v-u$

$$
L \frac{\mathrm{~d}}{\mathrm{~d} t} i=v
$$

$$
t \geq 0
$$

$$
0=i
$$

Motivating example

Motivating example

$E_{1} \dot{x}=A_{1} x+B_{1} u$
on $(-\infty, 0)$

$$
t \geq 0
$$

$E_{2} \dot{x}=A_{2} x+B_{2} u$
on $[0, \infty)$
\rightarrow switched differential-algebraic equation

Solution of circuit example

$$
\begin{array}{rlrl}
t & <0 & t & \geq 0 \\
v & =u & & =0 \\
L \frac{\mathrm{~d}}{\mathrm{~d} t} i & =v & v & =L \frac{\mathrm{~d}}{\mathrm{~d} t} i
\end{array}
$$

Solution (assume constant input u):

Dirac impulse is "real"

Dirac impulse

Not just a mathematical artifact!

Drawing: Harry Winfield Secor, public domain

Definition

Switch \rightarrow Different DAE models (=modes) depending on time-varying position of switch

Definition (Switched DAE)

Switching signal $\sigma: \mathbb{R} \rightarrow\{1, \ldots, N\}$ picks mode at each time $t \in \mathbb{R}$:

$$
\begin{align*}
E_{\sigma(t)} \dot{x}(t) & =A_{\sigma(t)} x(t)+B_{\sigma(t)} u(t) \tag{swDAE}\\
y(t) & =C_{\sigma(t)} x(t)+D_{\sigma(t)} u(t)
\end{align*}
$$

Attention

Each mode might have different consistency spaces
\Rightarrow inconsistent initial values at each switch
\Rightarrow Dirac impulses, in particular distributional solutions

Definition

Switch \rightarrow Different DAE models (=modes) depending on time-varying position of switch

Definition (Switched DAE)

Switching signal $\sigma: \mathbb{R} \rightarrow\{1, \ldots, N\}$ picks mode at each time $t \in \mathbb{R}$:

$$
\begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x+D_{\sigma} u
\end{aligned}
$$

Attention

Each mode might have different consistency spaces
\Rightarrow inconsistent initial values at each switch
\Rightarrow Dirac impulses, in particular distributional solutions

Distribution theory - basic ideas

Distributions - overview

, Generalized functions
) Arbitrarily often differentiable
, Dirac-Impulse δ is "derivative" of Heaviside step function $\mathbb{1}_{[0, \infty)}$
Two different formal approaches

1) Functional analytical: Dual space of the space of test functions
(L. Schwartz 1950)
2) Axiomatic: Space of all "derivatives" of continuous functions
(J. Sebastião e Silva 1954)

Distributions - formal

Definition (Test functions)

$\mathcal{C}_{0}^{\infty}:=\{\varphi: \mathbb{R} \rightarrow \mathbb{R} \mid \varphi$ is smooth with compact support $\}$

Definition (Distributions)

$\mathbb{D}:=\left\{D: \mathcal{C}_{0}^{\infty} \rightarrow \mathbb{R} \mid D\right.$ is linear and continuous $\}$
Definition (Regular distributions)
$f \in \mathcal{L}_{1, \text { loc }}(\mathbb{R} \rightarrow \mathbb{R}): \quad f_{\mathbb{D}}: \mathcal{C}_{0}^{\infty} \rightarrow \mathbb{R}, \varphi \mapsto \int_{\mathbb{R}} f(t) \varphi(t) \mathrm{d} t \in \mathbb{D}$

Definition (Derivative)
$D^{\prime}(\varphi):=-D\left(\varphi^{\prime}\right)$

Dirac Impulse at $t_{0} \in \mathbb{R}$

$\delta_{t_{0}}: \mathcal{C}_{0}^{\infty} \rightarrow \mathbb{R}, \quad \varphi \mapsto \varphi\left(t_{0}\right)$
$\left(\mathbb{1}_{[0, \infty) \mathbb{D}}\right)^{\prime}(\varphi)=-\int_{\mathbb{R}} \mathbb{1}_{[0, \infty)} \varphi^{\prime}=-\int_{0}^{\infty} \varphi^{\prime}=-(\varphi(\infty)-\varphi(0))=\varphi(0)$

