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Abstract— In this paper, we propose some sufficient condi-
tions for checking the asymptotic stability of switched nonlinear
differential-algebraic equations (DAEs) under arbitrary switch-
ing signal. We assume that each model of a given switched
DAEs is externally equivalent to a nonlinear Weierstrass form.
With the help of this form, we can define nonlinear consistency
projectors and jump-flow solutions for switched nonlinear
DAEs. Then we use a different approach from the paper [12]
to study the stability of switched DAEs via a novel notion
called the jump-flow explicitation, which attaches a nonlinear
control system to a given nonlinear DAE and can be used to
simplify the common Lyapunov function conditions for both
the flow and the jump dynamics of switched nonlinear DAEs.
At last, a numerical example is given to illustrate how to check
the stability of a switched nonlinear DAE by constructing a
common Lyapunov function.

I. INTRODUCTION

We study switched nonlinear differential-algebraic equa-
tions (DAEs) of the following form

Ξσ : Eσ(x)ẋ = Fσ(x), (1)

where σ : I → N is a right continues switching signal
with a locally finite number of jumps, N := {1, . . . , N}, the
integer N is the number of DAE models and I ⊆ R is a time
interval. The variables x ∈ X are called generalized state and
X is an open subset of Rn (or an n-dimensional manifold).
For each p ∈ N , the maps Ep : TX → Rn and Fp : X →
Rn are C∞-smooth, where TX denotes the tangent bundle
of X . In recent decades, there have been increased interests
on the linear case of (1), i.e., a switched linear DAE

∆σ : Eσẋ = Hσx, (2)

where Ep : Rn → Rn and Hp : Rn → Rn are linear
maps for each p ∈ N . Some results on the stability analysis
of switched linear DAEs can be found in e.g., [11], [24],
[26], [21], [16] using Lyapunov method and linear matrices
inequalities (LMIs) technique, and in [24], [13], [25] with
the help of commutativity conditions of matrix pencils.

Some results on the existence and uniqueness of C1-
solutions of nonlinear DAEs (i.e., the non-switching case of
(1)) can be consulted in e.g. [15], [14], and our recent papers
[6], [3]. Unlike ordinary differential equations (ODEs), the
C1-solutions of a DAE Ξ exist only on its consistency space
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C (see section II below), which is in general a subset of
X . So for any inconsistent initial point x0, i.e., x0 /∈ C,
there does not exist any C1-solutions, then there has to be a
jump or an impulse which steers x0 into a consistent point
of C. Note that this inconsistent initialization problem can be
frequently caused by switching behavior of switched DAEs
because the switching point on the trajectory of the model
before switching is usually not on the consistency space of
the model after switching, so defining and analyzing jumps
and impulses play important roles for studying solutions of
switched DAEs.

Compared to the rich literature for switched linear DAEs,
there are much less results concerning switched nonlinear
DAEs. The challenges of studying switched nonlinear DAEs
are multi-fold. For example, the distributional (generalized
function) solution theory is a well-established framework
for the discontinuity problems of (switched) linear DAEs,
see [8], [18], [17], [20], while it may not be a suitable
setting for nonlinear ODEs or DAEs, because e.g., the image
of a nonlinear map applied to a Dirac impulse δ is not
well-defined in general. Moreover, canonical forms as the
Weierstrass form [22] (see (3)) decouple any linear DAE into
its ODE part, which represents the flow dynamics, and its
nilpotent part, which is related to its impulses and jumps. By
using the Weierstrass form, it is always possible to construct
the linear consistency projector, which defines a unique jump
from any given inconsistent initial point to a consistent one.
Nevertheless, obtaining a fully-decoupled normal form for
nonlinear DAEs has been an open problem for decades,
some efforts have been made for studying normal forms of
nonlinear DAEs, see e.g. [2], [7], [3].

The first paper to rigorously study switched nonlinear
DAEs of the form (1) is [12] and it is a significant inspiration
for the present paper. However, the jump rule in [12] (see also
(11) below) was shown in [4], [5] to be not consistent with
nonlinear coordinates changes, i.e., it is not coordinate-free.
In the present paper, we will use a nonlinear Weierstrass form
from [3] (see Definition 2 below), by which we can define a
coordinate-free nonlinear consistency projector (Definition 5)
and obtain an impulse-free condition (see condition (A2)
below). Moreover, we will introduce a novel notion called
jump-flow explicitation of nonlinear DAEs, which allows to
study the jump-flow behavior of nonlinear DAEs with the
help of nonlinear control system theory. Our main result, i.e.,
stability analysis for switched DAEs, is given using jump-
flow explicitation, the advantages of using this notion are
discussed in Remark 17 below.

