

faculty of science and engineering bernoulli institute for mathematics, computer science and artificial intelligence

Switched differential algebraic equations: Jumps and impulses

Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Supported by NWO Vidi grant 639.032.733

Online guest lecture at Faculty of Science and Mathematics, Diponegoro University, Indonesia

10 December 2021

Motivating example

Switched DAEs: Solution Theory

Observability

Summary

Motivating example

t < 0

Switched DAEs: Solution Theory

Observability

Summary

Motivating example

 \rightarrow switched differential-algebraic equation

Switched DAEs: Solution Theory

Observability

Summary

Dirac impulse is "real"

Dirac impulse

Not just a mathematical artifact!

Drawing: Harry Winfield Secor, public domain

Foto: Ralf Schumacher, CC-BY-SA 3.0

澎		university of	Introduction
60	/	groningen	

Summary

Contents

Introduction

Switched DAEs: Solution Theory

Definition Review: classical distribution theory Restriction of distributions Piecewise smooth distributions Distributional solutions Impulse-freeness

Observability

```
Definition
The single switch result
Calculation of the four subspaces
\mathcal{C}_{-}
O_{-} and O_{+}^{-}
O_{+}^{imp}
```

Summary

1,	university of groningen	Introduction	Switched DAEs: Solution Theory	Observability	Summary

Definition

 $\begin{array}{l} \mbox{Switch} \rightarrow \mbox{Different DAE models (=modes)} \\ \mbox{depending on time-varying position of switch} \end{array} \right.$

Definition (Switched DAE)

Switching signal $\sigma : \mathbb{R} \to \{1, \dots, N\}$ picks mode at each time $t \in \mathbb{R}$:

$$\begin{split} E_{\sigma(t)}\dot{x}(t) &= A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t) \\ y(t) &= C_{\sigma(t)}x(t) + D_{\sigma(t)}u(t) \end{split} \tag{swDAE}$$

Attention

Each mode might have different consistency spaces

- \Rightarrow inconsistent initial values at each switch
- \Rightarrow Dirac impulses, in particular distributional solutions

university of groningen	Introduction	Switched DAEs: Solution Theory	Observability	Summary

Definition

 $\begin{array}{l} \mbox{Switch} \rightarrow \mbox{Different DAE models (=modes)} \\ \mbox{depending on time-varying position of switch} \end{array} \right.$

Definition (Switched DAE)

Switching signal $\sigma : \mathbb{R} \to \{1, \dots, N\}$ picks mode at each time $t \in \mathbb{R}$:

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$y = C_{\sigma}x + D_{\sigma}u$$
(swDAE)

Attention

Each mode might have different consistency spaces

- \Rightarrow inconsistent initial values at each switch
- \Rightarrow Dirac impulses, in particular distributional solutions

Summary

Distribution theory - basic ideas

Distributions - overview

- > Generalized functions
- > Arbitrarily often differentiable
- > Dirac-Impulse δ is "derivative" of Heaviside step function $\mathbbm{1}_{[0,\infty)}$

Two different formal approaches

- 1) Functional analytical: Dual space of the space of test functions (L. Schwartz 1950)
- 2) Axiomatic: Space of all "derivatives" of continuous functions (J. Sebastião e Silva 1954)

Distributions - formal

Definition (Test functions)

 $\mathcal{C}_0^\infty := \{ \varphi : \mathbb{R} \to \mathbb{R} \mid \varphi \text{ is smooth with compact support} \}$

Definition (Distributions)

 $\mathbb{D} := \{ D : \mathcal{C}_0^\infty \to \mathbb{R} \mid D \text{ is linear and continuous} \}$

Definition (Regular distributions)

$$f\in\mathcal{L}_{1,\mathsf{loc}}(\mathbb{R}\to\mathbb{R})\colon \ \ f_{\mathbb{D}}:\mathcal{C}_0^\infty\to\mathbb{R},\ \varphi\mapsto\int_{\mathbb{R}}f(t)\varphi(t)\mathsf{d}t\in\mathbb{D}$$