Multiplication with functions

Definition (Multiplication with smooth functions)

$\alpha \in \mathcal{C}^{\infty}: \quad(\alpha D)(\varphi):=D(\alpha \varphi)$

$$
\begin{align*}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x+D_{\sigma} u \tag{swDAE}
\end{align*}
$$

Coefficients not smooth

Problem: $E_{\sigma}, A_{\sigma}, C_{\sigma} \notin \mathcal{C}^{\infty}$
Observation, for $\sigma_{\left[t_{i}, t_{i+1}\right)} \equiv p_{i}, i \in \mathbb{Z}$:

$$
\begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x+D_{\sigma} u
\end{aligned} \quad \Leftrightarrow \quad \forall i \in \mathbb{Z}: \begin{aligned}
\left(E_{p_{i}} \dot{x}\right)_{\left[t_{i}, t_{i+1}\right)} & =\left(A_{p_{i}} x+B_{p_{i}} u\right)_{\left[t_{i}, t_{i+1}\right)} \\
y_{\left[t_{i}, t_{i+1}\right)} & =\left(C_{p_{i}} x+D_{p_{i}} u\right)_{\left[t_{i}, t_{i+1}\right)}
\end{aligned}
$$

BUT: Distributional restriction impossible to define (T. 2022)

Dilemma

Switched DAEs

, Examples: distributional solutions
, Multiplication with non-smooth coefficients
, Or: Restriction on intervals

Distributions

, Distributional restriction not possible
, Multiplication with non-smooth coefficients not possible
, Initial value problems cannot be formulated

Underlying problem

Space of distributions too big.

Piecewise smooth distributions

Define a suitable smaller space:
Definition (Piecewise smooth distributions $\mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}, \mathrm{T} .2009$)

$$
\mathbb{D}_{\mathrm{pw}} \infty:=\left\{\begin{array}{l|l}
f_{\mathbb{D}}+\sum_{t \in T} D_{t} & \begin{array}{l}
f \in \mathcal{C}_{\mathrm{pw}}^{\infty}, \\
T \subseteq \mathbb{R} \text { locally finite, } \\
\forall t \in T: D_{t}=\sum_{i=0}^{n_{t}} a_{i}^{t} \delta_{t}^{(i)}
\end{array}
\end{array}\right\}
$$

Properties of $\mathbb{D}_{\mathrm{pwC}}{ }^{\infty}$

, $\mathcal{C}_{\mathrm{pw}}^{\infty}$ " \subseteq " $\mathbb{D}_{\mathrm{pw} \mathcal{C}^{\infty}}$ and $D \in \mathbb{D}_{\mathrm{pw} \mathcal{C}^{\infty}} \Rightarrow D^{\prime} \in \mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}$
, Well definded restriction $\mathbb{D}_{\mathrm{pw}} \infty \rightarrow \mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}$

$$
D=f_{\mathbb{D}}+\sum_{t \in T} D_{t} \quad \mapsto \quad D_{M}:=\left(f_{M}\right)_{\mathbb{D}}+\sum_{t \in T \cap M} D_{t}
$$

, Multiplication with $\alpha=\sum_{i \in \mathbb{Z}} \alpha_{i\left[t_{i}, t_{i+1}\right)} \in \mathcal{C}_{\mathrm{pw}}^{\infty}$ well defined:

$$
\alpha D:=\sum_{i \in \mathbb{Z}} \alpha_{i} D_{\left[t_{i}, t_{i+1}\right)}
$$

, Evaluation at $t \in \mathbb{R}: D\left(t^{-}\right):=f\left(t^{-}\right), D\left(t^{+}\right):=f\left(t^{+}\right)$
, Impulses at $t \in \mathbb{R}: D[t]:= \begin{cases}D_{t}, & t \in T \\ 0, & t \notin T\end{cases}$

Application to (swDAE)

