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Introduction Switched DAEs: Solution Theory Observability Summary

Motivating example
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inductivity law: L d
dt i = v

switch dependent: 0 = v − u 0 = i

→ switched differential-algebraic equation

Stephan Trenn (Jan C. Willems Center, U Groningen) Switched differential algebraic equations: Jumps and impulses (1 / 34)



Introduction Switched DAEs: Solution Theory Observability Summary

Motivating example
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x = [i, v]>[
L 0
0 0

]
ẋ =

[
0 1
0 1

]
x+

[
0
−1

]
u

x = [i, v]>[
L 0
0 0

]
ẋ =

[
0 1
1 0

]
x+

[
0
0

]
u

→ switched differential-algebraic equation
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Motivating example
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E1ẋ = A1x+B1u
on (−∞, 0)

E2ẋ = A2x+B2u
on [0,∞)

→ switched differential-algebraic equation
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Solution of circuit example
t < 0 t ≥ 0

v = u i = 0
L d
dt i = v v = L d

dt i

Solution (assume constant input u):

t

v(t)

0 t

i(t)

0

u

δ
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Dirac impulse is “real”

Dirac impulse
Not just a mathematical artifact!

Drawing: Harry Winfield Secor, public domain Foto: Ralf Schumacher, CC-BY-SA 3.0
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Definition
Switch → Different DAE models (=modes)

depending on time-varying position of switch

Definition (Switched DAE)
Switching signal σ : R→ {1, . . . , N} picks mode at each time t ∈ R:

Eσ(t)ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t)
y(t) = Cσ(t)x(t) +Dσ(t)u(t)

(swDAE)

Attention
Each mode might have different consistency spaces
⇒ inconsistent initial values at each switch
⇒ Dirac impulses, in particular distributional solutions
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Distribution theory - basic ideas

Distributions - overview
› Generalized functions
› Arbitrarily often differentiable
› Dirac-Impulse δ is “derivative” of Heaviside step function 1[0,∞)

Two different formal approaches
1) Functional analytical: Dual space of the space of test functions

(L. Schwartz 1950)
2) Axiomatic: Space of all “derivatives” of continuous functions

(J. Sebastião e Silva 1954)
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Distributions - formal
Definition (Test functions)
C∞0 := {ϕ : R→ R |ϕ is smooth with compact support}

Definition (Distributions)
D := {D : C∞0 → R |D is linear and continuous}

Definition (Regular distributions)
f ∈ L1,loc(R→ R): fD : C∞0 → R, ϕ 7→

∫
R f(t)ϕ(t)dt ∈ D

Definition (Derivative)
D′(ϕ) := −D(ϕ′)

Dirac Impulse at t0 ∈ R
δt0 : C∞0 → R, ϕ 7→ ϕ(t0)

(1[0,∞)D)′(ϕ) = −
∫
R 1[0,∞)ϕ

′ = −
∫∞

0 ϕ′ = −(ϕ(∞)− ϕ(0)) = ϕ(0)
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Multiplication with functions

Definition (Multiplication with smooth functions)
α ∈ C∞ : (αD)(ϕ) := D(αϕ)

Eσẋ = Aσx+Bσu

y = Cσx+Dσu
(swDAE)

Coefficients not smooth
Problem: Eσ, Aσ, Cσ /∈ C∞

Observation, for σ[ti,ti+1) ≡ pi, i ∈ Z:
Eσẋ = Aσx+Bσu

y = Cσx+Dσu
⇔ ∀i ∈ Z :

(Epi ẋ)[ti,ti+1) = (Apix+Bpiu)[ti,ti+1)

y[ti,ti+1) = (Cpix+Dpiu)[ti,ti+1)
New question: Restriction of distributions

Stephan Trenn (Jan C. Willems Center, U Groningen) Switched differential algebraic equations: Jumps and impulses (8 / 34)



Introduction Switched DAEs: Solution Theory Observability Summary

Desired properties of distributional restriction
Distributional restriction:

