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Abstract

In this paper, we propose a novel notion called impulse-free jump solution for nonlinear differential-

algebraic equations (DAEs) of the form E(x)ẋ = F (x) with inconsistent initial values. The term

“impulse-free” means that there are no Dirac impulses caused by jumps from inconsistent initial

values, i.e., the directions of jumps stay in kerE(x). We show that our proposed impulse-free jump

rule is a coordinate-free concept, meaning that the calculation of the impulse-free jump does not

depend on the coordinates of the DAE, which is a main advantage compared to some existing jump

rules for nonlinear DAEs. We find that the existence and uniqueness of impulse-free jumps are

closely related to the notion of geometric index-1 and the involutivity of the distribution defined by

kerE(x). Moreover, a singular perturbed system approximation is proposed for nonlinear DAEs;

we show that solutions of the perturbed system approximate both impulse-free jump solutions and

C1-solutions of nonlinear DAEs. Finally, we show by some examples that our results of impulse-

free jumps are useful for the problems like consistent initialization of nonlinear DAEs and transient

behavior simulations of electric circuits.

Keywords: nonlinear differential-algebraic equations, discontinues solutions, inconsistent initial

values, impulse-free jumps, geometric methods, singular perturbed systems

1. Introduction

Consider a nonlinear differential-algebraic equation (DAE) in quasi-linear form

Ξ : E(x)ẋ = F (x), (1)

where x ∈ X is a vector of the generalized states and (x, ẋ) ∈ TX, where TX is the tangent bundle

of the open subset X in Rn (or an n-dimensional smooth manifold). The maps E : TX → Rl and

F : X → Rl are C∞-smooth, and for each x ∈ X, we have that E(x) : Rn → Rl is a linear map. We

will denote a DAE of the form (1) by Ξl,n = (E,F ) or, simply, Ξ. A linear DAE of the form

∆ : Eẋ = Hx (2)

will be denoted by ∆l,n = (E,H) or, simply, ∆, where E ∈ Rl×n and H ∈ Rl×n. A linear DAE is

called regular if l = n and det(sE −H) ∈ R[s] \ {0}.
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Definition 1.1 (C1-solutions and consistency space). The trajectory x : I → X for some open

interval I ⊆ R is called a C1-solution of the DAE Ξl,n = (E,F ) if x is continuously differentiable5

and satisfies E(x(t))ẋ(t) = F (x(t)) for all t ∈ I.

A point xc ∈ X is called consistent (or admissible [1]) if there exists a C1-solution x : I → X

and tc ∈ I such that x(tc) = xc. The consistency space Sc ⊆ X is the set of all consistent points.

By re-parameterizing the time variable t, we can always assume I = (0, T ) for some T > 0. For

a nonlinear DAE of the form (1), the initial point x−0 is usually defined (see e.g. [2],[3]) via the right10

limit of some past trajectory x(t), t < 0 (which may be or may not be governed by (1)). In the

present paper, we are interested in nonlinear DAEs with inconsistent initial points, i.e., when the

initial points x−0 6∈ Sc. Assume that there exists one C1-solution x(·) of Ξ on (0, T ), then we have

x+
0 = lim

t→0+
x(t) = x(0+) ∈ Sc. Thus if x−0 is not consistent, then there has to be an “instantaneous”

change of values for x(t) at t = 0, i.e., a jump x−0 → x+
0 to steer the inconsistent point x−0 towards15

a consistent one x+
0 .

The jump behaviors in practical DAE systems are not rare phenomenons, e.g., the inconsistent

initial values of electric circuits caused by switching devices (see e.g., [4–6]), the discontinues transient

dynamics in hybrid/switched systems as power systems [7], multi-body dynamics [8] and battery

models [9]. Discontinues solutions of a more general class of system which includes linear differential-20

algebraic dynamics and complementarity conditions, called the linear complementary systems, were

discussed in [10], where the problem of re-initialization (jump) rules plays also an important role

for the definition of solutions. All the jumps which we consider in the present article, are called

external/exogenous jumps [11], which are different from the jumps happened at the impasse or

singular points discussed in [12],[13],[14]. More specifically, we suppose throughout that once the25

inconsistent initial point x−0 jumps to a consistent point x+
0 ∈ Sc, then we will consider only C1-

solutions starting from x+
0 , that means, there are no jumps in x(t) for t ∈ (0, T ).

For a linear DAE ∆ = (E,H), given by (2), with an inconsistent initial value x−0 , the jump

behavior at t = 0 can be described by a vector e0 = x(0+) − x(0−) = x+
0 − x−0 . To deal with the

discontinuity introduced by the jump behavior at t = 0, the distributional (generalized function) 1
30

solutions theory for linear DAEs were established e.g. in [2, 3, 15, 16]. The distributional derivative

of the jump of x at t = 0 is (x+
0 − x−0 )δ0, where δ0 is the Dirac impulse at t = 0, i.e., taking

distributional derivative of a jump results in a Dirac impulse δ0 whose amplitude is the jump vector

e0 [16]. The distributional restriction of ∆ to t = 0 can be represented by Eẋ[0] = Hx[0], where

x[0] =
∑k
i=0 αkδ

(i)
0 and ẋ[0] = e0δ0 +

∑k
i=0 αkδ

(i+1)
0 for some k ≥ 0. It can be deduced that there35

1Note that there are two terminologies called distribution in our paper, one is a generalized function which helps

to differentiate functions whose derivatives do not exist in the classical sense, the other is a subset of the tangent

bundle of a manifold in differential geometry.
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are no Dirac impulses and their derivatives δ0, · · · , δ(k)
0 caused by jumps at t = 0 if and only if

E · e0δ0 = 0, i.e., e0 ∈ kerE, and we call a jump satisfies the latter condition an impulse-free jump

of the linear DAE ∆.

The difficulty of studying jump behaviors for DAEs of the form (1) comes from the nonlinearity

of the map E, which makes the distributional (generalized function) solution theory a possible non-40

suitable setting for our problems. As stated in Remark 46.2 of [17], “This does not mean that

discontinuous solutions of quasilinear problems cannot be investigated, but only that their treatment

as distribution solutions is inadequate. In other words, discontinuous solutions of general quasilinear

problems must, if possible at all, be introduced by a different process which remains to be determined.”

An extension of the notion of impulsive-free jump to nonlinear DAEs of the form (1) was made in45

Assumption A4 of [18], where it is assumed that a jump vector e0 = x+
0 −x−0 should satisfy the jump

rule e0 ∈ kerE(x+
0 ). The problem of finding the consistent point x+

0 for a given inconsistent point x−0

is called the consistent initialization problem in the numerical analysis of nonlinear DAEs (see e.g.,

[19, 20]). In particular, the consistent initialization of nonlinear DAEs can be solved by the function

decic of MATLAB (see [21]). We will show below by examples that both the jumps defined by the rule50

of [18] and that calculated by decic are not invariant under nonlinear coordinates transformations,

meaning that those two consistent initialization methods in [18] and [21] are not coordinate-free. A

main contribution of this paper is the coordinate-free jump rule introduced in Definition 4.1, which

allows to calculate the desired consistent points in any coordinates. In well-chosen coordinates, the

DAE may be expressed as a simple form (normal form or canonical form), which can be easier for55

defining jumps, e.g., the linear consistency projectors [18, 22] are constructed with the help of the

Weierstrass form (WF) as the consistent points of the (WF) are straightforward to be found. Thus

the coordinate-free property is an important feature for analyzing the jump behaviors of DAEs.

Another main result concerns the existence and uniqueness of the impulse-free jumps, we use a

notion of geometric index (see Definition 3.1) and show that the impulse-free jump always exists60

for any index-1 nonlinear DAE satisfying certain reachability conditions and the jump is uniquely

defined if and only if the distribution kerE(x) is involutive.

Some other works of studying jump behaviors of DAEs (see e.g., [11–14, 17]) mainly focused on

semi-explicit(called also semi-linear) DAEs of the form

ΞSE :

ẋ1 = f1(x1, x2),

0 = f2(x1, x2),
(3)

i.e., E(x) = [ I 0
0 0 ]; such DAEs are usually related to the models of electric circuits and singular per-

turbation theory (see e.g., [13], Chapter 11 of [23] and Chapter VIII of [17]). A preliminary result

of using singular perturbation theory to study nonlinear DAEs of the form (1) is our conference65

publication [24], which considers only the case that Ξ is equivalent to a fully decoupled normal form

(see the index-1 nonlinear Weirstrass form (INWF) in Theorem 4.6) without a formal definition of
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impulse-free jump. In this paper, we propose a singular perturbed system approximation for non-

linear DAEs (which are not necessarily equivalent to the (INWF)) and we show that the solutions

of the perturbed systems approximate both the C1-solutions and the impulse-free jump solutions of70

the DAEs.

This paper is organized as follows: We give the notations of the paper and a brief review of

the existence and uniqueness of C1-solutions for nonlinear DAEs in Section 2. We recall the notion

of geometric index-1 and give some characterizations for that notion in Section 3. We introduce

the definition of impulse-free jumps for nonlinear DAEs and study the existence and uniqueness of75

impulse-free jumps in Section 4. Singular perturbed system approximations of nonlinear DAEs are

discussed in Section 5. The proofs of the main results are given in Section 6. The conclusions and

perspectives of the paper are given in Section 7.

2. Notations and Preliminaries on C1-solutions of DAEs

We denote by TxM ⊆ Rn the tangent space at x ∈ M of a submanifold M of Rn and by TM80

we denote the corresponding tangent bundle. By Ck the class of k-times differentiable functions

is denoted. For a smooth map f : X → R, we denote its differentials by df =
∑n
i=1

∂f
∂xi

dxi =

[ ∂f∂x1
, . . . , ∂f∂xn ] and for a vector-valued map f : X → Rm, where f = [f1, . . . , fm]T , we denote its

differential by Df =

[
df1

...
dfm

]
. For a map A : X → Rn×n, kerA(x), ImA(x) and rankA(x) are

the kernel, the image and the rank of A at x, respectively. For two column vectors v1 ∈ Rm85

and v2 ∈ Rn, we write (v1, v2) = [vT1 , v
T
2 ]T ∈ Rm+n. We assume familiarity with basic notions of

differential geometry such as smooth embedded submanifolds, involutive distributions and refer the

reader e.g. to the book [25] for the formal definitions of such notions.

We now recall some basic notions and results from the geometric analysis of the existence and

uniqueness of C1-solutions for nonlinear DAEs (see e.g., [1, 17, 26–29]).90

Definition 2.1 (invariant and locally invariant submanifold). For a DAE Ξl,n = (E,F ), a smooth

connected embedded submanifold M is called invariant if for any x0 ∈M , there exists a C1-solution

x : I → X such that x(t0) = x0 for some t0 ∈ I and x(t) ∈M , ∀ t ∈ I. Fix a point xp ∈ X, a smooth

embedded submanifold M containing xp is called locally invariant if there exists a neighborhood

Uxp of xp such that M ∩ Uxp is invariant.95

A locally invariant submanifold M∗, around a point xp, is called locally maximal, if there exists

a neighborhood U of xp such that for any other locally invariant submanifold M , we have M ∩U ⊆
M∗∩U . The following procedure is called the geometric reduction method [17, 27, 28], which is used

to construct the locally maximal invariant submanifold M∗ around a consistent point xp = xc (see

item (i) of Proposition 2.3).100
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Definition 2.2 (geometric reduction method). Consider a DAE Ξl,n and fix a point xp ∈ X. Let

U0 be a connected subset of X containing xp. Step 0: M c
0 = U0. Step k: Suppose that a sequence

of smooth connected embedded submanifolds M c
k−1 ( · · · ( M c

0 of Uk−1 for a certain k − 1, have

been constructed. Define recursively

Mk :=
{
x ∈M c

k−1 |F (x) ∈ E(x)TxM
c
k−1

}
. (4)

As long as xp ∈ Mk let M c
k = Mk ∩ Uk be a smooth embedded connected submanifold for some

neighborhood Uk ⊆ Uk−1.

