Corrigenda for "Distributional differential algebraic equations"

Stephan Trenn

November 22, 2021
p. 46 In ninth line from the bottom it should read δ_{t} instead of $\delta_{t}^{(n)}$
p. 61 The qed-symbol should be at the end of the equivalence
p. 95 In Example 3.4.7(i) it should be N^{i+1} instead of N^{i} and there is minus sign missing in the solution formula, i.e. it should read

$$
x_{\left[t_{0}, \infty\right)}=-\sum_{i=0}^{n-1} N^{i+1} x\left(t_{0}-\right) \delta_{t_{0}}^{(i)}
$$

Sec. 4.2.1 see also Vinicius A. Armentano "The pencil (sE-A) and controllability-observability for generalized linear systems: A geometric approach", Siam J. Control and Optimization $24(4)$, p. 616-638
p. 83 In the fifth line from below it should be $\dot{x}_{\left[t_{0}, \infty\right)}=(A x+f)_{\left[t_{0}, \infty\right)}$ instead of $\dot{x}_{\left[t_{0}, \infty\right)}=$ $(A x)_{\left[t_{0}, \infty\right)}$.
p. 106 The name of Lemma 4.2 .3 should read "Invertibility of $[V, W]$ and $[E V, A W]$ ", furthermore the proof is not complete. The complete proof reads as:

Invertibility and existence of T follows from Lemma 4.2.2(ii). To show invertibility of $[E V, A W]$ it is first shown that $E V$ and $A W$ each have full column rank. Therefore, consider $x \in \mathbb{R}^{n_{1}}$ and $y \in \mathbb{R}^{n-n_{1}}$ with $E V x=0$ and $A W y=0$. Invoking Lemma 4.2.2(ii) yields $V x \in \mathcal{V}^{*} \cap \operatorname{ker} E=\{0\}$ and $W y \in \mathcal{W}^{*} \cap \operatorname{ker} A=\{0\}$. Since V and W have full column rank it follows that $x=0$ and $y=0$, hence $E V$ and $A W$ have full rank. It remains to show that $E \mathcal{V}^{*} \cap A \mathcal{W}^{*}=\{0\}$. Therefore, consider $x \in$ $E \mathcal{V}^{*} \cap A \mathcal{W}^{*}$. Then there exists $v \in \mathcal{V}^{*}$ and $w \in \mathcal{W}^{*}$ with $E v=x=A w$, in particular $v \in E^{-1}\left(A \mathcal{W}^{*}\right)=\mathcal{W}^{*}$. Hence $v \in \mathcal{V}^{*} \cap \mathcal{W}^{*}=\{0\}$ and $x=0$ follows.
p. 112 several J s are missing, it should read:
hence, invoking Corollary 2.3.5,

$$
(v(t+)-v(t-)) \delta_{t}+\sum_{k=0}^{K} a_{k} \delta_{t}^{(k+1)}=\sum_{k=0}^{K} J a_{k} \delta_{t}^{(k)}
$$

or

$$
0=\sum_{k=0}^{K+1} b_{k} \delta_{t}^{(k)}
$$

where $b_{N+1}=a_{N}, b_{k}=a_{k-1}-J a_{k}, k=N, \ldots, 1$, and $b_{0}=v(t+)-$ $v(t-)-J a_{0}$.
p. 114 in the third and fourth equation it should read n_{2} instead of n_{1}, and, in line seven, extend 'since N is nilpotent' to "since $N \in \mathbb{R}^{n_{2} \times n_{2}}, n_{2} \in \mathbb{N}$, is nilpotent", finally, in the fifth equation, replace S by S^{-1}, i.e. it should read

Repeating this process yields, since $N \in \mathbb{R}^{n_{2} \times n_{2}}, n_{2} \in \mathbb{N}$, is nilpotent,

$$
0=N^{n_{2}}\left(w\left[t_{i}\right]\right)^{\left(n_{2}\right)}=w\left[t_{i}\right]-\sum_{k=0}^{n_{2}-1} N^{k+1}\left(w\left(t_{i}+\right)-w\left(t_{i}-\right)\right) \delta_{t_{i}}^{(k)}
$$

or

$$
w\left[t_{i}\right]=\sum_{k=0}^{n_{2}-1} N^{k+1}\left(w\left(t_{i}+\right)-w\left(t_{i}-\right)\right) \delta_{t_{i}}^{(k)}
$$

Assumption (A1) and Theorem 4.2.8 yield

$$
\begin{aligned}
& 0 \stackrel{(\mathrm{~A} 1)}{=} E_{p}\left(I-\Pi_{p}\right) x\left(t_{i}-\right) \stackrel{\text { Thm. }}{=}{ }^{4.2 .8} E_{p}\left(\left(x\left(t_{i}-\right)-x\left(t_{i}+\right)\right)\right. \\
&=S^{-1}\left[\begin{array}{cc}
I & 0 \\
0 & N
\end{array}\right]\binom{v\left(t_{i}-\right)-v\left(t_{i}+\right)}{w\left(t_{i}-\right)-w\left(t_{i}+\right)}
\end{aligned}
$$

p. 144
in the second last line it should read " $\delta_{t_{0}}^{(i)}$ " instead of ' $\delta_{t_{0}}^{i}$,
p. 145
in the first line it should read " $\delta_{t_{0}}^{(i+1)}$ " instead of ' $\delta_{t_{0}}^{i+1}$,
p. 149
in Prop. 5.2.4 the first ‘impulse-observable’ should read "jump-observable", furthermore in (5.2.3) it should read " $x\left[t_{0}\right]=0$ " instead of ' $w\left[t_{0}\right]=0$ '
p. 164 just before Theorem 5.3.12 it should read "characterizations" instead of "characterization"
p. 167 in the sixth line of Remark 5.3 .14 it should read x_{2} instead of ω and in the last line of this page it should read x_{4} instead of ω