Definition (Derivative) $D'(\varphi) := -D(\varphi')$ Dirac Impulse at $t_0 \in \mathbb{R}$ $\delta_{t_0} : \mathcal{C}_0^{\infty} \to \mathbb{R}, \quad \varphi \mapsto \varphi(t_0)$

$$(\mathbb{1}_{[0,\infty)\mathbb{D}})'(\varphi) = -\int_{\mathbb{R}} \mathbb{1}_{[0,\infty)}\varphi' = -\int_0^\infty \varphi' = -(\varphi(\infty) - \varphi(0)) = \varphi(0)$$

Summary

Multiplication with functions

Definition (Multiplication with smooth functions)

 $\alpha\in\mathcal{C}^\infty:\quad (\alpha D)(\varphi):=D(\alpha\varphi)$

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$y = C_{\sigma}x + D_{\sigma}u$$
(swDAE)

Coefficients not smooth

Problem: $E_{\sigma}, A_{\sigma}, C_{\sigma} \notin \mathcal{C}^{\infty}$

Observation, for
$$\sigma_{[t_i,t_{i+1})} \equiv p_i$$
, $i \in \mathbb{Z}$:

$$\begin{split} E_{\sigma}\dot{x} &= A_{\sigma}x + B_{\sigma}u \\ y &= C_{\sigma}x + D_{\sigma}u \end{split} \Leftrightarrow \quad \forall i \in \mathbb{Z}: \begin{array}{c} (E_{p_i}\dot{x})_{[t_i,t_{i+1})} &= (A_{p_i}x + B_{p_i}u)_{[t_i,t_{i+1})} \\ y_{[t_i,t_{i+1})} &= (C_{p_i}x + D_{p_i}u)_{[t_i,t_{i+1})} \end{split}$$

New question: Restriction of distributions

Desired properties of distributional restriction

Distributional restriction:

 $\{M \subseteq \mathbb{R} \mid M \text{ interval } \} \times \mathbb{D} \to \mathbb{D}, \quad (M, D) \mapsto D_M$

and for each interval $M\subseteq \mathbb{R}$

- > $D \mapsto D_M$ is a projection (linear and idempotent)
- $, \quad \forall f \in \mathcal{L}_{1,\mathsf{loc}}: \quad (f_{\mathbb{D}})_M = (f_M)_{\mathbb{D}}$
- $\forall \varphi \in \mathcal{C}_0^\infty : \quad \left[\begin{array}{cc} \operatorname{supp} \varphi \subseteq M & \Rightarrow & D_M(\varphi) = D(\varphi) \\ \operatorname{supp} \varphi \cap M = \emptyset & \Rightarrow & D_M(\varphi) = 0 \end{array} \right]$

) $(M_i)_{i\in\mathbb{N}}$ pairwise disjoint, $M = \bigcup_{i\in\mathbb{N}} M_i$:

$$D_M = \sum_{i \in \mathbb{N}} D_{M_i}, \quad D_{M_1 \cup M_2} = D_{M_1} + D_{M_2}, \quad (D_{M_1})_{M_2} = 0$$

Theorem ([T. 2009, T. 2021])

Such a distributional restriction does not exist.

Stephan Trenn (Jan C. Willems Center, U Groningen)

Switched differential algebraic equations: Jumps and impulses (10 / 34)

ç –	∠ university of	Introduction
1/	groningen	

Summary

Dilemma

Switched DAEs

- > Examples: distributional solutions
- > Multiplication with non-smooth coefficients
- > Or: Restriction on intervals

Distributions

- > Distributional restriction not possible
- Multiplication with non-smooth coefficients not possible
- Initial value problems cannot be formulated

Underlying problem

Space of distributions too big.

Piecewise smooth distributions

Define a suitable smaller space:

Definition (Piecewise smooth distributions $\mathbb{D}_{pw\mathcal{C}^{\infty}}$, [T. 2009])

$$\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}} := \left\{ f_{\mathbb{D}} + \sum_{t \in T} D_t \; \middle| \; \begin{array}{l} f \in \mathcal{C}_{\mathsf{pw}}^{\infty}, \\ T \subseteq \mathbb{R} \text{ locally finite}, \\ \forall t \in T : D_t = \sum_{i=0}^{n_t} a_i^t \delta_t^{(i)} \end{array} \right.$$