(x, u) solves $(s w D A E) \quad: \Leftrightarrow \quad(s w D A E)$ holds in $\mathbb{D}_{\mathrm{pw}} \mathcal{C}^{\infty}$

Relevant questions

$$
\begin{align*}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x+D_{\sigma} u \tag{swDAE}
\end{align*}
$$

Piecewise-smooth distributional solution framework
$x \in \mathbb{D}_{\text {pwC }}^{n}, u \in \mathbb{D}_{\text {pw }}^{m}{ }^{\infty}, y \in \mathbb{D}_{\text {pwC }}^{p}$
, Existence and uniqueness of solutions?
, Jumps and impulses in solutions?
, Conditions for impulse free solutions?
, Control theoretical questions

- Stability and stabilization
- Observability and observer design
- Controllability and controller design

Existence and uniqueness of solutions for (swDAE)

$$
\begin{equation*}
E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u \tag{swDAE}
\end{equation*}
$$

Basic assumptions
, $\sigma \in \Sigma_{0}:=\left\{\sigma: \mathbb{R} \rightarrow\{1, \ldots, N\} \left\lvert\, \begin{array}{l}\sigma \text { is piecewise constant and } \\ \left.\sigma\right|_{(-\infty, 0)} \text { is constant }\end{array}\right.\right\}$.
, $\left(E_{p}, A_{p}\right)$ is regular $\forall p \in\{1, \ldots, N\}$, i.e. $\operatorname{det}\left(s E_{p}-A_{p}\right) \not \equiv 0$

Theorem (T. 2009)

Consider (swDAE) satisfying the basic assumptions. Then

$$
\forall u \in \mathbb{D}_{\mathrm{pw}}^{m} \mathcal{C}^{\infty} \forall \sigma \in \Sigma_{0} \exists \text { solution } x \in \mathbb{D}_{\mathrm{pw}}^{n} \mathcal{C}^{\infty}
$$

and $x\left(0^{-}\right)$uniquely determines x.

Inconsistent initial values

$$
E \dot{x}=A x+B u, \quad x(0)=x^{0} \in \mathbb{R}^{n}
$$

Initial trajectory problem $=$ special switched DAE

$$
\begin{align*}
x_{(-\infty, 0)} & =x_{(-\infty, 0)}^{0} \tag{ITP}\\
(E \dot{x})_{[0, \infty)} & =(A x+B u)_{[0, \infty)}
\end{align*}
$$

Corollary (Consistency projector and Dirac impulses)

Unique jumps and impulses for ITP, in particular, for $u=0$,

$$
\begin{gathered}
x\left(0^{+}\right)=\Pi_{(E, A)} x^{0}\left(0^{-}\right) \\
x[0]=-\sum_{i=0}^{\nu-2}\left(E^{\mathrm{imp}}\right)^{i+1} x^{0}\left(0^{-}\right) \delta^{(i)}
\end{gathered}
$$

Sufficient conditions for impulse-freeness

Question

When are all solutions of homogenous (swDAE) $E_{\sigma} \dot{x}=A_{\sigma} x$ impulse free?
Note: Jumps are OK.

Lemma (Sufficient conditions)
, $\left(E_{p}, A_{p}\right)$ all have index one (i.e. $\left(s E_{p}-A_{p}\right)^{-1}$ is proper) \Rightarrow (swDAE) impulse free
) all consistency spaces of (E_{p}, A_{p}) coincide $\Rightarrow \quad(s w D A E)$ impulse free

Characterization of impulse-freeness

Theorem (Impulse-freeness, T. 2009)

The switched DAE $E_{\sigma} \dot{x}=A_{\sigma} x$ is impulse free $\forall \sigma \in \Sigma_{0}$

$$
\Leftrightarrow \quad E_{q}\left(I-\Pi_{q}\right) \Pi_{p}=0 \quad \forall p, q \in\{1, \ldots, N\}
$$

where $\Pi_{p}:=\Pi_{\left(E_{p}, A_{p}\right)}, p \in\{1, \ldots, N\}$ is the p-th consistency projector.