Proposition 2.3 ([28],[30]). In the above geometric reduction method, there always exists a smallest

k such that either xp /∈ Mk or M c
k+1 = M c

k in Uk+1. In the latter case, denote k∗ = k and

M∗ = M c
k∗+1 and assume that there exists an open neighborhood U∗ ⊆ Uk∗+1 of xp such that105

dimE(x)TxM
∗ = const. for x ∈M∗ ∩ U∗, then

(i) xp is a consistent point, i.e., xp = xc, and M∗ is a locally maximal invariant submanifold

around xp;

(ii) M∗ coincides locally with the consistency space Sc, i.e., M∗ ∩ U∗ = Sc ∩ U∗.

Notice that by item (ii) of Proposition 2.3, the consistency space Sc locally coincides with M∗110

on the neighborhood U∗ of xp. So any point x−0 ∈ U∗\M∗ is not consistent and there exist no C1-

solutions starting from x−0 . The uniqueness of C1-solutions is characterized via the following notion

of local internal regularity. We call a C1-solution x : I → (U ⊆)X maximal (in U) if there is no

other solution x̃ : Ĩ → (U ⊆)X with I ( Ĩ and x(t) = x̃(t) for all t ∈ I.

Definition 2.4 (local internal regularity). Consider a DAE Ξ and let M∗ be the locally maximal115

invariant submanifold around a consistent point xc ∈M∗. Then Ξ is called locally internally regular

(around xc) if there exists neighborhood U ⊆ X of xc such that for any t0 ∈ R and any point

x0 ∈M∗ ∩ U , there exists only one maximal solution x : I → U with t0 ∈ I and x(t0) = x0.

Proposition 2.5 ([1, 28]). Given a DAE Ξ and its locally maximal invariant submanifold M∗

around a consistent point xc ∈ X, suppose that there exists an open neighborhood U of xc such that

dimE(x)TxM
∗ = const. for x ∈M∗ ∩U . Then Ξ is locally internally regular around xc if and only

if

dimE(x)TxM
∗ = dimM∗, ∀x ∈M∗ ∩ U. (5)

Two linear DAEs ∆ = (E,H) and ∆̃ = (Ẽ, H̃) are called strictly equivalent or externally

equivalent (see [31]) if there exist invertible matrices Q and P such that Ẽ = QEP−1 and H̃ =120

QHP−1. The same notion can be extended to nonlinear DAEs.
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Definition 2.6. (external equivalence) Two DAEs Ξl,n = (E,F ) and Ξ̃l,n = (Ẽ, F̃ ) defined onX and

X̃, respectively, are called externally equivalent, shortly ex-equivalent, if there exist a diffeomorphism

ψ : X → X̃ and Q : X → GL(l,R) such that

Ẽ(ψ(x)) = Q(x)E(x)

(
∂ψ(x)

∂x

)−1

and F̃ (ψ(x)) = Q(x)F (x). (6)

Fix a point xp ∈ X, if ψ and Q is defined locally around xp, we will speak about local ex-equivalence.

Remark 2.7. In the above definition of ex-equivalence, Q combines equations but does not change

C1-solutions of the DAE; ψ defines new coordinates and maps C1-solutions to C1-solutions, i.e., a

curve x : I → X is a C1-solution of Ξ if and only if ψ ◦ x is a C1-solution of Ξ̃.125

3. Geometric index-1 nonlinear DAEs

There are various notions of index for nonlinear DAEs, see our recent paper [30] and the references

therein. In the present paper, we will use only the notion of geometric index, which is defined via

the sequence of submanifolds M c
0 ( · · · ( M c

k constructed by the geometric reduction method in

Section 2.130

Definition 3.1 (geometric index [28, 30]). Consider the sequence M c
k constructed via Definition 2.2

around some consistent point xc ∈ Sc, then the (local) geometric index, or shortly, the index, of a

DAE Ξ is defined by

νg := min
{
k ≥ 0 |M c

k+1 = M c
k

}
.

Clearly, the geometric index νg is the least integer k such that the sequence of submanifolds

M c
k gets stabilized, which is also the smallest number of steps that has to be performed in order to

construct the maximal invariant submanifold M∗ and to solve the DAE.

Remark 3.2. A regular linear DAE ∆n,n = (E,H) is always ex-equivalent, via two constant

invertible matrices Q and P , to the Weierstrass form (WF)

∆̃ = (QEP−1, QHP−1) :

 ẋ1 = A1x1,

Nẋ2 = x2,
(7)

where A1 ∈ Rn1×n1 and N is a nilpotent matrix. The index ν of ∆ is defined by the nilpotency

of N , i.e., Nν−1 6= 0 and Nν = 0 (where ν = 0 means that the x2-variables vanish, see [32]). The

geometric index νg is a nonlinear generalization of the index ν of linear DAEs [30]. Indeed, the index

ν of ∆ can be alternatively defined as: ν := min {k ≥ 0 |Vk+1 = Vk} , where the sequence Vi (called

the Wong sequence [33]) is a linear counterpart of M c
k and is given by

V0 = Rn, Vi+1 = H−1EVi. (8)
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Now for a DAE Ξl,n = (E,F ) and a consistent point xc ∈ X, we introduce the following regularity

and constant rank conditions:135

(RE) l = n and Ξ is locally internally regular;

(CR) there exists a neighborhood U of xc such that M c
1 = M1 ∩ U and the following ranks are

constant: rankE(x) = const. = r for x ∈ U ; dimE(x)TxM
c
1 = const. and dim DF2(x) = const.

for x ∈ M c
1 , where F2 := F\ImE := Q2F , where Q2 : U → R(n−r)×n is full row rank and

Q2E = 0.140

A linear DAE ∆l,n = (E,H), given by (2), is regular if and only if l = n and ∆ is internally

regular (see [31, 32]). So condition (RE) is a nonlinear version of the regularity of linear DAEs.

The condition rankE(x) = const. = r (throughout we denote this rank by r) ensures that there

exists Q : U → GL(n,R) such that E1 : U → Rr×n of QE =
[
E1
0

]
is of full row rank r. The

assumption rank DF2(x) = const. guarantees that the zero-level set M c
1 = {x ∈ U |F2(x) = 0} is a145

smooth embedded submanifold (by taking a smaller U , we can always assume M c
1 is connected) and

the condition dimE(x)TxM
c
1 = const. excludes singular/impasses points (see [14]) and helps to view

the DAE as a differential equation defined on its maximal invariant submanifold [1, 28].

Proposition 3.3 (geometric index-1). Consider a DAE Ξ = (E,F ) and a consistent point xc ∈ Sc.
Assume that conditions (RE), (CR) are satisfied in an open neighborhood U of xc. Then the150

following statements are equivalent around xc:

(i) The DAE Ξ is of geometric index νg = 1.

(ii) The locally maximal invariant submanifold satisfies M∗ = M c
1 .

(iii) rankE(x) = dimE(x)TxM
c
1 or, equivalently, kerE(x) ∩ TxM c

1 = 0, ∀x ∈M c
1 .

(iv) Let Z : U → Rn×(n−r) be any smooth map such that ImZ(x) = kerE(x), ∀x ∈ U . Then155

A(x) = DF2(x) · Z(x) is invertible or, equivalently, B(x) =
[
E1(x)

DF2(x)

]
is invertible, ∀x ∈M c

1 .

(v) There exists an open neighborhood V ⊆ U of xc such that Ξ is locally (on V ) ex-equivalent toIr E2(ξ1, ξ2)

0 0

ξ̇1
ξ̇2

 =

F ∗(ξ1, ξ2)

ξ2

 , (9)

where M∗ ∩ V = {ξ ∈ V | ξ2 = 0}, ξ = (ξ1, ξ2) and ξ1 is a system of coordinates on M∗ ∩ V .

The proof is given in Section 6.

Remark 3.4. (i) By the constant rank assumption (CR), we only need to check whether the

item (iii) or (iv) of Proposition 3.3 holds at the point x = xc (or at any point x0 of M c
1 ) in160

order to conclude that Ξ is of geometric index-1 or not.
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(ii) The map F2 = F\ImE in Proposition 3.3(iv) is not uniquely defined. More specifically, we

may choose another invertible map Q̃ : U → GL(n,R) such that Ẽ1 of Q̃E =
[
Ẽ1
0

]
is of full row

rank. Then F̃2 of Q̃F =
[
F̃1

F̃2

]
is different from F2, but there alway exists Q̄ : U → GL(n−r,R)

such that Q̄F2 = F̃2. Then by F2(x) = 0 on M c
1 , it is seen that DF2(x) = D(Q̄F2(x)) =165 ∑n−r

i=1 F
i
2(x)DQ̄i(x) + Q̄(x)DF2(x) = Q̄(x)DF2(x), for all x ∈ M c

1 , where Q̄i are the columns

of Q̄ and F i2 are the rows of F2. Therefore, item (iv) of Proposition 3.3 still holds even for any

other choice of Q̃ since for all x ∈M c
1 , Ã(x) = DF̃2(x) ·Z(x) = Q̄(x)DF2(x) ·Z(x) = Q̄(x)A(x)

is invertible if and only if A(x) is invertible.

(iii) For a linear regular DAE ∆n,n = (E,H), consider its index ν and the sequence Vi of (8). Then170

the following is equivalent: (i)’ ν = 1; (ii)’ V1 is the largest subspace such that AV1 ⊆ EV1;

(iii)’ rankE = dimEV1 or kerE ∩ V1 = 0; (iv)’ For any invertible matrices Q and P such

that QEP−1 =
[
Ir 0
0 0

]
, where r = rankE, we have that A4 of QAP−1 =

[
A1 A2

A3 A4

]
is invertible;

(v)’ ∆ is ex-equivalent to the DAE ξ̇1 = A∗ξ1, 0 = ξ2. Observe that item (iv)’ is also

equivalent to rank [E,AZ] = n, where Z is a full column rank matrix such that ImZ = kerE,175

or to rank [E 0
A E ] = n + dim kerE. The later two conditions are known (see e.g., [34]) to be

characterizations of the impulse-freeness of linear DAEs.

4. Impulse-free jump solutions of nonlinear DAEs

We introduce the following definition of an impulse-free jump for a nonlinear DAE.