{M ⊆ R |M interval } × D→ D, (M,D) 7→ DM

and for each interval M ⊆ R
› D 7→ DM is a projection (linear and idempotent)
› ∀f ∈ L1,loc : (fD)M = (fM )D

› ∀ϕ ∈ C∞0 :
[

suppϕ ⊆M ⇒ DM (ϕ) = D(ϕ)
suppϕ ∩M = ∅ ⇒ DM (ϕ) = 0

]
› (Mi)i∈N pairwise disjoint, M =

⋃
i∈NMi:

DM =
∑
i∈N

DMi
, DM1∪̇M2 = DM1 +DM2 , (DM1)M2

= 0

Theorem ([T. 2009, T. 2021])
Such a distributional restriction does not exist.
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Proof of non-existence of restriction
Consider the following (well defined!) distribution:

D :=
∑
i∈N

di δdi
, di := (−1)i

i+ 1

0 11/3

-1/2 -1/4
ϕ

Restriction should give
D[0,∞) =

∑
k∈N

d2k δd2k

Choose ϕ ∈ C∞0 such that ϕ[0,1] ≡ 1:

D[0,∞)(ϕ) =
∑
k∈N

d2k =
∑
k∈N

1
2k + 1 =∞
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Dilemma

Switched DAEs
› Examples: distributional solutions
› Multiplication with non-smooth

coefficients
› Or: Restriction on intervals

Distributions
› Distributional restriction not possible
› Multiplication with non-smooth

coefficients not possible
› Initial value problems cannot be

formulated

Underlying problem
Space of distributions too big.
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Piecewise smooth distributions
Define a suitable smaller space:

Definition (Piecewise smooth distributions DpwC∞ , [T. 2009])

DpwC∞ :=

fD +
∑
t∈T

Dt

∣∣∣∣∣∣
f ∈ C∞pw,
T ⊆ R locally finite,
∀t ∈ T : Dt =

∑nt
i=0 a

t
iδ

(i)
t


fD

ti−1

Dti−1

ti

Dti

ti+1

Dti+1
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Properties of DpwC∞

› C∞pw “⊆” DpwC∞ and D ∈ DpwC∞ ⇒ D′ ∈ DpwC∞
› Well definded restriction DpwC∞ → DpwC∞

D = fD +
∑
t∈T

Dt 7→ DM := (fM )D +
∑

t∈T∩M
Dt

› Multiplication with α =
∑
i∈Z αi[ti,ti+1) ∈ C∞pw well defined:

αD :=
∑
i∈Z

αiD[ti,ti+1)

› Evaluation at t ∈ R: D(t−) := f(t−), D(t+) := f(t+)

› Impulses at t ∈ R: D[t] :=
{
Dt, t ∈ T
0, t 6∈ T

Application to (swDAE)
(x, u) solves (swDAE) :⇔ (swDAE) holds in DpwC∞
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Relevant questions

Eσẋ = Aσx+Bσu

y = Cσx+Dσu
(swDAE)

Piecewise-smooth distributional solution framework
x ∈ DnpwC∞ , u ∈ DmpwC∞ , y ∈ DppwC∞

› Existence and uniqueness of solutions?
› Jumps and impulses in solutions?
› Conditions for impulse free solutions?
› Control theoretical questions

• Stability and stabilization
• Observability and observer design
• Controllability and controller design

Stephan Trenn (Jan C. Willems Center, U Groningen) Switched differential algebraic equations: Jumps and impulses (14 / 34)
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Existence and uniqueness of solutions for (swDAE)

Eσẋ = Aσx+Bσu (swDAE)

Basic assumptions

› σ ∈ Σ0 :=
{
σ : R→ {1, . . . , N}

∣∣∣∣∣σ is piecewise constant and
σ
∣∣
(−∞,0) is constant

}
.