灪 /	 university of 	Introduction	Switched DAEs: Solution Theory	Observability	Summa
	groningen				

Properties of $\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}}$

$$\label{eq:pwc} \mathcal{C}^\infty_{\mathsf{pw}} \ ``\subseteq ``\mathbb{D}_{\mathsf{pw}\mathcal{C}^\infty} \ \text{ and } \ D \in \mathbb{D}_{\mathsf{pw}\mathcal{C}^\infty} \Rightarrow D' \in \mathbb{D}_{\mathsf{pw}\mathcal{C}^\infty}$$

 $\ \ \, \text{ Well definded restriction } \mathbb{D}_{pw\mathcal{C}^\infty} \to \mathbb{D}_{pw\mathcal{C}^\infty}$

$$D = f_{\mathbb{D}} + \sum_{t \in T} D_t \quad \mapsto \quad D_M := (f_M)_{\mathbb{D}} + \sum_{t \in T \cap M} D_t$$

) Multiplication with $\alpha = \sum_{i \in \mathbb{Z}} \alpha_{i[t_i, t_{i+1})} \in \mathcal{C}^{\infty}_{pw}$ well defined:

$$\alpha D := \sum_{i \in \mathbb{Z}} \alpha_i D_{[t_i, t_{i+1})}$$

> Evaluation at
$$t \in \mathbb{R}$$
: $D(t^-) := f(t^-)$, $D(t^+) := f(t^+)$

> Impulses at
$$t \in \mathbb{R}$$
: $D[t] := \begin{cases} D_t, & t \in T \\ 0, & t \notin T \end{cases}$

Application to (swDAE)

(x, u) solves (swDAE) $:\Leftrightarrow$ (swDAE) holds in $\mathbb{D}_{\mathsf{pw}\mathcal{C}^{\infty}}$

Relevant questions

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$y = C_{\sigma}x + D_{\sigma}u$$
(swDAE)

Piecewise-smooth distributional solution framework

$$x\in\mathbb{D}^n_{\mathrm{pw}\mathcal{C}^\infty}$$
 , $\,u\in\mathbb{D}^m_{\mathrm{pw}\mathcal{C}^\infty}$, $\,y\in\mathbb{D}^p_{\mathrm{pw}\mathcal{C}^\infty}$

- > Existence and uniqueness of solutions?
- > Jumps and impulses in solutions?
- > Conditions for impulse free solutions?
- > Control theoretical questions
 - Stability and stabilization
 - Observability and observer design
 - Controllability and controller design

university of	Introduction	Switched DAEs: Solution Theory
groningen		

Summary

Existence and uniqueness of solutions for (swDAE)

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u \qquad (swDAE)$$

Basic assumptions

$$\sigma \in \Sigma_0 := \left\{ \sigma : \mathbb{R} \to \{1, \dots, N\} \middle| \begin{array}{l} \sigma \text{ is piecewise constant and} \\ \sigma \big|_{(-\infty,0)} \text{ is constant} \end{array} \right\}.$$

$$(E_p, A_p) \text{ is regular } \forall p \in \{1, \dots, N\}, \text{ i.e. } \det(sE_p - A_p) \neq 0$$

Theorem (T. 2009)

薵 /

Consider (swDAE) satisfying the basic assumptions. Then

$$\forall \ u \in \mathbb{D}^m_{\mathsf{pw}\mathcal{C}^\infty} \ \forall \ \sigma \in \Sigma_0 \ \exists \ \textit{solution} \ x \in \mathbb{D}^n_{\mathsf{pw}\mathcal{C}^\infty}$$

and $x(0^-)$ uniquely determines x.

Inconsistent initial values

$$E\dot{x} = Ax + Bu, \quad x(0) = x^0 \in \mathbb{R}^n$$

Inconsistent initial value = special switched DAE

$$\dot{x}_{(-\infty,0)} = 0,$$
 $x(0^{-}) = x^{0}$
 $(E\dot{x})_{[0,\infty)} = (Ax + Bu)_{[0,\infty)}$

Corollary (Consistency projector)

Exist unique consistency projector $\Pi_{(E,A)}$ such that (for u = 0)

$$x(0^+) = \Pi_{(E,A)} x^0$$

 $\Pi_{(E,A)}$ can easily be calculated via the Wong sequences [T. 2009].