Definition 4.1 (impulse-free jump). Consider a DAE Ξ = (E,F ), let Sc be the consistency space of

Ξ, fix an inconsistent initial point x−0 ∈ X/Sc. An impulse-free jump solution (trajectory), shortly,

an IFJ solution, of Ξ starting from x−0 is a C1-curve J : [0, a]→ X satisfying

J(0) = x−0 /∈ Sc, J(a) = x+
0 ∈ Sc, ∀τ ∈ [0, a] : E(J(τ))

dJ(τ)

dτ
= 0. (10)

A jump x−0 → x+
0 associated with an IFJ trajectory J(·) is called an impulse-free jump of Ξ.180

It is worth to remark that the parametrization variable τ of the differentiable curve J(τ) is,

in general, not a time variable (unless we connect it with the time-variable t, see Section 4). In

Definition 4.1, only the direction of the tangent vector dJ(τ)
dτ is required to stay in kerE(J(τ)) while

there are no other requirements on how fast the trajectory J(τ) should evolve with respect to τ

(i.e, the magnitude of dJ(τ)
dτ ). Moreover, even if the curve which we want to parametrize is possibly185

unique (indicating that there exists a unique impulse-free jump x−0 → x+
0 ), the IFJ trajectory is

always non-unique since there are infinitely many parameterizations of a curve. Indeed, by defining

τ̃ = ϕ(τ) and J̃(ϕ(τ)) = J(τ), where ϕ : [0, a] → [0, ã] is diffeomorphism, we get J(0) = x−0 ,

J(ã) = x+
0 and E(J̃(τ̃))dJ̃(τ̃)

dτ̃ = E(J(τ))dτdτ̃
dJ(τ)
dτ = dτ

dτ̃E(J(τ))dJ(τ)
dτ = 0, ∀τ ∈ [0, ã], which implies
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that J̃(τ̃) is another IFJ trajectory of Ξ. The upper bound a of the domain of J(τ) is not fixed since190

it can always be scaled by ϕ into any α̃ > 0, including α̃ = +∞.

Remark 4.2. We can regard the notion of IFJ trajectory as a nonlinear generalization of that of

jump vector e0 = x+
0 − x−0 of linear DAEs. The impulse-free jump rule E · e0δ0 = 0 of linear DAEs

is generalized into Ee0u(τ) = 0 for some u : [0, a] → R with
∫ a

0
u(τ)dτ = 1. With other words we

can consider the term dJ(τ)
dτ in (10) as a linear control system (see also (15) below)

dJ(τ)

dτ
= e0u(τ), ∀τ ∈ [0, a], e0 ∈ kerE, J(0) = x−0 , J(a) = x+

0 . (11)

In the following example, we will show an important feature i.e., the coordinate-freeness of our

jump rule defined by (10) by comparing it with two existing jump rules: one is

x+
0 − x−0 ∈ kerE(x+

0 ) (12)

introduced in [18] and another is given by the MATLAB function decic [21], which calculates con-

sistent initial values for DAEs via a numerical searching method [20].

Example 4.3. Consider a DAE Ξ2,2 = (E,F ), given by

Ξ :

1 3x2
2 − 1

0 0

ẋ1

ẋ2

 =

−x2

x1

 . (13)

Fix a point xp = (x1p, x2p) = (0, 1), it is clear that M∗ = M c
1 =

{
x ∈ R2 |x1 = 0, x2 >

√
3

3

}
(note that M∗ should be connected) and that dimE(x)TxM

∗ = 1, ∀x ∈ M∗ ∩ U∗, where U∗ ={
x ∈ R2 |x2 >

√
3

3

}
. By Proposition 2.3, xp = xc is consistent, and M∗ is the locally maximal

invariant submanifold (around xc) and coincides with the consistency space Sc on U∗. The incon-

sistent initial point which we consider is x−0 = (x−10, x
−
20) = (1, 1) ∈ U∗\M∗. For an IFJ solution

J : [0, a]→ X we make the following choice

dJ(τ)

dτ
=

dx1

dτ

dx2

dτ

 =

1− 3x2
2

1

 , J(0) = x−0 . (14)

The solution of (14) is J(τ) = (τ +2− (τ +1)3, τ+1)) on the interval [0, a] with a ≈ 0.3247, which is

indeed an IFJ trajectory of Ξ since J(a) = x+
0 ≈ (0, 1.3247) ∈M∗∩U∗ and

[
1−3x2

2
1

]
∈ ker

[
1 3x2

2−1
0 0

]
.195

Hence x−0 = J(0) → x+
0 = J(a) is an impulse-free jump in the sense of Definition 4.1. Secondly,

we follow the jump rule x̃+
0 − x−0 ∈ kerE(x̃+

0 ) of (12) to get three possible jumps x−0 → x̃+
0 with

either x̃+
0 = (0, 0), x̃+

0 = (0,
1+
√

7/3

2 ) ≈ (0, 1.2638) or x̃+
0 = (0,

1−
√

7/3

2 ) ≈ (0,−0.2638), but only the

second is contained in U∗.

Thirdly, we calculate the consistent initial point for Ξ by MATLAB using decic function, the

result is x̄+
0 = (0, 1). We draw those three different jumps reaching at the consistent points

x+
0 = (0, 1.3247), x̃+

0 = (0, 1.2638), x̄+
0 = (0, 1),

9
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Figure 1: The jumps calculated by (10), (12) and MATLAB decic function, respectively, shown in different coordinates.

The red quiver plot illustrates the direction of kerE(x) and ker Ẽ(z), the blue solid lines with arrows represent the

evolution of C1 solutions and the dash-dotted magenta lines depicts the sets of singular/impasses points.

in Figure 1(a).200

Now choose new coordinates z = (z1, z2) = (x1 + x3
2 − x2, x2), then the DAE Ξ is ex-equivalent

(on V = U∗), via the diffeomorphism ψ(x) = z(x), to Ξ̃ = (Ẽ, F̃ ) given by

Ξ̃ :

1 0

0 0

ż1

ż2

 =

 −z2

z1 − z3
2 + z2

 .
Note that the DAE Ξ̃ is a degenerate form of the van der Pol oscillator equation, which was a well-

studied case (see e.g., [13, 17, 23]) for analyzing discontinue solutions of semi-explicit DAEs. Under

the new z-coordinates, the inconsistent initial point is z−0 = ψ(x−0 ) = (1, 1) and all three jump rules

agree on the jump from z−0 to z+
0 ≈ (1, 1.3247). However, the transformed consistent points are

given by, see also Figure 1(b),

z+
0 = ψ(x+

0 ) = (1, 1.3247), z̃+
0 = ψ(x̃+

0 ) = (0.7547, 1.2638), z̄+
0 = ψ(x̄+

0 ) = (0, 1).

Clearly, z̃+
0 and z̄+

0 do not coincide with the “correct” value z+
0 , which shows that the jump rule

from [18] and MATLAB’s decic jump rule are not invariant under coordinates transformations.

Remark 4.4. (i) Recall from Remark 2.7 that the ex-equivalence preserves C1-solutions of DAEs.

Now we show that for two ex-equivalent (via Q and ψ) DAEs Ξ and Ξ̃, there exists a one-to-

one correspondence between any IFJ trajectory of Ξ and that of Ξ̃. More specifically, any IFJ

trajectory J(τ) of Ξ is mapped via ψ into an IFJ trajectory J̃(τ) = ψ(J(τ)) of Ξ̃ (and vice

versa) since by (6) and (10), we have

Q(J(τ))E(J(τ))

(
∂ψ

∂x
(J(τ))

)−1
∂ψ

∂x
(J(τ)) · dJ(τ)

dτ
= 0⇒ Ẽ(ψ(J(τ)))

dψ(J(τ))

dτ
= 0.

As a result, the impulse-jump x−0 → x+
0 is mapped via ψ into z−0 = ψ(x−0 )→ z+

0 = ψ(x+
0 ).

10



(ii) As the jumps defined by the rule (10) are invariant under coordinates transformations, we

can choose suitable new coordinates such that the structure of the DAE is simplified in order205

to calculate IFJs. The DAE Ξ̃ in the new z-coordinates of Example 4.3 is easier for the

analysis of IFJs since the distribution E = kerE is rectified into span
{

∂
∂z2

}
such that only

z2-variables are allowed to change. Observe in Figure 1(b) that for any inconsistent initial

point z−0 = (z−10, z
−
20) ∈ ψ(U∗) such that z−10 < − 2

√
3

9 , there does not exist an impulse free

jump on ψ(U∗) since we can not steer z−0 into ψ(M∗) on ψ(U∗) without changing z1-variables.210

(iii) Note that although the analyses in Example 4.3 are local results as we consider local coordinate

transformations defined on the neighborhood U∗ ⊆ R2 only, we show below that those results

can be extended to an open and dense subset of R2. Observe that the two DAE Ξ and Ξ̃

are locally ex-equivalent not only on V1 = U∗, but also on the other two connected subsets

V2 =
{
x ∈ R2 | −

√
3

3 < x2 <
√

3
3

}
and V3 =

{
x ∈ R2 |x2 < −

√
3

3

}
. Observe that X = R2 =215

3⋃
i=1

cl(Vi), by an analysis for the inconsistent initial points on V2 and V3, we get a semi-global

result of the existence of impulse-free jump solutions for almost all points of R2 (except for the

singular set
{
x ∈ R2 |x2 = ±

√
3

3

}
). We draw the results of analysis in Figure 2 below, where

the shadow area depicts the set of inconsistent initial points which admits an impulse-free

jump. Note that if we allow impulse-free jumps to cross the singular set, then we may find220

impulse-free jumps for the inconsistent points in the white area in Figure 2, e.g., an inconsistent

point z−0 = (1, 0) on Figure 2(b) can then jump upwards to z+
0 ≈ (1, 1.3247), nevertheless, we

may loss the uniqueness of impulse-free jumps, e.g., for any point (0, z−20) with 0 < z−20 < 1, it

may jump upwards to (0, 1) or downwards to (0, 0) or (0,−1) along z2-axis.

−2 −1 1 2

−2

−1

1

2

V1 = U∗

V2

V3

M∗ x1

x2

(a) x-coordinates

−2 −1 1 2

−2

−1

1

2

ψ(V1)

ψ(V2)

ψ(V3)

ψ(M∗) z1

z2

(b) z-coordinates

Figure 2: Semi-global impulse-free jump solutions of the DAE of Example 4.3 in different coordinates

In the following discussions, we will focus on impulse-free jumps in a neighborhood of a consistent

point xc to study their existence and uniqueness. Consider the jump rule (10) in Definition 4.1, the

collection of all dJ(τ)
dτ satisfying E(J(τ))dJ(τ)

dτ = 0 is given by the differential inclusion dJ(τ)
dτ ∈

kerE(J(τ)). Assume that rankE(x) = const. = r, then dim kerE = const. = n− r, we can choose

11



locally m = n− r independent vector fields g1, . . . , gm such that

span {g1, . . . , gm} = kerE.

By introducing extra variables ui, i = 1, . . . ,m, we parameterize the distribution kerE and thus all

solutions of the differential inclusion dJ(τ)
dτ ∈ kerE(J(τ)) are given by all solutions of the drift-less

control system (corresponding to all controls ui(τ) ∈ R):

Σ :
dJ(τ)

dτ
=

m∑
i=1

gi(J(τ))ui(τ), x(0) = x−0 . (15)

So the existence of an IFJ solution of Ξ is equivalent to that of an input u(·) such that the solution225

J(·) of Σ staring from x−0 can reach a consistent point x+
0 ∈ M∗; such a problem is related to the

reachability analysis of nonlinear control systems.

Remark 4.5. In practice, we may interpret the u-variables in the control system Σ as some unknown

forces steering the inconsistent initial value x−0 into the consistency set Sc of the DAE Ξ. The u-

variables can be seen as an analogue of the Dirac impulse δ in the distributional solutions of linear230

DAEs (compare Remark 4.2). Note that we may solve the linear ODE (11) with u = δ0 in the sense

of distribution (generalized function) while it is hard to solve Σδ : dx
dτ =

∑m
i=1 gi(x)δ, which is a

nonlinear ODE with distributions (generalized function) in coefficients (see some discussions on its

solutions in Chapter 3 of [35]), or a control system with impulsive/measure inputs (see e.g. [36, 37]).