This paper is organized as follows. We recall the nonlinear



Weierstrass form from [3] and discuss C1-solutions and
jumps of nonlinear DAEs using such a normal form in
Section II. The definition of jump-flow explicitation and
the main results of the paper are given in Section III. We
give an example in Section IV to illustrate our results of
the stability conditions for switched DAEs. The conclusions
and the proofs are put into Section V and the Appendix,
respectively.

We will use the following notations for the present paper.
We denote by Ck the class of k-times differentiable functions.
For a map A : X → Rn×n and kerA(x), ImA(x) are
the kernel and the image of A at x, respectively. For two
column vectors v1 ∈ Rm and v2 ∈ Rn, we write (v1, v2) =
[vT1 , v

T
2 ]T ∈ Rm+n. We denote by GL(n,R) the group of

n×n invertible real matrices. We call a function f : X → R
positive-definite if f(0) = 0 and f(x) > 0, ∀x ∈ X\ {0}.

II. NONLINEAR WEIERSTRASS FORM FOR DAES

Recall that for a linear DAE ∆ : Eẋ = Hx, the
consistency space C is a linear subspace that can be identified
by the Wong sequence [23],

V1 := Rn, Vi+1 := H−1EVi, i ≥ 1,

the consistency space C of ∆ coincides with the limits V ∗ :=
Vn of the sequence Vi. In particular, the DAE ∆ is called
regular if det(sE − H) ∈ Rn×n[s] \ {0}. A linear regular
DAE ∆ = (E,H) is always (externally) equivalent (see
Definition 1 below for nonlinear DAEs), via two constant
invertible matrices Q and P , to the Weierstrass form [22],
[1], given by ∆̃ = (QEP−1, QHP−1),[

In1 0
0 N

] [
ẋ1

ẋ2

]
=

[
A1 0
0 In2

] [
x1

x2

]
, (3)

where A1 ∈ Rn1×n1 and N = diag {N1, . . . , Na} ∈
Rn2×n2 is a nilpotent matrix, and where Nνi−1

i 6= 0, Nνi
i =

0 for νi ≥ 1 and if xi2-subsystem is absent, then νi = 0. The
index ν of ∆ is defined by ν := max{νi, 1 ≤ i ≤ a}. The
consistency projector of ∆ [17], [11] is defined by

ΠE,H := P−1
[
In1

0
0 0

]
P. (4)

For a given inconsistent point x−0 ∈ Rn\V ∗, the jumping
point x+

0 ∈ C from x−0 is unique and is defined by x+
0 =

ΠE,H(x−0 ).
Now we recall and introduce some notions for nonlinear

(non-switched) DAEs of the form

Ξ : E(x)ẋ = F (x), (5)

we denote shortly the above DAE by Ξ = (E,F ). We call
a C1-curve x : I → X a C1-solution of Ξ if E(x(t))ẋ(t) =
F (x(t)), ∀t ∈ I. We call a C1-solution x : I → X maximal
if there is no other solution x̃ : Ĩ → X with I ( Ĩ and
x(t) = x̃(t) for all t ∈ I. A point xc ∈ X is called consistent
if starting from xc, there exists at least one C1-solution. The
set of all consistent points is called the consistency space,
denoted by C. We call Ξ internally regular if starting from
any consistent point xc ∈ C, there exists a unique maximal
C1-solution. The consistency space of Ξ can be identified

by constructing the sequence of submanifolds (by assuming1

that each Mk is a smooth connected embedded submanifold
on X): M1 = X ,

Mk := {x ∈Mk−1 |F (x) ∈ E(x)TxMk−1} , k ≥ 1, (6)

where TxMk ⊆ Rn denotes the tangent space of the
submanifold Mk at x ∈Mk. The last approach is called the
geometric reduction method [15], [14], [6], [3], [7] and it is
proved in [6], [3] that the limit M∗ := Mn of the sequence
Mk coincides with the consistency space C of Ξ.