Summary

Sufficient conditions for impulse-freeness

Question

When are all solutions of homogenous (swDAE) $E_{\sigma}\dot{x} = A_{\sigma}x$ impulse free?

Note: Jumps are OK.

Lemma (Sufficient conditions)

- > (E_p, A_p) all have index one (i.e. $(sE_p A_p)^{-1}$ is proper) \Rightarrow (swDAE) impulse free
- > all consistency spaces of (E_p, A_p) coincide \Rightarrow (swDAE) impulse free

Summary

Characterization of impulse-freeness

Theorem (Impulse-freeness, [T. 2009])

The switched DAE $E_{\sigma}\dot{x} = A_{\sigma}x$ is impulse free $\forall \sigma \in \Sigma_0$

 $\Leftrightarrow \quad E_q(I - \Pi_q)\Pi_p = 0 \quad \forall p, q \in \{1, \dots, N\}$

where $\Pi_p := \Pi_{(E_p, A_p)}$, $p \in \{1, \ldots, N\}$ is the *p*-th consistency projector.

Remark

- > Index-1-case \Rightarrow $E_q(I \Pi_q) = 0 \forall q$
- > Consistency spaces equal \Rightarrow $(I \Pi_q)\Pi_p = 0 \ \forall p, q$

Summary

Contents

Introduction

Switched DAEs: Solution Theory

Definition

Review: classical distribution theory Restriction of distributions Piecewise smooth distributions Distributional solutions Impulse-freeness

Observability

Definition The single switch result Calculation of the four subspaces \mathcal{C}_{-}

 O_{+}^{imp}

Summary

Global Observability of Switched DAEs

Definition (Global observability)

(swDAE) with given σ is (globally) observable : \forall solutions $(u_1, x_1, y_1), (u_2, x_2, y_2) : (u_1, y_1) \equiv (u_2, y_2) \Rightarrow x_1 \equiv x_2$

Lemma (0-distinguishability)

(swDAE) is observable if, and only if, $y \equiv 0$ and $u \equiv 0 \Rightarrow x \equiv 0$

Hence consider in the following (swDAE) without inputs:

$$\begin{bmatrix} E_{\sigma}\dot{x} = A_{\sigma}x \\ y = C_{\sigma}x \end{bmatrix} \text{ and observability question: } y \equiv 0 \xrightarrow{?} x \equiv 0$$

university of Introduction Switched DAEs: Solution Theory	Observability Summary
Motivating example System 1:	System 2:
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} x$ $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} x$ $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$
$y=x_3,\dot{y}=\dot{x}_3=0,x_2=0,\dot{x}_1=0$ $\Rightarrow x_1$ unobservable	$y = x_3 = \dot{x}_1, x_1 = 0, \dot{x}_2 = 0$ $\Rightarrow x_2$ unobservable
$\sigma(\cdot):1\to 2$	$\sigma(\cdot):2\to 1$
Jump in x_1 produces impulse in y \Rightarrow Observability	Jump in x_2 no influence in y $\Rightarrow x_2$ remains unobservable
Question	

 $\begin{array}{ccc} E_p \dot{x} = A_p x + B_p u & \text{not} \\ y = C_p x + D_p u & \text{observable} \end{array} \stackrel{?}{\Rightarrow} \begin{array}{ccc} E_\sigma \dot{x} = A_\sigma x + B_\sigma u \\ y = C_\sigma x + D_\sigma u \end{array} \text{observable} \end{array}$

Stephan Trenn (Jan C. Willems Center, U Groningen)

瀫

Summary

The single switch result

$$\underbrace{(E_{-}, A_{-}, C_{-})}^{\sigma} \underbrace{(E_{+}, A_{+}, C_{+})}_{t = 0} \xrightarrow{\tau} t$$

Theorem (Unobservable subspace, Tanwani & T. 2010)

For (swDAE) with a single switch the following equivalence holds

 $y \equiv 0 \quad \Leftrightarrow \quad x(0^-) \in \mathcal{M}$

where

$$\mathcal{M} := \mathfrak{C}_{-} \cap \ker O_{-} \cap \ker O_{+}^{-} \cap \ker O_{+}^{\mathsf{imp}}$$

In particular: (swDAE) observable $\Leftrightarrow \mathcal{M} = \{0\}.$

What are these four subspace?