Remark

, Index-1-case $\Rightarrow E_{q}\left(I-\Pi_{q}\right)=0 \forall q$
, Consistency spaces equal $\Rightarrow\left(I-\Pi_{q}\right) \Pi_{p}=0 \forall p, q$

Contents

```
Introduction
Solution properties of DAEs
Equivalence and four types of DAEs
Regularity and quasi-Weierstrass form
Wong sequences
```


Switched DAEs

```
Distributional solutions - Dilemma
Review: classical distribution theory
Piecewise smooth distributions
Distributional solutions
Impulse-freeness
```


Observability

Definition
The single switch result
Calculation of the four subspaces
Summary

Global Observability of Switched DAEs

Definition (Global observability)

(swDAE) with given σ is (globally) observable $: \Leftrightarrow$
\forall solutions $\left(u_{1}, x_{1}, y_{1}\right),\left(u_{2}, x_{2}, y_{2}\right): \quad\left(u_{1}, y_{1}\right) \equiv\left(u_{2}, y_{2}\right) \Rightarrow x_{1} \equiv x_{2}$
Lemma (0-distinguishability)
(swDAE) is observable if, and only if, $y \equiv 0$ and $u \equiv 0 \quad \Rightarrow \quad x \equiv 0$
Hence consider in the following (swDAE) without inputs:

$$
\begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x \\
y & =C_{\sigma} x
\end{aligned} \quad \text { and observability question: } \quad y \equiv 0 \stackrel{?}{\Rightarrow} x \equiv 0
$$

Motivating example

System 1:

System 2:

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \dot{x}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] x} \\
y=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] x \\
y=x_{3}, \dot{y}=\dot{x}_{3}=0, x_{2}=0, \dot{x}_{1}=0 \\
\Rightarrow x_{1} \text { unobservable }
\end{gathered}
$$

$$
\sigma(\cdot): 1 \rightarrow 2
$$

Jump in x_{1} produces impulse in y \Rightarrow Observability

$$
\begin{gathered}
{\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] x} \\
y=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] x \\
y=x_{3}=\dot{x}_{1}, x_{1}=0, \dot{x}_{2}=0 \\
\Rightarrow x_{2} \text { unobservable }
\end{gathered}
$$

$$
\sigma(\cdot): 2 \rightarrow 1
$$

Jump in x_{2} no influence in y $\Rightarrow x_{2}$ remains unobservable

Question

$$
\begin{aligned}
E_{p} \dot{x} & =A_{p} x+B_{p} u & \text { not } \\
y & =C_{p} x+D_{p} u & \text { observable }
\end{aligned} \stackrel{?}{\Rightarrow} \quad E_{\sigma} \dot{x}=A_{\sigma} x+B_{\sigma} u \quad \text { observable }
$$

The single switch result

$$
\xrightarrow[t=0]{\left(E_{-}, A_{-}, C_{-}\right){ }^{\sigma_{\uparrow} \uparrow\left(E_{+}, A_{+}, C_{+}\right)} \xrightarrow{2} t}
$$

Theorem (Unobservable subspace, Tanwani \& T. 2010)
For (swDAE) with a single switch the following equivalence holds

$$
y \equiv 0 \quad \Leftrightarrow \quad x\left(0^{-}\right) \in \mathcal{M}
$$

where

$$
\mathcal{M}:=\mathfrak{C}_{-} \cap \operatorname{ker} O_{-} \cap \operatorname{ker} O_{+}^{-} \cap \operatorname{ker} O_{+}^{\text {imp }}
$$

In particular: $\quad(\mathrm{swDAE})$ observable $\Leftrightarrow \mathcal{M}=\{0\}$.
What are these four subspace?