Definition 1 (external equivalence [3], [4]). Two DAEs
Ξ = (E,F ) and Ξ̃ = (Ẽ, F̃ ) are called externally equivalent,
shortly ex-equivalent, if there exist a diffeomorphism ψ :
X → X̃ and a smooth map Q : X → GL(n,R) such that

Ẽ(ψ(x)) = Q(x)E(x)

(
∂ψ(x)

∂x

)−1

,

F̃ (ψ(x)) = Q(x)F (x).

Note for two ex-equivalent systems Ξ and Ξ̃, a trajectory
x : I → C is a C1-solution of Ξ if, and only if, ψ ◦ x is a
C1-solution of Ξ̃, however, since ψ is not only defined on
the consistency space, the two systems are also expected to
behave equivalent for inconsistent initial values.

Definition 2 (nonlinear Weierstrass form [3], [4]). We say
that a nonlinear DAE Ξ̃ is represented in a nonlinear Weier-
strass form if Ξ̃ is of the form

(NWF) :

[
I 0
0 N

] [
ξ̇1
ξ̇2

]
=

[
f∗(ξ1)
ξ2

]
,

where ξ = (ξ1, ξ2) ∈ X̃1 × X̃2 ⊆ Rn1 × Rn2 are the
generalized states, X̃2 is a star domain with respect to the
origin (i.e. for each ξ2 ∈ X̃2 also λξ2 ∈ X̃2 for all λ ∈ [0, 1]),
f∗(ξ1) is a vector field on X̃1 and N ∈ Rn2×n2 is a nilpotent
constant matrix as in (3). In particular, if N = 0, we say that
Ξ̃ is in an index-1 nonlinear Weierstrass form (INWF).

Remark 3. Necessary and sufficient conditions for the
problem that when a nonlinear DAE is ex-equivalent to the
(NWF) can be found in [3], but those conditions depend on a
non-uniquely defined control system (explicitation) attaching
to the DAE and are not easy to be checked. However, in
[4], [5], we have shown that under some constant rank and
regularity assumptions, a DAE Ξ = (E,F ) is (locally) ex-
equivalent to the (INWF) if and only if Ξ is index-1 and the
distribution defined by kerE is involutive, which are easily
checkable conditions.

Lemma 4. If a DAE Ξ is ex-equivalent to Ξ̃, represented in
the (NWF), via a smooth map Q : X → GL(n,R) and a
diffeomorphism ψ = (ψ1, ψ2) = (ξ1, ξ2), then we have
(i) the ODE ξ̇1 = f∗(ξ1) has isomorphic C1-solutions with

Ξ, i.e., a curve x : I → X is a C1-solution of Ξ if and

1Note that the assumption is simplified to adjust the purpose of the present
paper, in general, Mk is a subset of Mk−1 and we may need to take a
neighborhood Uk ⊆ X such that Mk∩Uk is a smooth connected embedded
submanifold, see [3], [7]



only if (ξ1(t), ξ2(t)) = (ψ1(x(t)), 0) is a solution of the
(NWF);

(ii) the consistency space is

C(Ξ) = M∗(Ξ) = {x ∈ X |ψ2(x) = 0} ; (7)

(iii) the DAE Ξ is internally regular.

Proof. The ex-equivalence defined by the invertible maps Q
and the diffeomorphism ψ preserves C1-solutions. So ξ(t) =
(ξ1(t), 0), where ξ1(t) is a solution of ODE ξ̇1 = f∗(ξ1), is
a C1-solution of Ξ̃ if and only if x(t) = ψ−1(ξ(t)) is a C1-
solution of Ξ. It follows that the consistency spaces of Ξ and
Ξ̃ coincide. By a directly calculation of the sequence Mk(Ξ̃)

via (6), we get C(Ξ̃) = M∗(Ξ̃) =
{
ξ ∈ X̃

∣∣∣ ξ2 = 0
}

, so
item (ii) holds. Item (iii) is a direct consequence of item
(i).

Now in the same spirit of defining the linear consistent
projector ΠE,H of (4), we define the nonlinear consistency
projector as follows.