In order to prove the existence and uniqueness of an impulse-free jump, let us first recall some235

notions as integral manifolds, involutivity, invariant distributions from differential geometry and the

reachability analysis in nonlinear control theory (see e.g. Chapter 2 of [38] and Chapter 1 of [39]). A

distribution D is said to be invariant under a veter field f if the Lie brackets [f, g] ∈ D, ∀g ∈ D. For

a DAE Ξ = (E,F ), fix a consistent point xc ∈ X, let E = kerE = span {g1, . . . , gm} and denote by

〈g1, . . . , gm|E〉 the smallest invariant distribution under g1, . . . gm which contains E = kerE. Then240

we introduce the following assumption:

(DS) there exists a neighborhood U of xc such that the distribution D := 〈g1, . . . , gm|E〉 is nonsin-

gular, i.e., dimD(x) = const. = k ≥ m for all x ∈ U .

Note that if (DS) is satisfied, then the distribution D is involutive (see Lemma 1.8.5 of [39]) and

by Frobenius theorem, for any point x−0 ∈ U , we can find a neighborhood V ⊆ U of x−0 and a

coordinate transformation z = Φ(x) = (φ1(x), . . . , φn(x)) such that span {dφ1, . . . , dφn−k} = D⊥,

where D⊥ denotes the co-distribution annihilating D. The integral submanifold of the distribution

D passing through x−0 is given by

Nx−0
=
{
x ∈ V |φ1(x) = φ1(x−0 ), . . . , φn−k(x) = φn−k(x−0 )

}
.
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Note that Nx−0
⊆ V coincides with the local reachable space RV (x−0 ) of Σ from x−0 (see Proposi-

tion 3.12 and Proposition 3.15 of [38]). Now we are ready to present our results of the existence and245

uniqueness of local impulse-free jumps in a neighborhood V of a consistent point xc ∈ X for index-1

nonlinear DAEs.

Theorem 4.6. Consider a DAE Ξ = (E,F ) and a consistent point xc ∈ X. Assume that conditions

(RE), (CR), (DS) are satisfied in a neighborhood U of xc. Suppose that Ξ is index-1, implying (by

Proposition 3.3) that M∗ = M c
1 ( U is a locally maximal invariant submanifold around xc. Then

for any point x−0 ∈ V \M∗ satisfying Nx−0
∩M∗ 6= ∅ in a neighborhood V ⊆ U of xc, there exists an

IFJ solution J(τ) of Ξ with

J(0) = x−0 and J(a) = x+
0 ∈M∗ ∩Nx−0 ,

where Nx−0
⊆ V is the integral submanifold of the distribution D = 〈g1, . . . , gm| kerE〉. Moreover,

the following statements are equivalent around xc:

(i) The impulse-free jump x−0 → x+
0 is unique.250

(ii) The distribution E = kerE is involutive.

(iii) Ξ is locally on V ex-equivalent to the following index-1 nonlinear Weierstrass form

(INWF) :

Ir 0

0 0

ξ̇1
ξ̇2

 =

F ∗(ξ1)

ξ2

 , (16)

where M∗ ∩ V = {ξ ∈ V | ξ2 = 0}, ξ = (ξ1, ξ2) and ξ1 is a system of coordinates on M∗ ∩ V .

The proof is given in Section 6. Note that for DAE Ξ in Theorem 4.6, the reachability condition

Nx−0
∩M∗ 6= ∅ is necessary for the existence of the impulse-free jumps, we will discuss it in details

in the following remark.255

Remark 4.7. (i) For a linear index-1 regular DAE ∆ = (E,H), the submanifold M∗ is the flat

manifold passing through x = 0 with its tangent space being V ∗ (i.e., the limit of Wong

sequence Vi, see (8)) and Nx−0
is the flat manifold passing through x−0 with its tangent space

being kerE. Note that we always have V ∗ ⊕ kerE = Rn as ∆ is index-1 and regular. Thus

the intersection Nx−0
∩M∗ is non-empty and dim (V ∗ ∩ kerE) = dim(Nx−0

∩M∗) = 0 proves260

that Nx−0
∩M∗ is a point. Moreover, the subspace kerE of ∆ is clearly involutive and ∆ is

always ex-equivalent to the index-1 (WF) on Rn.

(ii) The set Nx−0
∩M∗ could be empty in the nonlinear case due to the existence of singular points,

e.g., any inconsistent initial point x−0 in the white area of Figure 2 can not reach/jump impulse-

freely to the blue line M∗ = Sc (unless it is allowed to cross the singular points) because on265

each Vi, i = 1, 2, 3, the local reachable set Nx−0
⊆ Vi has no intersections with Sc. So the set
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of points from which there exists an impulse-free jump is a subset of Vi (e.g., the shadow area

in Figure 2), which we will call the local admissible impulse-free jump set in Vi.

(iii) For a DAE Ξ, being index-1 is not a necessary condition for the existence of impulse-free jumps.

Take the following DAE for example: Ξ :
[

0 x 1
0 0 0
0 0 0

] [
ẋ
ẏ
ż

]
=
[
y
x
z

]
, which is of geometric index-2 since270

M∗ = M c
2 = {x = y = z = 0}. The corresponding IFJ control system is

[
dx
dτ
dy
dτ
dz
dτ

]
=
[

1 0
0 1
0 −x

]
u,

which for any (x−0 , y
−
0 , z

−
0 ) /∈ M∗ with x−0 6= 0 is controllable to (x+

0 , y
+
0 , z

+
0 ) = (0, 0, 0), i.e.

there exists a > 0 and an input u(·) such that the solution J(τ) = (x(τ), y(τ), z(τ)) satisfies

J(0) = (x−0 , y
−
0 , z

−
0 ) and (x(a), y(a), z(a)) = (0, 0, 0). Clearly, J(·) is an IFJ trajectory of Ξ

and (x−0 , y
−
0 , z

−
0 )→ (0, 0, 0) is an impulse-free jump.275

For a linear regular DAE ∆n,n = (E,H), its consistency projector [18, 22] is defined by

ΠE,H := P−1

In1 0

0 0

P,
where the dimension n1 and the matrix P come from the (WF) of ∆, given by (7). We now generalize

the above notion of consistency projector to nonlinear DAEs with the help of the (INWF), given

by (16).

Definition 4.8 (nonlinear consistency projector). Consider a DAE Ξl,n = (E,F ) and a consistent

point xc ∈ X. Assume that there exists a neighborhood V of xc such that Ξ is locally (on V )

ex-equivalent to the (INWF) of (16) via a Q-transformation and a local diffeomorphism ψ. The

nonlinear (local) consistency projector ΩE,F : V \M∗ → V ∩M∗ of Ξ is then defined by

ΩE,F := ψ−1 ◦ π ◦ ψ,

where π : Rn → Rn is the canonical projection (ξ1, ξ2) 7→ (ξ1, 0).

For a linear DAE ∆, any inconsistent initial value x−0 of ∆ jumps to x+
0 = Πx−0 and the jump280

x−0 → x+
0 is impulse-free, i.e., e0 = x+

0 − x−0 , if and only if E(I − Π) = 0 (compare Theorem 3.8

of [18]), which actually is equivalent to that ∆ is index-1. For a nonlinear DAE, in order that the

existence and uniqueness of impulse-free jumps are satisfied, we need both that Ξ is index-1 and

that kerE is involutive, as seen from the following corollary.

Corollary 4.9. Consider a DAE Ξ = (E,F ) and a consistent point xc ∈ X. Assume that the

conditions (RE) and (CR) are satisfied in an open neighborhood U of xc. Then there exists a

neighborhood V ⊆ U of xc such that for any inconsistent initial point x−0 ∈ V/M∗ satisfying Nx−0
∩

M∗ 6= ∅, there exists a unique impulse-free jump x−0 → x+
0 if and only if Ξ is index-1 and E = kerE

is involutive. Let ΩE,F be the consistency projector of Ξ defined on V , the unique impulse-free jump

is given by

x−0 → x+
0 = ΩE,F (x−0 ) ∈M∗ ∩Nx−0 .

14



Proof. “Only if.” Suppose that x−0 → x+
0 is unique, that is, Nx−0

∩M∗ is a unique point x+
0 on M∗.

It follows that dim(M∗ ∩Nx−0 ) = 0, which implies that

Tx+
0
M∗ ∩ Tx+

0
Nx−0

= Tx+
0
M∗ ∩ kerE(x+

0 ) = 0. (17)

Thus we have that Ξ is index-1 by Proposition 3.3. Hence by Theorem 4.6, the impulse-free jump285

is unique implies that E = kerE is involutive.

“If.” Suppose that the distribution E = kerE is involutive, then the condition rankE(x) = const.

of (CR) implies that D = 〈g1, . . . , gm|E〉 = E = kerE is nonsingular (i.e., (DS) holds). Suppose

additionally that Ξ is index-1, then by Theorem 4.6, Ξ is ex-equivalent to the (INWF), given by

(16), and there exists a unique impulse-free jump

x−0 = ψ−1(ξ−0 )→ x+
0 = ψ−1(ξ+

0 ) ∈M∗ ∩Nx−0 ,

where ξ+
0 = π(ξ−0 ) since for the (INWF), only ξ2-variables are allowed to jump. It follows that

x+
0 = ψ−1 ◦ π ◦ ψ(x−0 ) = Ω(x−0 ).

Remark 4.10. A similar definition of nonlinear consistency projector can be found in [40], where

index-1 DAEs are studied and it is assumed that they are global equivalent (actually ex-equivalent290

using Definition 2.6) to a semi-explicit form. Such an assumption is equivalent to the involutivity

assumption of kerE (see Theorem 3.13 of [28]) when the singular points are not considered. But it

can be seen from Remarks 4.4(iii) and 4.7(iii) above, those singular points actually play important

roles for the existence of impulse-free jumps. Note that under an additional Q-transformation, we

can always transform the semi-explicit form in [40] into our (INWF). Moreover, we have shown a295

way of constructing the (Q,ψ)-transformations to obtain the (INWF) and to define the nonlinear

consistency projector in the proof of Theorem 4.6, those results are not discussed in [40].

Example 4.11. We reconsider the DAE Ξ, given by (13), of Example 4.3. It is clear that Ξ is of

index-1 and that the distribution E = kerE = is involutive. We have that Ξ with the initial point

x−0 = (1, 1) is locally ex-equivalent to its INWF represented by1 0

0 0

ξ̇1
ξ̇2

 =

−f(ξ1, 0)

ξ2

 , ξ−0 = ψ(x−0 ) = (1, 1), (18)

on V = U∗ =
{
x ∈ R2 |x1 = 0, x2 >

√
3

3

}
, via ψ = ξ = (ξ1, ξ2) = (x1 + x3

2 − x2, x1) and Q =
[

1 f ′

0 1

]
,

where f(ξ) = f(ξ1, 0) + f ′(ξ)ξ2 and

f =
1

3

(
a+

√
a2 − 1

27

)− 1
3

+

(
a+

√
a2 − 1

27

) 1
3

, a(ξ1, ξ2) =
ξ1 − ξ2

2
.