The four subspaces

Unobservable subspace: $\quad \mathcal{M}:=\mathfrak{C}_{-} \cap \operatorname{ker} O_{-} \cap \operatorname{ker} O_{+}^{-} \cap \operatorname{ker} O_{+}^{\text {imp }}$, i.e.

$$
x\left(0^{-}\right) \in \mathcal{M} \quad \Leftrightarrow \quad y_{(-\infty, 0)} \equiv 0 \wedge y[0]=0 \wedge y_{(0, \infty)} \equiv 0
$$

The four spaces

, Consistency: $x\left(0^{-}\right) \in \mathfrak{C}_{-}$
, Left unobservability: $y_{(-\infty, 0)} \equiv 0 \Leftrightarrow x\left(0^{-}\right) \in \operatorname{ker} O_{-}$
, Right unobservability: $y_{(0, \infty)} \equiv 0 \Leftrightarrow x\left(0^{-}\right) \in \operatorname{ker} O_{+}^{-}$
, Impulse unobservability: $y[0]=0 \Leftrightarrow x\left(0^{-}\right) \in \operatorname{ker} O_{+}^{\text {imp }}$

Question

How to calculate these four spaces?

Consistency space

$$
x\left(0^{-}\right) \in \mathfrak{C}_{-} \cap \operatorname{ker} O_{-} \cap \operatorname{ker} O_{+}^{-} \cap \operatorname{ker} O_{+}^{\text {imp }-} \quad \Leftrightarrow \quad y \equiv 0
$$

Corollary from QWF

$$
\mathfrak{C}_{-}=\mathcal{V}_{-}^{*}
$$

where \mathcal{V}_{-}^{*} is the first Wong limit of $\left(E_{-}, A_{-}\right)$.

The spaces O_{-}, O_{+}and O_{+}^{-}

Hence

$$
\begin{array}{ll}
\dot{x}=A_{-}^{\mathrm{diff}} x & \dot{x}=A_{+}^{\mathrm{diff}} \\
y=C_{-} x & y
\end{array}=C_{+} x
$$

$$
y_{(-\infty, 0)} \equiv 0 \quad \Rightarrow \quad x\left(0^{-}\right) \in \operatorname{ker} \underbrace{\left[C_{-} / C_{-} A_{-}^{\text {diff }} / C_{-}\left(A_{-}^{\text {diff }}\right)^{2} / \cdots / C_{-}\left(A_{-}^{\text {diff }}\right)^{n-1}\right]}_{:=O_{-}}
$$

$$
y_{(0, \infty)} \equiv 0 \Rightarrow x\left(0^{+}\right) \in \operatorname{ker} \underbrace{\left[C_{+} / C_{+} A_{+}^{\text {diff }} / C_{+}\left(A_{+}^{\text {diff }}\right)^{2} / \cdots / C_{+}\left(A_{+}^{\text {diff }}\right)^{n-1}\right]}_{:=O_{+}}
$$

$$
\operatorname{ker} O_{+} \ni x\left(0^{+}\right)=\Pi_{+} x\left(0^{-}\right) \quad \Longrightarrow \quad x\left(0^{-}\right) \in \Pi_{+}^{-1} \operatorname{ker} O_{+}=\operatorname{ker} \underbrace{O_{+} \Pi_{+}}
$$

$$
=: O_{+}^{-}
$$

The impulsive effect

Assume $\left(S_{+} E_{+} T_{+}, S_{+} A_{+} T_{+}\right)=\left(\left[\begin{array}{cc}I & 0 \\ 0 & N_{+}\end{array}\right],\left[\begin{array}{cc}J_{+} & 0 \\ 0 & I\end{array}\right]\right)$:

Definition (Impulse "projector")

$$
\Pi_{+}^{\mathrm{imp}}:=T_{+}\left[\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right] S_{+} \quad \text { and } \quad E_{+}^{\mathrm{imp}}:=\Pi_{+}^{\mathrm{imp}} E_{+}
$$

Impulsive part of solution:

Conclusion:

$$
x[0]=-\sum_{i=0}^{n-1}\left(E_{+}^{\mathrm{imp}}\right)^{i+1} x\left(0^{-}\right) \delta_{0}^{(i)}
$$