Definition 5 (nonlinear consistency projector). Consider a
DAE Ξ = (E,F ) and assume that Ξ is ex-equivalent to
the (NWF) via a Q-transformation and a diffeomorphism ψ.
The nonlinear consistency projector ΩE,F : X → M∗ of Ξ
is then defined by

ΩE,F := ψ−1 ◦ π ◦ ψ,

where π : Rn → Rn is the canonical projection attaching
(ξ1, ξ2) 7→ (ξ1, 0). In particular, the map ΩE,F restricted to
C = M∗ is the identity map.

Remark 6. The intuition behind the above definition is that,
given a DAE in the (NWF), an inconsistent initial point
ξ−0 = (ξ−10, ξ

−
20) /∈ M∗ (i.e., ξ−20 6= 0) must jump into ξ+

0 =
(ξ−10, 0) ∈ M∗, i.e., only ξ2-variables are allowed to jump,
because any jump of ξ1-variable will cause a Dirac impulse δ
on the left-hand side of the ODE ξ̇1 = f∗(ξ1), then f∗(ξ) has
to produce the same impulse term to equalize the equation,
which may not be possible, the jump ξ−20 → 0 of the ξ2-
variables also results in an impulse term on Nξ̇2, but we
can still solve the linear DAE Nξ̇2 = ξ2 in the distributional
(generalized function) sense and the distributional solution
(see e.g., [17]) at t = 0 can be expressed as

ξ2[0] = −
ν−2∑
i=0

N i+1ξ−20δ
(i). (8)

However, the interpretation of this impulsive solution in the
original coordinates is still unclear and outside the scope of
this paper. Nevertheless, we can still call a solution impulse-
free (in the original coordinates) if the expression (8) for a
specific initial value evaluates to zero.

III. STABILITY ANALYSIS OF SWITCHED DAES VIA
JUMP-FLOW EXPLICITATION

Consider a switched nonlinear DAE Ξσ , given by (1). We
assume that

(SL) For all modes Ξp = (Ep, Fp) of Ξσ we have that all
local C1-solutions of Ξp on X can be extended to I =
[0,∞).

(NF) Each DAE model Ξp = (Ep, Hp), p ∈ N , of Ξσ
is ex-equivalent to its (NWF) on X via a smooth
map Qp : X → GL(n,R) and a diffeomorphism
ψp = (ψ1p, ψ2p) : X → X̃p, x 7→ (ξ1p, ξ2p) =
(ψ1p(x), ψ2p(x)).

Note that by the definition of the (NWF), any jump
(ξ1p, ξ2p)→ (ξ1p, 0) is well-defined and stays in X̃p ⊆ Rn.
Then with the help of the nonlinear consistency projector
of Definition 5, we define the jump-flow solution of the
switched DAE Ξσ as follows.

Definition 7 (jump-flow solution). Let σ be a switching
signal with k switching times at t1, . . . , tk ∈ I, respectively,
where I = (t0, tk+1) is an open time interval. A jump-flow
solution of Ξσ is a piecewise C1-curve x : I → X such
that for all 0 ≤ i ≤ k, the curve x is a C1-solution of
Ξσ(t+i ) on (ti, ti+1) and the jump x(t−i )→ x(t+i ) is defined
by the nonlinear consistency projector of Definition 5, i.e.,
x(t+i ) = ΩEp,Fp

(x(t−i )) with p = σ(t+i ). For convenience
let x(ti) := x(t+i ).

The following proposition is a straightforward conse-
quence of Lemma 4 and Definitions 5 and 7.

Proposition 8 (existence and uniqueness of solutions).
Consider a switched DAE Ξσ , given by (1), assume that
conditions (SL) and (NF) are satisfied. Then there exists
a unique jump-flow solution x : [0,+∞) → X of Ξσ for
any initial point x(0) = x0 ∈ X .

Similar as in [11], [12], impulse-freeness is relevant for
the stability analysis of the switched nonlinear DAE (1). In
view of (8), an initial value for (5) results in an impulse free
solution if and only if ξ−20 ∈ kerN . Thus in the original
coordinates, if the inconsistent initial point satisfies

x−0 ∈M∗IF := {x ∈ X | Nψ2(x) = 0} , (9)

then the jump x−0 → x+
0 = ΩE,F (x−0 ) results in an impulse-

free solution. Extending this argument to the switched non-
linear DAE Ξσ satisfying (SL) and (NF), impulse-free jump-
flow solutions can be guaranteed by assuming the following
condition:

(IF) the submanifolds M∗ and M∗IF , defined by (7) and (9),
respectively, of each model Ξp of Ξσ satisfy

∀p, q ∈ N : M∗(Ξp) ⊆M∗IF (Ξq).