Thus the nonlinear (local) consistency projector of Ξ is

Ω = ψ−1 ◦ π ◦ ψ =

 0

f(x1 + x2
2 − x2, 0)

 .
Hence x+

0 = Ω(x−0 ) ≈ (0, 1.3247), which agrees with the result of Example 4.3.
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5. A singular perturbed system approximation of nonlinear DAEs

Singular perturbation theory was frequently used (see e.g., [7, 13, 17, 23]) to approximate DAEs

of the semi-explicit form (3), the main idea is to regularize a DAE ΞSE of the form (3) by replacing

the algebraic constraint 0 = f2(x1, x2) with εẋ2 = f2(x1, x2), where ε represents some ignored small

modeling parameters (e.g, the small inductance of an inductor, see the electric circuits on page 367

of [17]). Then by rescaling time t to τ such that dτ
dt = 1

ε , we get a perturbed system in the time-scale

τ as shown on the right-hand side of the following equations:

ΞSEε :

 ẋ1 = f1(x1, x2),

εẋ2 = f2(x1, x2).

ε= dt
dτ⇔


dx1

dτ
= εf1(x1, x2),

dx2

dτ
= f2(x1, x2).

Note that additionally to the requirement that f1, f2 are sufficiently smooth, there are, in general,

two assumptions in the above approximation method of DAEs: (a) there exists a unique solution

(x1(t), x2(t)) of ΞSE on the finite interval [a, b] starting from a consistent initial point (x+
10, x

+
20);

(b) the Jacobian matrix ∂f2
∂x2

(x1(t), x2(t)) has all its eigenvalues λ(t) satisfying Reλ(t) ≤ 0 for all

t ∈ [a, b]. Assumption (a) means that the DAE ΞSE is internally regular, and assumption (b)

implies that ΞSE is (locally) index-1 and the origin is asymptotically stable equilibrium point of the

so-called boundary layer model dydτ = f2(x1(t), y+h(x1(t))), where x2 = h(x1) is the unique solution

of 0 = f2(x1, x2). Then under assumptions (a),(b), the well-known Tihkonov’s theorem (see e.g.,

[23] and its infinite time interval extension in [41]) for sufficient small ε > 0 and for any (x−10, x
−
20)

satisfying x−10 = x+
10 and y−0 = x−20−h(x+

10) contained in a compact subset of the region of attraction

of the boundary layer model, there exists a solution (x̄1(t, ε), x̄2(t, ε)) of ΞSEε starting from (x−10, x
−
20)

such that

lim
ε→0
||x1(t)− x̄1(t, ε)|| = 0, and lim

ε→0
||x2(t)− x̄2(t, ε)|| = 0,

for all a < c ≤ t ≤ b. In this section, we will propose a singular perturbed system approximation for300

index-1 nonlinear DAEs Ξ with the help of the results in Proposition 3.3 and Theorem 4.6.

Definition 5.1 (singular perturbed system). Consider a DAE Ξl,n = (E,F ) and fix a consistent

point xc. Assume that there exists a neighborhood V of xc such that Ξ is locally (on V ) ex-

equivalent to the DAE (9) (or in particular, the (INWF) of (16)) via a Q-transformation and a

local diffeomorphism ψ. Define the following singular perturbed system on V :

Ξε : ẋ = E−1
W (x, ε)F (x) with EW (x, ε) = E(x) +Q−1(x)

0 0

0 εW−1

 ∂ψ(x)

∂x
, (19)

where W ∈ Rm×m a Hurwitz matrix. Then by rescaling time t to τ , where dτ
dt = 1

ε , we define

Σε :
dx

dτ
= f(x, ε), (20)

where f(x, ε) = εE−1
W (x, ε)F (x) =

(
∂ψ(x)
∂x

)−1 [
εF∗◦ξ1◦ψ(x)−E2◦ψ·W ·ξ2◦ψ(x)

Wξ2◦ψ(x)

]
.
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Remark 5.2. Any linear index-1 regular DAE ∆ = (E,H) of the form (2) is always ex-equivalent,

via two constant matrices Q and P , to the (WF) of (7) with N = 0, i.e., QEP−1 =
[
In1 0
0 0

]
and

QHP−1 =
[
A1 0
0 In2

]
. Applying the construction of (19) to ∆ and setting W = −In2

, we get the

following singular perturbed system:

∆ε : ẋ = E−1(ε)Hx = P−1
[
In1

0

0 − 1
ε In2

]
QHx = P−1

[
A1 0
0 − 1

ε In2

]
Px,

where E(ε) = Q−1
[
In1

0

0 −εIn2

]
P . Note that the above perturbed linear system ∆ε is proposed in

Section IV of [42] as an ODE approximation of a linear DAE ∆.

The following theorem shows that the solution x̄(t) of the proposed perturbed system Ξε, given305

by (19), coincides with the C1-solution x(t) of Ξ when staring from a consistent point x+
0 and that

the solution x̄W (τ, ε) of Σε in the rescaled time τ , given by (20), converges to an impulse-free jump

trajectory JW (τ) of Ξ when staring from an inconsistent point x−0 .

Theorem 5.3. Consider a DAE Ξ = (E,F ) and the singular perturbed systems (19) and (20)

constructed in Definition 5.1. Assume that310

(SP) for a certain compact subset V ⊆ V and any inconsistent initial point x−0 ∈ V\M∗, the system

Σε, given by (20), has a unique solution JW : [0,+∞) → V for ε = 0 and a unique solution

x̄W (·, ε) : [0,+∞)→ V for all 0 < ε ≤ ε∗ with ε∗ ∈ R+ sufficiently small.

Then we have

lim
ε→0
||x̄W (τ, ε)− JW (τ)|| = 0, ∀τ ∈ [0,+∞). (21)

Suppose additionally that JW (+∞) := lim
τ→∞

JW (τ) is well defined, then JW (τ) is an IFJ solution

of Ξ and x+
0 := JW (+∞) is consistent and in general depends on the choice of the Hurwitz matrix315

W . However, if Ξ is locally (on V ) ex-equivalent to the (INWF) of (16), then the consistent point

x+
0 = JW (+∞) is independent of the choice of W (actually x+

0 = ΩE,F (x−0 ) by Corollary 4.9).

Furthermore, the solution x̄(t) : I →M∗ of the perturbed system Ξε, given by (19), starting from

any consistent initial point on M∗ coincides with the C1-solution x(t) of Ξ, which does not depend

on ε and W .320

The proof is given is Section 6.

Remark 5.4. (i) Assumption (SP) is not only an existence and uniqueness condition for the

solutions JW (τ) and x̄w(τ) on the interval [0,∞), but also a stability assumption since we require

the solutions lie entirely in the compact set V. Indeed, if the solutions are not stable, they will

leave any compact set in finite time. Note that in classical singular perturbation theory with infinite325

time interval, one can find similar stability assumptions (see assumptions (VI) and (VII) in [41]) to

guarantee the convergence of the difference of solutions. Actually, assumption (SP) automatically

17



holds if there exists an asymptotically stable equilibrium x+
0 ∈ M∗ ∩ Nx−0 for Σ0, i.e., (20) with

ε = 0, which can be proved by constructing a Lyapunov function V (x) for Σ0 and show that

∂V (x)
∂x f(x, ε) < 0 for sufficient small ε (cf. the proof in [41]).330

(ii) A simple choice of the Hurwitz matrix W is W = diag {−w1, . . . ,−wm} with wi ∈ R+. The

parameters wi are weight coefficients indicating the rate of convergence of J(τ)→ x+
0 as τ →∞. As

seen from (31) below, the solution of the ξi2-subsystem from ξi−20 is ξi2(τ) = e−wiτξi−20 , so wi is the rate

of convergence for ξi2(τ)→ 0. Recall that an IFJ solution of Ξ can be seen as a solution of a control

system dJ(τ)
dτ =

∑m
i=1 gi(J(τ))ui(τ) = g(J(τ))u(τ) (see (15)), thus the choice of wi can be regarded335

as some particular choices of the inputs ui, e.g., we have that g =
[
E2

Im

]
and u(τ) = Wξ2(τ) for (31),

so u(τ) is a particular feedback which stabilizes the ξ2-subsystem. As a consequence, the solutions

x̄W (τ, ε) corresponding to all W -matrices may not approximate all the possible impulse-free jumps,

meaning that the set of all x+
0 = lim

ε→0
x̄W (+∞, ε) corresponding to all W -matrices is a subset of

M∗ ∩Nx−0 , the latter is the set of all points which can be jumped into from x−0 , see Theorem 4.6.340

Example 5.5. Inspired by the simple circuit discussed in [13, 14, 17], consider the electrical circuit

shown in Figure 3 below, which consists of a capacitor C and a nonlinear resistor N . A controlled

C

vC=z

S

iS=b(x, y)ẏ

NvN=y

iN=x

Figure 3: An electric circuit with nonlinear resistor and controlled current source

current source S is additionally connected in parallel with N in order to generate nonlinear terms

in E(x) of the DAE model. Note that controlled current sources have been used in [43] for electric

circuits analog of mechanical systems under non-holonomic constraints.345

The relation between the current iN = x and the voltage vn = y of the nonlinear resistor N is

characterized by the following algebraic equation

0 = a(x, y),

and the current iS of S is equal to b(x, y)ẏ, where a : R2 → R and b : R2 → R are smooth maps .

Using Kirchoff’s law, we model the circuit as a DAE Ξ3,3 = (E,F ):[
0 −b(x,y) C
0 0 0
0 0 0

] [
ẋ
ẏ
ż

]
=
[ x
y+z
a(x,y)

]
.

Let η = (x, y, z) and ηc = (0, 0, 0), we consider two different cases, for which the distribution

E = kerE is involutive in Case 1 but is not in Case 2.
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Case 1: Consider a(x, y) = x− y2 − 2y, b(x, y) = y, C = 1, conditions (RE), (CR) are satisfied

on U = {η ∈ R3 | y < 1} (note that dimE(η)TηM
c
1 = 0 for y = 1). The locally maximal invariant

submanifold M∗ (around ηc) is

M∗ = M c
1 =

{
η ∈ U | y + z = x− y2 − 2y = 0

}
.

Since E = kerE = span{ ∂∂x , y ∂
∂z + ∂

∂y} is involutive and Ξ is of index-1, the DAE Ξ is locally (on

V = U) ex-equivalent to the following DAE represented in (INWF):[
1 0 0
0 0 0
0 0 0

] [ ˙̃z
˙̃y
˙̃x

]
=
[−2z̃

ỹ
x̃

]
. (22)

via

Q =
[

1 −2 −1
0 1 0
0 0 1

]
and ψ = η̃ = (z̃, ỹ, x̃) = (−1

2
y2 + z, y + z, x− y2 − 2y).

Following (19) of Definition 5.1, we construct a singular perturbed system Ξε (we choose W =[−w1 0
0 −w2

]
):

Q−1

[
1 0 0
0 − ε

w1
0

0 0 − ε
w2

]
∂ψ

∂η

[
ẋ
ẏ
ż

]
=
[ x

y+z

x−y2−2y

]
⇒ Ξε :

[
ẋ
ẏ
ż

]
=

[
f1(η,ε,w1,w2)
f2(η,ε,w1,w2)
f3(η,ε,w1,w2)

]
,

where f1 = −−w2x+w2y(2+y)−2ε(y2−2z)−2w1(y+z)
ε , f2 = −w1y+εy2−2εz+w1z

ε+εy , f3 = ε(y2−2z)−w1y(y+z)
ε(1+y) .