› (Ep, Ap) is regular ∀p ∈ {1, . . . , N}, i.e. det(sEp −Ap) 6≡ 0

Theorem (T. 2009)
Consider (swDAE) satisfying the basic assumptions.Then

∀ u ∈ DmpwC∞ ∀ σ ∈ Σ0 ∃ solution x ∈ DnpwC∞

and x(0−) uniquely determines x.
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Inconsistent initial values
Eẋ = Ax+Bu, x(0) = x0 ∈ Rn

Inconsistent initial value = special switched DAE

ẋ(−∞,0) = 0, x(0−) = x0

(Eẋ)[0,∞) = (Ax+Bu)[0,∞)

Corollary (Consistency projector)
Exist unique consistency projector Π(E,A) such that (for u = 0)

x(0+) = Π(E,A)x
0

Π(E,A) can easily be calculated via the Wong sequences [T. 2009].
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Sufficient conditions for impulse-freeness

Question
When are all solutions of homogenous (swDAE) Eσẋ = Aσx impulse free?

Note: Jumps are OK.

Lemma (Sufficient conditions)
› (Ep, Ap) all have index one (i.e. (sEp −Ap)−1 is proper)
⇒ (swDAE) impulse free

› all consistency spaces of (Ep, Ap) coincide
⇒ (swDAE) impulse free
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Characterization of impulse-freeness

Theorem (Impulse-freeness, [T. 2009])
The switched DAE Eσẋ = Aσx is impulse free ∀σ ∈ Σ0

⇔ Eq(I −Πq)Πp = 0 ∀p, q ∈ {1, . . . , N}

where Πp := Π(Ep,Ap), p ∈ {1, . . . , N} is the p-th consistency projector.

Remark
› Index-1-case ⇒ Eq(I −Πq) = 0 ∀q
› Consistency spaces equal ⇒ (I −Πq)Πp = 0 ∀p, q
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Global Observability of Switched DAEs
System (swDAE)

known σ
unknown x

u y

Definition (Global observability)
(swDAE) with given σ is (globally) observable :⇔
∀ solutions (u1, x1, y1), (u2, x2, y2) : (u1, y1) ≡ (u2, y2) ⇒ x1 ≡ x2

Lemma (0-distinguishability)
(swDAE) is observable if, and only if, y ≡ 0 and u ≡ 0 ⇒ x ≡ 0

Hence consider in the following (swDAE) without inputs:

Eσẋ = Aσx

y = Cσx
and observability question: y ≡ 0 ?⇒ x ≡ 0

Stephan Trenn (Jan C. Willems Center, U Groningen) Switched differential algebraic equations: Jumps and impulses (20 / 34)
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Motivating example
System 1:1 0 0

0 0 0
0 0 1

 ẋ =

0 0 0
0 1 0
0 0 0

x
y =

[
0 0 1

]
x

y = x3, ẏ = ẋ3 = 0, x2 = 0, ẋ1 = 0
⇒ x1 unobservable

σ(·) : 1→ 2
Jump in x1 produces impulse in y
⇒ Observability

System 2:0 0 0
0 1 0
1 0 0

 ẋ =

1 0 0
0 0 0
0 0 1

x
y =

[
0 0 1

]
x

y = x3 = ẋ1, x1 = 0, ẋ2 = 0
⇒ x2 unobservable

σ(·) : 2→ 1
Jump in x2 no influence in y
⇒ x2 remains unobservable

Question
Epẋ = Apx+Bpu

y = Cpx+Dpu

not
observable

?⇒
Eσẋ = Aσx+Bσu

y = Cσx+Dσu
observable
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The single switch result

(E−, A−, C−)
(E+, A+, C+)

t

σ

t = 0

Theorem (Unobservable subspace, Tanwani & T. 2010)
For (swDAE) with a single switch the following equivalence holds

y ≡ 0 ⇔ x(0−) ∈M

where
M := C− ∩ kerO− ∩ kerO−+ ∩ kerOimp

+

In particular: (swDAE) observable ⇔ M = {0}.