The four subspaces

Unobservable subspace: $\mathcal{M} := \mathfrak{C}_{-} \cap \ker O_{-} \cap \ker O_{+}^{-} \cap \ker O_{+}^{\mathsf{imp}}$, i.e.

$$x(0^-) \in \mathcal{M} \quad \Leftrightarrow \quad y_{(-\infty,0)} \equiv 0 \ \land \ y[0] = 0 \ \land \ y_{(0,\infty)} \equiv 0$$

The four spaces

-) Consistency: $x(0^-) \in \mathfrak{C}_-$
- > Left unobservability: $y_{(-\infty,0)}\equiv 0 \iff x(0^-)\in \ker O_-$
- > Right unobservability: $y_{(0,\infty)} \equiv 0 \iff x(0^-) \in \ker O^-_+$
- > Impulse unobservability: $y[0] = 0 \iff x(0^-) \in \ker O^{\mathsf{imp}}_+$

Question

How to calculate these four spaces?

	 university of 	Introduction	Switched DAEs: Solution Theory	Observability	Summary
1	groningen				

Wong sequences

Definition

Let $E, A \in \mathbb{R}^{m \times n}$. The corresponding Wong sequences of the pair (E, A) are:

$$\mathcal{V}_0 := \mathbb{R}^n, \qquad \mathcal{V}_{i+1} := A^{-1}(E\mathcal{V}_i), \qquad i = 0, 1, 2, 3, \dots$$
$$\mathcal{W}_0 := \{0\}, \qquad \mathcal{W}_{j+1} := E^{-1}A(\mathcal{W}_j), \qquad j = 0, 1, 2, 3, \dots$$

Note: $M^{-1}\mathcal{S} := \{x \mid Mx \in \mathcal{S}\}$ and $M\mathcal{S} := \{Mx \mid x \in \mathcal{S}\}$

Clearly, $\exists i^*, j^* \in \mathbb{N}$

$$\mathcal{V}_0 \supset \mathcal{V}_1 \supset \ldots \supset \mathcal{V}_{i^*} = \mathcal{V}_{i^*+1} = \mathcal{V}_{i^*+2} = \ldots$$
$$\mathcal{W}_0 \subset \mathcal{W}_1 \subset \ldots \subset \mathcal{W}_{j^*} = \mathcal{W}_{j^*+1} = \mathcal{W}_{j^*+2} = \ldots$$

Wong limits:

$$\mathcal{V}^* := \bigcap_{i \in \mathbb{N}} \mathcal{V}_i = \mathcal{V}_{i^*}$$
$$\mathcal{W}^* = \bigcup_{j \in \mathbb{N}} \mathcal{W}_j = \mathcal{W}_{j^*}$$

university of groningen	Introduction
-------------------------	--------------

Summary

Wong sequences and the QWF

Theorem (QWF [Berger, Ilchmann & T. 2012])

The following statements are equivalent for square $E, A \in \mathbb{R}^{n \times n}$:

- (i) (E, A) is regular
- (ii) $\mathcal{V}^* \oplus \mathcal{W}^* = \mathbb{R}^n$
- (iii) $E\mathcal{V}^* \oplus A\mathcal{W}^* = \mathbb{R}^n$

In particular, with $\operatorname{im} V = \mathcal{V}^*$, $\operatorname{im} W = \mathcal{W}^*$

(E, A) regular \Rightarrow T := [V, W] and $S := [EV, AW]^{-1}$ invertible

and S,T yield quasi-Weierstrass form (QWF):

$$(SET, SAT) = \begin{pmatrix} \begin{bmatrix} I & \\ & N \end{bmatrix}, \begin{bmatrix} J & \\ & I \end{bmatrix} \end{pmatrix}, N \text{ nilpotent}$$