Consider an inconsistent initial point η−0 = (0, 0, 0.1) ∈ V \M∗, by Corollary 4.9, we get

η+
0 = ΩE,F (η−0 ) = ψ−1 ◦ π ◦ ψ(η−0 ) = (−0.2,−0.1056, 0.1056),

which defines the unique impulse-free jump η−0 → η+
0 of Ξ. Now we use MATLAB ode45 solver

to simulate the solutions η̄W (t, ε) of the perturbed system Ξε for different ε, w1 and w2. First, we

−0.2
0

0.2
−0.1

0
0

0.1

0.2
η−0

η+0

(0, 0, 0)

x

y

z

M∗

ε = 0.1
ε = 0.05
ε = 0.005

η(t)

(a) Fix w1 = 1, w2 = 1 and change ε.

−0.2
0

0.2
−0.1

0
0

0.1

0.2
η−0

η+0

(0, 0, 0)

x

y

z

M∗

w1 = 0.1
w1 = 1
w1 = 10

η(t)

(b) Fix ε = 0.001, w2 = 1 and change w1.

Figure 4: The solutions η̄W (t, ε) of Ξε with different parameters and the solution η(t) of Ξ.

fix w1 = 1 and w2 = 1, and change ε from 0.1 to 0.05 and 0.005; as seen from Figure 4(a), the350

solution η̄W (t, ε) of Ξε approaches the impulse-free jump η−0 → η+
0 of Ξ closer as the perturbation

parameter ε gets smaller, which agrees with the result (21) of Theorem 5.3. Then we fix w2 = 1 and

ε = 0.001, and change w1 from 0.1 to 1 and 10; it is seen from Figure 4(b) that η̄W (t, ε) approaches

the same jump η−0 → η+
0 independently from the choice of w1, which also agrees with the results of
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Theorem 5.3. Note that η̄W (t, ε) coincides with the C1-solution η(t) of Ξ on M∗, which converges355

to (0, 0, 0) indicating that the origin is an asymptotically stable point for C1-solutions of Ξ.

Case 2: Consider a(x, y) = x − y3, b(x, y) = x, C = 1, then conditions (RE), (CR), (DS) are

satisfied on U = {η ∈ R3 |x > −1}. The locally maximal invariant submanifold M∗ (around ηc) is

M∗ = M c
1 =

{
η ∈ U | y + z = x− y3 = 0

}
.

The distribution E = kerE is not involutive but the DAE Ξ is index-1. By Proposition 3.3, Ξ is

locally (on V = U) ex-equivalent to the following DAE of the form (9):[
1 − x

1+x 0

0 0 0
0 0 0

] [
˙̃z
˙̃y
˙̃x

]
=

[
x

1+x

ỹ
x̃

]
, (23)

where x = x̃+ỹ(ỹ2−3ỹz̃+3z̃2). Then we construct the singular perturbed system Ξε by Definition 5.1

(we choose W =
[−w1 0

0 −w2

]
) to get

Ξε :
[
ẋ
ẏ
ż

]
=

[
f1(η,ε,w1,w2)
f2(η,ε,w1,w2)
f3(η,ε,w1,w2)

]
,

where f1 = w2(−x2+(x+1)(y3−1))−3y2(εx+w1(y+z))
ε(1+x) , f2 = −w1y+εx+w1z

ε(1+x) , f3 = x(ε−w1(y+z))
ε(1+x) . Consider

an inconsistent initial point η−0 = (0.5, 0, 0.5) ∈ V \M∗, by Theorem 4.6, the impulse-free jump

η−0 → η+
0 is not unique and η+

0 ∈M∗∩Nη−0 , where Nη−0
is the integral submanifold of the distribution

D = 〈g1, . . . , gm|E〉. In this example, E = kerE = span {g1, . . . , gm}, where g1 = ∂
∂x , g2 = ∂

∂y + x ∂
∂z

and thus

D = span {g1, g2, [g1, g2]} = TηU,

it follows that Nη−0
= U and that η+

0 ∈ M∗ ∩ Nη−0 can be any point on M∗. Then we implement

a similar simulation for the solution η̄W (t, ε) of Ξε as in Case 1 to get Figure 5 below. Figure 5(a)

−0.4 −0.2 0
0.2

0.4

0

0.5

0.2

0.4

η−0

(0, 0, 0)

x

y

z

M∗

ε = 0.1
ε = 0.05
ε = 0.001

(a) Fixed w1 = 1, w2 = 1 and variant ε.

−0.4 −0.2 0
0.2

0.4

0

0.5

0.2

0.4

η−0

(0, 0, 0)

x

y

z

M∗

w1 = 0.1
w1 = 1
w1 = 10

(b) Fixed ε = 0.01, w2 = 1 and variant w1.

Figure 5: Trajectories ηW (t, ε) of the perturbed system Ξε with different values of parameters

contains similar messages as Figure 4(a): the solution η̄W (t, τ) approaches closer to an impulse-

free jump of Ξ as ε → 0. Nevertheless, as seen Figure 5(b), the impulse-free jump η−0 → η+
0360
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approximated by η̄W (t, ε) is not unique and depends on w1 (and thus on W ), which verifies the

results of Theorem 5.3 for DAEs with non-involutive kerE. Observe that the ex-equivalent DAE

(23) restricted to ψ(M∗) = {η̃ | x̃ = ỹ = 0} is ˙̃z = 0, so the C1-solution of Ξ is the initial consistent

point η(t) = η(0) = η+
0 . Hence the solution η̄W (t, τ) of the perturbed system Ξε on M∗ will become

a fixed point as ε→ 0.365

6. Proofs of the results

Proof of Proposition 3.3. Note that our DAE Ξ is square by l = n of (RE). Following (4), we have

(notice that E1(x) is of full row rank r)

M c
1 = M1 ∩ U := {x ∈ U |QF (x) ∈ ImQE(x)} =

{
x ∈ U

∣∣∣[ F1(x)
F2(x)

]
∈ Im

[
E1(x)

0

]}
= {x ∈ U |F2(x) = 0} .

(24)

(i)⇒ (ii): It is a direct consequence of Definition 3.1 and Proposition 2.3.

(ii) ⇔ (iii): Suppose that M∗ = M c
1 is locally maximal invariant. Since Ξ is locally internally

regular (condition (RE)), we have that dimE(x)TxM
c
1 = dimM c

1 , ∀x ∈ M c
1 by (5). Observe

that F2 : U → Rn−r and rank DF2(x) = const. ≤ n − r, ∀x ∈ M c
1 . It follows that dimM c

1 =

n − rank DF2 ≥ n − (n − r) = r = rankE(x). We conclude that rankE(x) = dimE(x)TxM
c
1 ,

∀x ∈M c
1 by

rankE(x) = r ≤ dimM c
1 = dimE(x)TxM

c
1 ≤ rankE(x), ∀x ∈M c

1 . (25)

Conversely, suppose that rankE(x) = dimE(x)TxM
c
1 , ∀x ∈M c

1 , which implies that dimE1(x)TxM
c
1 =

rankE1(x), where E1 comes from (24). It follows that F1(x) ∈ E1(x)TxM
c
1 , ∀x ∈M c

1 . Observe that

F2(x) = 0, ∀x ∈M c
1 , thus

M c
2 = M2 ∩ U =

{
x ∈M c

1

∣∣∣ [ F1(x)
F2(x)

]
∈
[
E1(x)

0

]
TxM

c
1

}
= M c

1 .

Then we conclude that M∗ = M c
1 is a locally maximal invariant submanifold by Proposition 2.3.

Notice that the inequality dimM c
1 = dimTxM

c
1 ≥ rankE(x) always holds for x ∈ M c

1 (since

rank DF2(x) ≤ n− r), hence kerE(x) ∩ TxM c
1 = 0 if and only if rankE(x) = dimE(x)TxM

c
1 .370

(iii) ⇒ (iv): Suppose that item (iii) holds. The equivalence of (ii) and (iii) implies that

dimM c
1 = rankE(x) = r, ∀x ∈M c

1 . Thus rank DF2(x) = n− dimM c
1 = n− r, i.e., DF2(x) is of full

row rank for all x ∈M c
1 . Now by ker DF2(x) = TxM

c
1 and kerE(x)∩TxM c

1 = 0, ∀x ∈M c
1 , it follows

that rank DF2(x)Z(x) = rank DF2(x) = n− r and rank
[
E1(x)

DF2(x)

]
= rankE1(x) + rank DF2(x) = n,

∀x ∈M c
1 . Hence DF2(x)Z(x) and

[
E1(x)

DF2(x)

]
are invertible for all x ∈M c

1 .375

(iv) ⇒ (v): Suppose that the matrix A(x) = DF2(x)Z(x) or B(x) =
[
E1(x)

DF2(x)

]
is invertible for

all x ∈ M c
1 . It follows that DF2(x) is of full row rank, i.e., rank DF2(x) = n− r = m, ∀x ∈ U . Let
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ξ2 = F2, then there exist a neighborhood U1 ⊆ U of xc and a smooth map ξ1 : U1 → Rr such that

ψ(x) = (ξ1(x), ξ2(x)) is a local diffeomorphism on U1. Thus Ξ is ex-equivalent (via Q and ψ) to

Q(x)E(x)

(
∂ψ(x)

∂x

)−1
∂ψ(x)

∂x
ẋ = Q(x)F (x)⇔

E1
1(ξ) E2

1(ξ)

0 0

ξ̇1
ξ̇2

 =

F̃1(ξ)

ξ2


where E1

1 : U1 → Rr×r, [E1
1 ◦ ψ E2

1 ◦ ψ] = E1 and F̃1 ◦ ψ = F1. Observe that A(x) or B(x) is

invertible implies kerE(xc) ∩ TxcM c
1 = 0 since kerE(xc) = ImZ(xc) and ker DF2(xc) = TxcM

c
1 .

Thus rankE1
1(ψ(xc)) = dimE(xc)TxcM

c
1 = r, i.e., E1

1(ψ(xc)) is invertible. Then by the smoothness

of E1
1 , there exists a neighborhood U2 ⊆ U1 such that E1

1(ψ(x)) is invertible ∀x ∈ U2. Define

Q1 :=
[

(E1
1)−1 0
0 Im

]
, then via the Q1Q-transformation and the diffeomorphism ξ = (ξ1, ξ2) = ψ(x), Ξ380

is locally (on V = U2) ex-equivalent to (9) with E2 = (E1
1)−1E2

1 and F ∗ = (E1
1)−1F̃1.

(v)⇒ (i): Note that the sequence of submanifolds M c
k constructed by (4) is invariant under the

ex-equivalence, i.e., for two ex-equivalent DAEs Ξ and Ξ̃, the submanifolds M c
k of Ξ and M̃ c

k of Ξ̃

satisfies M̃ c
k = ψ(M c

k). Thus the geometric index νg, which depends only on the sequence M c
k , is

also invariant under the ex-equivalence. By a direct calculation of the submanifolds M c
1 and M c

2 for385

(9), it is seen that (9) is index-1. Hence, the DAE Ξ, being ex-equivalent to (9), is also index-1.

Proof of Theorem 4.6. As Ξ is of index-1, there exists a neighborhood V ⊆ U of xc such that Ξ

is locally ex-equivalent (via a diffeomorphism ψ and a Q-transformation) to the DAE (9) on V .