Dirac impulses

$$
y[0]=0 \quad \Rightarrow \quad C_{+} x[0]=0 \quad \Rightarrow \quad x\left(0^{-}\right) \in \operatorname{ker} O_{+}^{\mathrm{imp}}
$$

where

$$
O_{+}^{\mathrm{imp}}:=\left[C_{+} E_{+}^{\mathrm{imp}} / C_{+}\left(E_{+}^{\mathrm{imp}}\right)^{2} / \cdots / C_{+}\left(E_{+}^{\mathrm{imp}}\right)^{n-1}\right]
$$

Observability summary

$$
\begin{aligned}
& \frac{\left(E_{-}, A_{-}, C_{-}\right)}{t=0} t \\
&\left.y \equiv 0 \quad \Leftrightarrow \quad x\left(0^{-}\right) \in \mathfrak{C}_{-} \cap \operatorname{ker} O_{-} \cap \operatorname{ker} O_{+}^{-} \cap \operatorname{ker} O_{+}^{\mathrm{imp}-}, C_{+}\right)
\end{aligned}
$$

with

$$
\begin{array}{ll}
& \mathfrak{C}_{-}=\mathcal{V}_{-}^{*}(\text { first Wong limit }) \\
, & O_{-}=\left[C_{-} / C_{-} A_{-}^{\text {diff }} / C_{-}\left(A_{-}^{\text {diff }}\right)^{2} / \cdots / C_{-}\left(A_{-}^{\text {diff }}\right)^{n-1}\right] \\
, & O_{+}^{-}=\left[C_{+} / C_{+} A_{+}^{\text {diff }} / C_{+}\left(A_{+}^{\text {diff }}\right)^{2} / \cdots / C_{+}\left(A_{+}^{\text {diff }}\right)^{n-1}\right] \Pi_{+} \\
, & O_{+}^{\text {imp }}=\left[C_{+} E_{+}^{\text {imp }} / C_{+}\left(E_{+}^{\text {imp }}\right)^{2} / \cdots / C_{+}\left(E_{+}^{\text {imp }}\right)^{n-1}\right]
\end{array}
$$

Example revisited

System 1:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \dot{x}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] x} \\
y=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] x \\
\sigma(\cdot): 1 \rightarrow 2 \text { gives } \\
\mathfrak{C}_{-}= \\
\operatorname{ker} O_{-}=\operatorname{span}\left\{e_{1}, e_{3}\right\} \\
\operatorname{ker} O_{+}^{-}= \\
\operatorname{span}\left\{e_{1}, e_{2}\right\} \\
\left.\operatorname{ker} O_{+}^{\text {imp }}, e_{2}, e_{3}\right\} \\
\Rightarrow \\
\Rightarrow \\
\Rightarrow
\end{gathered}
$$

System 2:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \dot{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] x} \\
y=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] x \\
\sigma(\cdot): 2 \rightarrow 1 \text { gives } \\
\mathfrak{C}_{-}= \\
\operatorname{ker} O_{-}=\operatorname{span}\left\{e_{2}\right\}, \\
\operatorname{ker} O_{+}^{-}=\operatorname{span}\left\{e_{1}, e_{2}\right\} \\
\left.\operatorname{ker} O_{2}\right\} \\
O_{+}^{\text {imp }}
\end{gathered}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\},
$$

Overall summary

$$
\begin{aligned}
E_{\sigma} \dot{x} & =A_{\sigma} x+B_{\sigma} u \\
y & =C_{\sigma} x+D_{\sigma} u
\end{aligned}
$$

Piecewise-smooth distributional solution framework

$x \in \mathbb{D}_{\mathrm{pw} \mathcal{C}}^{n}, u \in \mathbb{D}_{\mathrm{pw}} \mathrm{C}^{\infty}, y \in \mathbb{D}_{\mathrm{pw}}{ }^{p}{ }^{\infty}$
, Existence and uniqueness of solutions?
, Jumps and impulses in solutions? \checkmark
) Conditions for impulse free solutions? \checkmark
, Control theoretical questions

- Stability \checkmark and stabilization ?
- Observability \checkmark and observer design \checkmark
- Controllability \checkmark and controller design ?
- Extension to nonlinear case ?