Summary

Calculation of Wong sequences

Remark

Wong sequences can easily be calculated with Matlab even when the matrices still contain symbolic entries (like "R", "L", "C").

```
function V=getPreImage(A,S)
% returns a basis of the preimage of A of the linear space spanned by
% the columns of S, i.e. im V = { x | Ax \in im S }
[m1,n1]=size(A); [m2,n2]=size(S);
if m1==m2
    H=null([A,S]);
    V=colspace(H(1:n1,:));
else
    error('Both matrices must have same number of rows');
end;
```


Switched DAEs: Solution Theory

Observability

Summary

Consistency space

$$x(0^{-}) \in \mathfrak{C}_{-} \cap \ker O_{-} \cap \ker O_{+}^{-} \cap \ker O_{+}^{\mathsf{imp}_{-}} \quad \Leftrightarrow \quad y \equiv 0$$

Corollary from QWF

 $\mathfrak{C}_-=\mathcal{V}_-^*$

where \mathcal{V}_{-}^{*} is the first Wong limit of (E_{-}, A_{-}) .

Summary

The differential projector

For regular
$$(E, A)$$
 let $(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right).$

Definition (Differential "projector")

$$\Pi^{\mathsf{diff}}_{(E,A)} := T \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} S \quad \mathsf{and} \quad \boxed{A^{\mathsf{diff}} := \Pi^{\mathsf{diff}}_{(E,A)} A}$$

Following Implication holds:

$$x \text{ solves } E\dot{x} = Ax \quad \Rightarrow \quad \dot{x} = A^{\mathsf{diff}}x$$

Hence, with y = Cx,

$$y \equiv 0 \quad \Rightarrow \quad x(0) \in \ker[C/CA^{\mathsf{diff}}/C(A^{\mathsf{diff}})^2/\cdots/C(A^{\mathsf{diff}})^{n-1}]$$

groningen Introduction

Switched DAEs: Solution Theory

Observability

Summary

The spaces O_- and O_+

$$(E_{-}, A_{-}, C_{-}) \xrightarrow{\sigma} (E_{+}, A_{+}, C_{+}) \xrightarrow{t = 0} t$$

Hence

$$y_{(-\infty,0)} \equiv 0 \implies x(0^{-}) \in \ker[\underbrace{C_{-}/C_{-}A_{-}^{\text{diff}}/C_{-}(A_{-}^{\text{diff}})^{2}/\cdots/C_{-}(A_{-}^{\text{diff}})^{n-1}]}_{:=O_{-}}$$

and

$$\begin{split} y_{(0,\infty)} &\equiv 0 \quad \Rightarrow \quad x(0^+) \in \ker \underbrace{[C_+/C_+A_+^{\mathsf{diff}}/C_+(A_+^{\mathsf{diff}})^2/\cdots/C_+(A_+^{\mathsf{diff}})^{n-1}]}_{:=O_+} \\ \text{Question:} \quad x(0^+) \in \ker O_+ \quad \Rightarrow \quad x(0^-) \in \ ? \end{split}$$

Assume
$$(S_+E_+T_+, S_+A_+T_+) = \left(\begin{bmatrix} I & 0\\ 0 & N_+ \end{bmatrix}, \begin{bmatrix} J_+ & 0\\ 0 & I \end{bmatrix} \right)$$
:

Consistency projector $x(0^+) = \Pi_+ x(0^-)$ where $\Pi_+ := T_+ \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} T_+^{-1}$

$$x(0^+) \in \ker O_+$$

$$\Rightarrow x(0^-) \in \Pi_+^{-1} \ker O_+ = \ker \underbrace{O_+ \Pi_+}_{=: O_+^-}$$

Switched DAEs: Solution Theory

Observability

Summary

The impulsive effect

 $\text{Assume } (S_+E_+T_+,S_+A_+T_+) = \left(\left[\begin{smallmatrix} I & 0 \\ 0 & N_+ \end{smallmatrix}\right], \left[\begin{smallmatrix} J_+ & 0 \\ 0 & I \end{smallmatrix}\right] \right):$

Definition (Impulse "projector")

$$\Pi^{\mathsf{imp}}_{+} := T_{+} \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} S_{+} \quad \mathsf{and} \quad \boxed{E^{\mathsf{imp}}_{+} := \Pi^{\mathsf{imp}}_{+} E_{+}}$$