Note that for any point x−0 ∈ V \M∗, we have that ξ−0 = (ξ−10, ξ
−
20) = ψ(x−0 ) satisfies ξ−20 6= 0 since

M∗ ∩ V = {ξ ∈ V | ξ2 = 0}. Then consider the following control system defined on V with a vector

of inputs u ∈ C0, dξ1dτ
dξ2
dτ

 =

m∑
i=1

g̃i(ξ)ui =

−E2(ξ)

Im

u, ξ(0) = ξ−0 = (ξ−10, ξ
−
20), (26)

where span {g̃1 ◦ ψ, . . . , g̃m ◦ ψ} = ker(Ẽ ◦ ψ) = ∂ψ
∂x kerE. By condition (DS), the k-dimensional

distribution D̃ =
〈
g̃1, . . . , g̃m| ker Ẽ

〉
is involutive, thus there exist φ̃i : V → R, i = 1, . . . , n − k,

such that span
{
dφ̃1, . . . , dφ̃n−k

}
= D̃⊥. Then let ξ̃1 = (φ̃1, . . . , φ̃n−k), it is directly seen from (26)

that span {dξ2} ∩ D̃⊥ = 0 and thus dξ̃1 and dξ2 are linearly independent. By taking a smaller V , if

necessary, we can choose new local coordinates ξ̄ = (ξ̃1, ξ̄1, ξ2) on V , where ξ̄1 = (φ̃n−k+1, . . . , φ̃n−m)

is chosen such that Φ̃(ξ) = (φ̃1(ξ), . . . , φ̃n−m(ξ), ξ2) is a local diffeomorphism. Then under the new

local ξ̄-coordinates, the control system (26) becomes
dξ̃1
dτ

dξ̄1
dτ

dξ2
dτ

 =


0

Ē1(ξ̄)

Im

u, ξ̄(0) = Φ̃(ξ−0 ) = (ξ̃−10, ξ̄
−
10, ξ

−
20) ∈ V \M∗, (27)

where Ē1 : V → R(k−m)×m. Note that by Proposition 3.12 and Proposition 3.15 of [38], system (27)

restricted to Nξ̄−0
=
{
ξ̄ ∈ V | ξ̃1 = ξ̃−10

}
is controllable. It follows that for any ξ̄−0 = (ξ̃−10, ξ̄

−
10, ξ

−
20) ∈

22



V \M∗ with Nξ̄−0
∩ M∗ =

{
ξ̄ ∈ V | ξ̃1 = ξ̃−10, ξ2 = 0

}
6= ∅, there exist u = u(τ) and a > 0 such

that the C1-solution ξ̄(τ) of (27) under the input u = u(τ) satisfies ξ̄(0) = ξ̄−0 and ξ̄(a) = ξ̄+
0 =390

(ξ̃+
10, ξ̄

+
10, ξ

+
20) ∈ M∗ ∩Nx−0 , i.e., ξ̃+

10 = ξ̃−10, ξ+
20 = 0 and ξ̄+

10 being arbitrary. Then by Definition 4.1,

ξ(τ) = Φ̃−1(ξ̄(τ)) is an IFJ trajectory of (9) since ξ(0) = ξ−0 = Φ̃−1(ξ̄−0 ) ∈ V \M∗, ξ(a) = ξ+
0 =

Φ̃−1(ξ̄+
0 ) ∈ M∗ ∩ V and

[
I E2(ξ(τ))
0 0

] dξ(τ)
dτ = 0 for τ ∈ [0, a] (recall that M∗ locally coincides with

the consistency space Sc on V by Proposition 2.3). Since Ξ and (9) are ex-equivalent (via Q and

ψ), we conclude that (see Remark 4.4(i)) for any inconsistent initial value x−0 = ψ−1(ξ−0 ) ∈ V/M∗395

satisfying M∗∩Nx−0 6= ∅ , there exists an IFJ trajectory J(τ) = ψ−1(ξ(τ)) satisfying that J(0) = x−0

and J(a) = x+
0 = ψ−1(ξ+

0 ) = ψ−1 ◦ Φ̃−1(ξ̄+
0 ) ∈ Nx−0 ∩M

∗.

(i) ⇒ (ii): Suppose that for a fixed x−0 ∈ V \M∗, the impulse-free jump x−0 → x+
0 of Ξ is

unique. It follows that the impulse-free jump ξ−0 → ξ+
0 of (9) is unique and so is the point ξ̄+

0 =

(ξ̃+
10, ξ̄

+
10, ξ

−
20) = Φ̃(ξ+

0 ). Thus ξ̄1-variables is not present in (27) since ξ̃+
10 = ξ̃−10 and ξ−20 = 0 are fixed400

but ξ̄+
10 is arbitrary. Hence, we have dim kerE = m = k = dimD, which means that the distribution

kerE(x) is involutive.

(ii) ⇒ (iii): Suppose that the distribution kerE(x) is involutive. Choose Q : U → GL(n,R)

such that E1 : U → Rr×n of QE =
[
E1
0

]
is of full row rank r and denote QF =

[
F1

F2

]
. Because Ξ is

index-1, we have that
[
E1(xc)

DF2(xc)

]
is invertible by Proposition 3.3. Since the distribution Ξ = kerE is

involutive, by Frobenius theorem (see e.g., [25]), there exist a neighborhood U1 ⊆ U and a smooth

map ξ1 : U1 → Rr such that span
{

dξ1
1 , . . . ,dξ

r
1

}
= E⊥, where dξi1 are independent rows of Dξ1 and

E = kerE = kerE1, i.e., Dξ1(x) kerE1(x) = 0, ∀x ∈ U1. It follows that there exists Q1 : U1 →
GL(r,R) such that Dξ1(x) = Q1(x)E1(x). Set ξ2 = F2, then we have ψ(x) = (ξ1(x), ξ2(x)) is a local

diffeomorphism on a neighborhood U2 ⊆ U1 of xc since

∂ψ(xc)

∂x
=
[

Dξ1(xc)
DF2(xc)

]
=
[
Q1(xc) 0

0 I

] [ E1(xc)
DF2(xc)

]
is invertible. Define the new local coordinates ξ = ψ = (ξ1, ξ2) on U2, we getE1(x)

0

(∂ψ(x)

∂x

)−1
∂ψ(x)

∂x
ẋ =

F1(x)

F2(x)

⇔
E1

1(ξ1, ξ2) 0

0 0

ξ̇1
ξ̇2

 =

F̃1(ξ1, ξ2)

ξ2

 , (28)

where E1
1 : U2 → Rr×r, [E1

1 ◦ ψ,E2
1 ◦ ψ] = E1(∂ψ∂x )−1 with E2

1 ≡ 0, F̃1 ◦ ψ = F1. Notice that

E2
1 ≡ 0 because ImE2

1(x) = E1(x) ker Dξ1(x) = 0 and that E1
1(x) is invertible for x ∈ U2 since

rankE(x) = const. = r, ∀x ∈ U2. Let F̄1 = (E1
1)−1F̃1, we can always find F̄ ′1 : U2 → Rr×m405

such that F̄1(ξ1, ξ2) = F̄1(ξ1, 0) + F̄ ′1(ξ1, ξ2)ξ2. Then via Q̃ =
[

(E1
1)−1 −F̄ ′1
0 I

]
, the DAE (28) is ex-

equivalent to the (INWF) with F ∗(ξ1) = F̄1(ξ1, 0). Finally, it is seen that Ξ is locally (on V = U2)

ex-equivalent to the (INWF) via the Q̃Q-transformation and the diffeomorphism ψ.

(iii) ⇒ (i): Suppose that Ξ is locally ex-equivalent to (16). Then via a similar analysis as the

beginning of the present proof (we use now (INWF) rather than the form (9)), we can deduce410
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that the ξ̄1-variables of (27) is absent, which implies that the impulse-free jump ξ−0 → ξ+
0 (and thus

x−0 → x+
0 ) is unique.

Proof of Theorem 5.3. Suppose that Ξ is locally (on V ) ex-equivalent to (9) via Q and ψ. Consider

the following perturbed system for (9),ξ̇1
ξ̇2

 =

Ir E2(ξ1, ξ2)

0 εW−1

−1 F ∗(ξ1, ξ2)

ξ2

 =

F ∗(ξ1, ξ2)− 1
εWE2(ξ1, ξ2)ξ2

1
εWξ2

 , (29)

which is ex-equivalent (via
[
I E2

0 εW−1

]
Q and ψ) to Ξε of (19). By rescaling t to τ such that dτ

dt = 1
ε ,

we get

Σ̃ε :

dξ1dτ
dξ2
dτ

 =

εF ∗(ξ1, ξ2)− E2(ξ1, ξ2)Wξ2

Wξ2

 . (30)

Then consider the following system Σ̃0 defined on ψ(V ),

Σ̃0 :

dξ1dτ
dξ2
dτ

 =

−E2(ξ1, ξ2)Wξ2

Wξ2

 , (31)

By assumption (SP), there exists a compact subset Ṽ ⊆ ψ(V ), such that Σ̃ε has a unique solution

ξ̃W (·, ε) : [0,+∞) → Ṽ and Σ̃0 has a unique solution J̃W : [0,+∞) → Ṽ, given any inconsistent

initial value (ξ−10, ξ
−
20) ∈ Ṽ\M∗. Let J̃W (τ) = (ξ1(τ), ξ2(τ)) = (ξ1(τ), eWτξ−20) be the solution

of Σ̃0 starting from (ξ−10, ξ
−
20). Define γW (τ, ε) := ξ̃W (τ, ε) − J̃W (τ), it follows that γ′W (τ, ε) =

dγW (τ,ε)
dτ =

[
εF∗(ξ1(τ),ξ2(τ))

0

]
. Then because (ξ1(τ), ξ2(τ)) ∈ Ṽ, ∀τ ∈ [0,∞) and F ∗ is continues,

we have F ∗(ξ1(τ), ξ2(τ)) is bounded for all τ ∈ [0,∞). So γ′W (τ∗, ε) → 0 as ε → 0 uniformly for

all τ∗ ∈ [0, τ ]. For each ε ∈ (0, ε∗] there exists by the mean value theorem a τ∗ε ∈ [0, τ ] such that

γW (τ, ε) = γ′W (τ∗ε , ε)τ (because γW (0, ε) = 0) and hence we have

lim
ε→0
||ξ̃W (τ, ε)− J̃W (τ)|| = lim

ε→0
||γW (τ, ε)||= lim

ε→0
||γ′W (τ∗ε , ε)τ || = 0.

It is clear that JW (τ) = ψ−1 ◦ J̃W (τ) and x̄W (τ, ε) = ψ−1 ◦ ξ̃W (τ, ε) are the solutions of Σ0 and Σε

starting from x−0 , respectively. Therefore, by Lipschitz condition of ψ−1 on the compact set Ṽ,

lim
ε→0
||x̄W (τ, ε)− JW (τ)|| = lim

ε→0
||ψ−1 ◦ ξ̃W (τ, ε)− ψ−1 ◦ J̃W (τ)|| ≤ lim

ε→0
K||ξ̃W (τ, ε)− J̃W (τ)|| = 0,

where K is a Lipschitz constant.