What are these four subspace?
Stephan Trenn (Jan C. Willems Center, U Groningen) Switched differential algebraic equations: Jumps and impulses (22 / 34)
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The four subspaces
Unobservable subspace: M := C− ∩ kerO− ∩ kerO−+ ∩ kerOimp

+ , i.e.

x(0−) ∈M ⇔ y(−∞,0) ≡ 0 ∧ y[0] = 0 ∧ y(0,∞) ≡ 0

The four spaces
› Consistency: x(0−) ∈ C−

› Left unobservability: y(−∞,0) ≡ 0 ⇔ x(0−) ∈ kerO−
› Right unobservability: y(0,∞) ≡ 0 ⇔ x(0−) ∈ kerO−+
› Impulse unobservability: y[0] = 0 ⇔ x(0−) ∈ kerOimp

+

Question
How to calculate these four spaces?
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Wong sequences
Definition
Let E,A ∈ Rm×n. The corresponding Wong sequences of the pair (E,A) are:

V0 := Rn, Vi+1 := A−1(EVi), i = 0, 1, 2, 3, . . .
W0 := {0}, Wj+1 := E−1A(Wj), j = 0, 1, 2, 3, . . .

Note: M−1S := {x |Mx ∈ S} and MS := {Mx |x ∈ S}

Clearly, ∃i∗, j∗ ∈ N
V0 ⊃ V1 ⊃ . . . ⊃ Vi∗ = Vi∗+1 = Vi∗+2 = . . .

W0 ⊂W1 ⊂ . . . ⊂Wj∗ = Wj∗+1 = Wj∗+2 = . . .

Wong limits:

V∗ :=
⋂
i∈N

Vi = Vi∗ W∗ =
⋃
j∈N

Wj = Wj∗
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Wong sequences and the QWF

Theorem (QWF [Berger, Ilchmann & T. 2012])
The following statements are equivalent for square E,A ∈ Rn×n:
(i) (E,A) is regular
(ii) V∗ ⊕W∗ = Rn

(iii) EV∗ ⊕AW∗ = Rn

In particular, with imV = V∗, imW = W∗

(E,A) regular ⇒ T := [V,W ] and S := [EV,AW ]−1 invertible

and S, T yield quasi-Weierstrass form (QWF):

(SET, SAT ) =
([
I

N

]
,

[
J

I

])
, N nilpotent
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Calculation of Wong sequences

Remark
Wong sequences can easily be calculated with Matlab even when the matrices still
contain symbolic entries (like “R”, “L”, “C”).

function V= getPreImage (A,S)
% returns a basis of the preimage of A of the linear space spanned by
% the columns of S, i.e. im V = { x | Ax \in im S }

[m1 ,n1 ]= size (A); [m2 ,n2 ]= size (S);
if m1 == m2

H= null ([A,S]);
V= colspace (H(1:n1 ,:));

else
error (’Both matrices must have same number of rows ’);

end;
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Introduction Switched DAEs: Solution Theory Observability Summary

Consistency space

x(0−) ∈ C− ∩ kerO− ∩ kerO−+ ∩ kerOimp−
+ ⇔ y ≡ 0

Corollary from QWF

C− = V∗−
where V∗− is the first Wong limit of (E−, A−).
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The differential projector
For regular (E,A) let (SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
.

Definition (Differential “projector”)

Πdiff
(E,A) := T

[
I 0
0 0

]
S and Adiff := Πdiff

(E,A)A

Following Implication holds:

x solves Eẋ = Ax ⇒ ẋ = Adiffx

Hence, with y = Cx,

y ≡ 0 ⇒ x(0) ∈ ker[C/CAdiff/C(Adiff)2/ · · · /C(Adiff)n−1]

Stephan Trenn (Jan C. Willems Center, U Groningen) Switched differential algebraic equations: Jumps and impulses (28 / 34)



Introduction Switched DAEs: Solution Theory Observability Summary

The spaces O− and O+

(E−, A−, C−)
(E+, A+, C+)

t

σ

t = 0

Hence

y(−∞,0) ≡ 0 ⇒ x(0−) ∈ ker [C−/C−Adiff
− /C−(Adiff

− )2/ · · · /C−(Adiff
− )n−1]︸ ︷︷ ︸

:= O−
and

y(0,∞) ≡ 0 ⇒ x(0+) ∈ ker [C+/C+A
diff
+ /C+(Adiff

+ )2/ · · · /C+(Adiff
+ )n−1]︸ ︷︷ ︸

:= O+
Question: x(0+) ∈ kerO+ ⇒ x(0−) ∈ ?