Impulsive part of solution:

$$x[0] = -\sum_{i=0}^{n-1} (E_{+}^{\mathsf{imp}})^{i+1} x(0^{-}) \, \delta_{0}^{(i)}$$
 Dirac impulses

Conclusion:

$$y[0] = 0 \quad \Rightarrow \quad C_+ x[0] = 0 \quad \Rightarrow \quad x(0^-) \in \ker O_+^{\mathsf{imp}}$$

where

$$O_{+}^{\mathsf{imp}} := \left[C_{+} E_{+}^{\mathsf{imp}} / C_{+} (E_{+}^{\mathsf{imp}})^{2} / \cdots / C_{+} (E_{+}^{\mathsf{imp}})^{n-1} \right]$$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Switched differential algebraic equations: Jumps and impulses (31 / 34)

Summary

Observability summary

$$(E_-, A_-, C_-) \xrightarrow{\sigma} (E_+, A_+, C_+)$$

$$t = 0 \qquad t$$

$$y \equiv 0 \quad \Leftrightarrow \quad x(0^-) \in \mathfrak{C}_- \cap \ker O_- \cap \ker O_+^- \cap \ker O_+^{\mathsf{imp}}$$

with

$$\mathfrak{C}_{-} = \mathcal{V}_{-}^{*} \text{ (first Wong limit)}$$

$$O_{-} = [C_{-}/C_{-}A_{-}^{\text{diff}}/C_{-}(A_{-}^{\text{diff}})^{2}/\cdots/C_{-}(A_{-}^{\text{diff}})^{n-1}]$$

$$O_{+}^{-} = [C_{+}/C_{+}A_{+}^{\text{diff}}/C_{+}(A_{+}^{\text{diff}})^{2}/\cdots/C_{+}(A_{+}^{\text{diff}})^{n-1}]\Pi_{+}$$

$$O_{+}^{\text{imp}} = [C_{+}E_{+}^{\text{imp}}/C_{+}(E_{+}^{\text{imp}})^{2}/\cdots/C_{+}(E_{+}^{\text{imp}})^{n-1}]$$

yuniversity of groningen Introduction	Switched DAEs: Solution Theory	Observability Summ	ıary
Example	revisited		
	System 1:	System 2:	
$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} x$ $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \dot{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} x$ $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$	r
6	$(\cdot): 1 \to 2 \text{ gives}$	$\delta(\cdot): 2 \to 1$ gives	
ker C	$D_{-} = \operatorname{span}\{e_{1}, e_{2}\}$	$\mathbf{c}_{-} = \operatorname{span}\{e_{2}\},\$ ker $O_{-} = \operatorname{span}\{e_{1}, e_{2}\}$	
ker C	$D_{+}^{-} = \operatorname{span}\{e_1, e_2, e_3\},\$	$\ker O_+^- = \operatorname{span}\{e_1, e_2\},$	
$\ker O_+^{in}$	$\sum_{i=1}^{mp} = \operatorname{span}\{e_2, e_3\}$	$\ker O_+^{imp} = \operatorname{span}\{e_1, e_2, e_3\}$	
	$\Rightarrow \mathcal{M} = \{0\}$	$\Rightarrow \mathcal{M} = \operatorname{span}\{e_2\}$	

Overall summary

$$E_{\sigma}\dot{x} = A_{\sigma}x + B_{\sigma}u$$

$$y = C_{\sigma}x + D_{\sigma}u$$
(swDAE)

Piecewise-smooth distributional solution framework

$$x\in\mathbb{D}^n_{\mathrm{pw}\mathcal{C}^\infty}$$
 , $\,u\in\mathbb{D}^m_{\mathrm{pw}\mathcal{C}^\infty}$, $\,y\in\mathbb{D}^p_{\mathrm{pw}\mathcal{C}^\infty}$

- $\,\,$ > Existence and uniqueness of solutions? $\,\,\checkmark\,$
- $\,$ > Jumps and impulses in solutions? \checkmark
- $\,\,$ > Conditions for impulse free solutions? \checkmark
- > Control theoretical questions
 - Stability \checkmark and stabilization ?
 - Observability \checkmark and observer design \checkmark
 - Controllability \checkmark and controller design ?
 - Extension to nonlinear case ?