Furthermore, if J̃W (+∞) = ψ ◦ JW (+∞) is well defined, by W is Hurwitz, we then have

J̃W (+∞) = lim
τ→∞

(ξ1(τ), ξ2(τ)) = (ξ+
10, ξ

+
20) = (ξ+

10, 0) ∈M∗ ∩ Ṽ

(recall that M∗ ∩ Ṽ = {(ξ2, ξ2) ∈ Ṽ | ξ2 = 0}). By definition, J̃W (τ) is an IFJ trajectory of (9)

since J̃W (0) = (ξ−10, ξ
−
20) ∈ Ṽ\M∗, J̃W (+∞) = (ξ+

10, ξ
+
20) ∈ Ṽ ∩M∗ and [ Ir E2(J̄W (τ)) ] dJ̃W (τ)

dτ = 0,415
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∀τ ∈ [0,+∞). Since the ex-equivalence preserves jump trajectories (see Remark 4.4(ii)), we have

that JW (τ) = ψ−1(J̃W (τ)) is an IFJ trajectory of Ξ starting from x−0 = ψ−1(ξ−10, ξ
−
20) and ending

at x+
0 = ψ−1(ξ+

10, 0). Note that the consistent point x+
0 = ψ−1(ξ+

10, 0) depends on the choice of W

since (ξ+
10, 0) is the converging point of the solution JW (τ) (actually an equilibrium point of Σ0),

which depends on the choice W . If Ξ is locally (on V ) ex-equivalent to the (INWF) of (16) via420

Q and ψ, then the matrix E2(ξ1, ξ2) ≡ 0 of (31), which implies dξ1
dτ = 0 and ξ1(τ) = const. = ξ−10.

Therefore, we have lim
τ→∞

ξ1(τ) = ξ+
10 = ξ−10 is unique and does not depend on the choice of W , so

x+
0 = ψ−1(ξ+

10, 0) = ψ−1 ◦ π ◦ ψ(x−0 ) = ΩE,F (x−0 ) is unique.

Furthermore, let (ξ1(·, ε), ξ2(·, ε)) : I → V be the solution of (29) starting from any consistent

point (ξ+
10, 0). We have ξ2(t, ε) = 0, ∀t ∈ I (since ξ2(0) = 0 is an equilibrium point of ξ̇2 = 1

εWξ2)425

and ξ1(t, ε) solves ξ̇1 = F ∗(ξ1, 0). Hence both ξ1(t, ε) and ξ2(t, ε) do not depend on ε and W , and

(ξ1(t), 0) is a C1-solution of (9). Since the ex-equivalence preserves also C1-solutions, it follows that

x(t) = ψ−1(ξ1(t), 0) is the solution of both the DAE Ξ and the perturbed system Ξε staring from

the consistent point x+
0 = ψ−1(ξ+

10, 0).

430

7. Conclusions and perspectives

In this paper, we study solutions of nonlinear DAEs with inconsistent initial values by regarding

jumps as parametrized curves satisfying certain impulse-free conditions. We show that the impulse-

free jump under a new proposed definition is invariant under the external equivalence of DAEs. We

give some characterizations for the notion of geometric index-1. Then we show that the existence435

and uniqueness of impulse free jumps are closely related to the notion of geometric index-1 and

the involutivity of the distribution defined by kerE. We also generalize the consistency projector

of linear DAEs to the nonlinear case by proposing a normal form called the index-1 nonlinear

Weierstrass form (INWF). At last, we propose a singular perturbation system approximation for

nonlinear DAEs, the solutions of the perturbed system not only approximate the impulse-free jumps440

but also the C1-solutions of the DAE. Our future research would be extending or applying our

results of impulse-free jumps to problems like consistent initialization of switched nonlinear DAEs

[18], solutions of control systems with impulsive inputs [37].
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[2] D. Cobb, A further interpretation of inconsistent initial conditions in descriptor-variable sys-450

tems, IEEE Trans. Autom. Control 28 (1983) 920–922.

[3] S. Trenn, Solution concepts for linear DAEs: a survey, in: A. Ilchmann, T. Reis (Eds.), Surveys

in Differential-Algebraic Equations I, Differential-Algebraic Equations Forum, Springer-Verlag,

Berlin-Heidelberg, 2013, pp. 137–172.

[4] Z. Zuhao, ZZ model method for initial condition analysis of dynamics networks, IEEE Trans.455

Circuits Syst. 38 (1991) 937–941.

[5] J. Vlach, J. M. Wojciechowski, A. Opal, Analysis of nonlinear networks with inconsistent initial

conditions, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 42 (1995) 195–200.

[6] S. Trenn, Switched differential algebraic equations, in: F. Vasca, L. Iannelli (Eds.), Dynamics

and Control of Switched Electronic Systems - Advanced Perspectives for Modeling, Simulation460

and Control of Power Converters, Springer-Verlag, London, 2012, pp. 189–216.

[7] Y. Susuki, T. Hikihara, H.-D. Chiang, Discontinuous dynamics of electric power system with

DC transmission: A study on DAE system, IEEE Trans. Circuits Syst., I: Fundam. Theory

Appl. 55 (2008) 697–707.

[8] P. Hamann, V. Mehrmann, Numerical solution of hybrid systems of differential-algebraic equa-465

tions, Comp. Meth. Appl. Mech. Engr. 197 (2008) 693–705.

[9] R. N. Methekar, V. Ramadesigan, J. C. Pirkle, V. R. Subramanian, A perturbation approach for

consistent initialization of index-1 explicit differential–algebraic equations arising from battery

model simulations, Computers Chemical Engineering 35 (2011) 2227 – 2234.

[10] W. Heemels, J. M. Schumacher, S. Weiland, Linear complementarity systems, SIAM J. Appl.470

Math. 60 (2000) 1234–1269.

[11] C.-C. Chu, Transient Dynamics of Electric Power Systems: Direct Stability Assessment and

Chaotic Motions, Ph.D. thesis, Cornell University, 1996.

[12] F. Takens, Constrained equations; a study of implicit differential equations and their discon-

tinuous solutions, in: Structural Stability, the Theory of Catastrophes, and Applications in the475

Sciences, Springer, 1976, pp. 143–234.

26



[13] S. S. Sastry, C. A. Desoer, Jump behavior of circuits and systems, IEEE Trans. Circuits Syst.,

I: Fundam. Theory Appl. CAS-28 (1981) 1109–1123.

[14] I. O. Chua, A.-C. Deng, Impasse points. Part I: numerical aspects, Int. J. Circuit Theory Appl.

17 (1989) 213–235.480

[15] J. D. Cobb, Controllability, observability and duality in singular systems, IEEE Trans. Autom.

Control 29 (1984) 1076–1082.

[16] S. Trenn, Regularity of distributional differential algebraic equations, Math. Control Signals

Syst. 21 (2009) 229–264.

[17] P. J. Rabier, W. C. Rheinboldt, Theoretical and numerical analysis of differential-algebraic485

equations, in: P. G. Ciarlet, J. L. Lions (Eds.), Handbook of Numerical Analysis, volume VIII,

Elsevier Science, Amsterdam, The Netherlands, 2002, pp. 183–537.

[18] D. Liberzon, S. Trenn, Switched nonlinear differential algebraic equations: Solution theory,

Lyapunov functions, and stability, Automatica 48 (2012) 954–963.

[19] P. N. Brown, A. C. Hindmarsh, L. R. Petzold, Consistent initial condition calculation for490

differential-algebraic systems, SIAM J. Sci. Comput. 19 (1998) 1495–1512.

[20] L. F. Shampine, M. W. Reichelt, J. A. Kierzenka, Solving index-1 DAEs in matlab and simulink,

SIAM review 41 (1999) 538–552.

[21] MathWorks, Compute consistent initial conditions for ode15i, 2006. https://mathworks.com/

help/matlab/ref/decic.html Accessed January 8, 2021.495

[22] D. Liberzon, S. Trenn, On stability of linear switched differential algebraic equations, in: Proc.

IEEE 48th Conf. on Decision and Control, 2009, pp. 2156–2161.

[23] H. K. Khalil, Nonlinear Systems, 3rd ed., Prentice-Hall, Upper Saddle River, NJ, 2001.

[24] Y. Chen, S. Trenn, An approximation for nonlinear differential-algebraic equations via singular

perturbation theory, IFAC-PapersOnLine 54 (2021) 187–192.500

[25] J. M. Lee, Introduction to Smooth Manifolds, Springer, 2001.

[26] S. Reich, On an existence and uniqueness theory for nonlinear differential-algebraic equations,

Circuits Systems Signal Process. 10 (1991) 343–359.

[27] R. Riaza, Differential-Algebraic Systems. Analytical Aspects and Circuit Applications, World

Scientific Publishing, Basel, 2008.505

27

https://mathworks.com/help/matlab/ref/decic.html
https://mathworks.com/help/matlab/ref/decic.html
https://mathworks.com/help/matlab/ref/decic.html


[28] Y. Chen, W. Respondek, Geometric analysis of nonlinear differential-algebraic equations via

nonlinear control theory, J. Diff. Eqns. 314 (2022) 161–200.

[29] Y. Chen, S. Trenn, W. Respondek, Normal forms and internal regularization of nonlinear

differential-algebraic control systems, Int. J. Robust & Nonlinear Control 31 (2021) 6562–6584.

[30] Y. Chen, S. Trenn, On geometric and differentiation index of nonlinear differential-algebraic510

equations, IFAC-PapersOnLine 54 (2021) 186–191.

[31] Y. Chen, W. Respondek, Geometric analysis of linear differential-algebraic equations via linear

control theory, SIAM J. Control Optim. 59 (2021) 103–130.

[32] T. Berger, T. Reis, Regularization of linear time-invariant differential-algebraic systems, Syst.

Control Lett. 78 (2015) 40–46.515

[33] K.-T. Wong, The eigenvalue problem λTx+ Sx, J. Diff. Eqns. 16 (1974) 270–280.

[34] T. Berger, T. Reis, Controllability of linear differential-algebraic systems - a survey, in: A. Ilch-

mann, T. Reis (Eds.), Surveys in Differential-Algebraic Equations I, Differential-Algebraic

Equations Forum, Springer-Verlag, Berlin-Heidelberg, 2013, pp. 1–61.

[35] A. Filippov, Differential equations with discontinuous right-hand sides, Mathematics and Its520

Applications: Soviet Series, 18. Dordrecht etc.: Kluwer Academic Publishers, 1988.

[36] A. B. Rampazzo, On differential systems with vector-valued impulsive controls, Boll. Un. Mat.

Ital (1988) 641–656.

[37] A. Bressan, F. Rampazzo, Impulsive control systems with commutative vector fields, J. Optim.

Theory and Appl. 71 (1991) 67–83.525

[38] H. Nijmeijer, A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag,

Berlin-Heidelberg-New York, 1990.

[39] A. Isidori, Nonlinear Control Systems, Communications and Control Engineering Series, 3rd

ed., Springer-Verlag, Berlin, 1995.

[40] A. Tanwani, Q. Zhu, Feedback Nash equilibrium for randomly switching differential–algebraic530

games, IEEE Trans. Autom. Control 65 (2019) 3286–3301.

[41] F. C. Hoppensteadt, Singular perturbations on the infinite interval, Trans. Am. Math. Soc.

123 (1966) 521–535.

[42] A. Mironchenko, F. Wirth, K. Wulff, Stabilization of switched linear differential algebraic

equations and periodic switching, IEEE Trans. Autom. Control 60 (2015) 2102–2113.535

28



[43] C. Cuell, An electric circuit analog of a constrained mechanical system, IEEE Trans. Circuits

Syst., I: Fundam. Theory Appl. 48 (2001) 1114–1118.

29


	Introduction
	Notations and Preliminaries on C1-solutions of DAEs
	Geometric index-1 nonlinear DAEs
	Impulse-free jump solutions of nonlinear DAEs
	A singular perturbed system approximation of nonlinear DAEs
	Proofs of the results
	Conclusions and perspectives