Stephan Trenn (Jan C. Willems Center, U Groningen) Switched differential algebraic equations: Jumps and impulses (29 / 34)
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Consistency projector and O−+

Π+

x(0−)

x(0+)

C(E+,A+)

Assume (S+E+T+, S+A+T+) =
([

I 0
0 N+

]
,
[
J+ 0
0 I

])
:

Consistency projector
x(0+) = Π+x(0−) where

Π+ := T+

[
I 0
0 0

]
T−1

+

x(0+) ∈ kerO+

⇒ x(0−) ∈ Π−1
+ kerO+ = kerO+Π+︸ ︷︷ ︸

=: O−+
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The impulsive effect
Assume (S+E+T+, S+A+T+) =

([
I 0
0 N+

]
,
[
J+ 0
0 I

])
:

Definition (Impulse “projector”)

Πimp
+ := T+

[
0 0
0 I

]
S+ and Eimp

+ := Πimp
+ E+

Impulsive part of solution:

x[0] = −
n−1∑
i=0

(Eimp
+ )i+1x(0−) δ(i)

0

Dirac impulsesConclusion:

y[0] = 0 ⇒ C+x[0] = 0 ⇒ x(0−) ∈ kerOimp
+

where
Oimp

+ := [C+E
imp
+ /C+(Eimp

+ )2 / · · · /C+(Eimp
+ )n−1]
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Observability summary

(E−, A−, C−)
(E+, A+, C+)

t

σ

t = 0

y ≡ 0 ⇔ x(0−) ∈ C− ∩ kerO− ∩ kerO−+ ∩ kerOimp−
+

with
› C− = V∗− (first Wong limit)
› O− = [C−/C−Adiff

− /C−(Adiff
− )2/ · · · /C−(Adiff

− )n−1]
› O−+ = [C+/C+Adiff

+ /C+(Adiff
+ )2/ · · · /C+(Adiff

+ )n−1]Π+

› Oimp
+ = [C+E

imp
+ /C+(Eimp

+ )2 / · · · /C+(Eimp
+ )n−1]
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Example revisited
System 1:1 0 0

0 0 0
0 0 1

 ẋ =

0 0 0
0 1 0
0 0 0

x
y =

[
0 0 1

]
x

σ(·) : 1→ 2 gives

C− = span{e1, e3},
kerO− = span{e1, e2}
kerO−+ = span{e1, e2, e3},

kerOimp
+ = span{e2, e3}

⇒ M = {0}

System 2:0 0 0
0 1 0
1 0 0

 ẋ =

1 0 0
0 0 0
0 0 1

x
y =

[
0 0 1

]
x

σ(·) : 2→ 1 gives

C− = span{e2},
kerO− = span{e1, e2}
kerO−+ = span{e1, e2},

kerOimp
+ = span{e1, e2, e3}

⇒ M = span{e2}
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Introduction Switched DAEs: Solution Theory Observability Summary

Overall summary
Eσẋ = Aσx+Bσu

y = Cσx+Dσu
(swDAE)

Piecewise-smooth distributional solution framework
x ∈ DnpwC∞ , u ∈ DmpwC∞ , y ∈ DppwC∞

› Existence and uniqueness of solutions? Ø
› Jumps and impulses in solutions? Ø
› Conditions for impulse free solutions? Ø
› Control theoretical questions

• Stability Ø and stabilization ?
• Observability Ø and observer design Ø
• Controllability Ø and controller design ?
• Extension to nonlinear case ?
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