Based on the analysis above, the result of the following
proposition is clear.

Proposition 9 (impulse-freeness). For a switched DAE Ξσ
under the assumptions (SL) and (NF). If condition (IF)
holds, then for any initial point x0 ∈M∗IF (Ξσ(0)), any jump-
flow solution x : [0,+∞)→ X of Ξσ is impulse-free.

Remark 10. Note that even for a stable (see Definition
12) switched nonlinear DAE satisfying (SL), (NF), (IF),



jump-flow solutions can still be impulsive because if the
initial point x−0 /∈ M∗IF (Ξσ(0)), the initial jump x−0 /∈
M∗IF (Ξσ(0))→ x+

0 ∈M∗(Ξσ(0)) can still produce impulsive
terms. So if we want all jump-flow solutions are impulse-
free, we must choose an initial point x−0 ∈M∗IF (Ξσ(0)).

Remark 11. For a switched linear DAE ∆σ , given by (2),
the distributional solution is impulse-free [11], [12] if

∀p, q ∈ N : Eq(I −ΠEq,Hq
)ΠEp,Hp

= 0, (10)

where ΠEp,Hp
is the linear consistency projector of ∆p,

defined by (4). Let Qq and Pq be the two invertible
matrices such that ∆q is ex-equivalent its Weierstrass
form via Qq and Pq , then we have Eq(I − ΠEq,Hq ) =

Q−1
q

[
In1

0

0 Nq

]
Pq(P

−1
q Pq−P−1

q

[
In1

0
0 0

]
Pq) =

[
0 0
0 Nq

]
Pq =[

0
NqP

2
q

]
, where Pq =

[
P 1

q

P 2
q

]
. Notice that Im ΠEp,Hp

=

V ∗(∆q), the latter is the limit of the Wong sequence Vi
of ∆q . It follows that (10) is equivalent to

∀p, q ∈ N : V ∗(∆p) ⊆ kerNqP
2
q .

It is seen that condition (IF) is a nonlinear generalization
of (10). A different impulse-free condition for switched
nonlinear DAEs is given by the jump rule

∀p, q ∈ N ∀x−0 ∈ C(Ξp) : x+
0 − x

−
0 ∈ kerEq(x

+
0 ), (11)

shown in assumption A4 of [12]. We have illustrated in [4],
[5] that even for non-switched DAEs, the jump rule (11)
is not consistent with nonlinear coordinates transformations,
i.e., not coordinate-free, we may get different jumping point
x+

0 depending on different coordinates chosen for the DAE.

Given any internally regular DAE Ξ = (E,F ), if
F (0) = 0, then xc = 0 is clearly consistent and is also an
equilibrium of Ξ, because x(t) = 0 is the only C1-solution
passing through xc = 0. Consider a switched DAE Ξσ ,
the following assumption assures that xc = 0 is a common
equilibrium for all models Ξp.

(EQ) For all modes Ξp = (Ep, Fp) of Ξσ we have Fp(0) = 0.

Definition 12. The equilibrium xc = 0 of Ξσ is called stable
if for any ε > 0, there exists δ > 0 such that all jump-flow
solution x with ‖x(0)‖ < δ satisfy ‖x(t)‖ < ε for all t > 0;
the DAE Ξσ is called globally asymptotically stable if xc = 0
is stable and all jump-flow solutions converge to zero.

Before giving the main result of the present paper, we
introduce the following notion of jump-flow explicitation,
which is a nonlinear control system, associated with any
(non-switched) DAE being ex-equivalent to its (NWF).

Definition 13 (jump-flow explicitation of DAEs). Consider
a DAE Ξ = (E,F ), given by (5), assume that Ξ is ex-
equivalent to the (NWF) via a smooth map Q : X →
GL(n,R) and a diffeomorphism ψ = (ψ1, ψ2), the jump-
flow explicitation of Ξ is the following nonlinear control

system

Σe :

ẋ = fe(x) +

m∑
i=1

gei (x)vi = fe(x) + ge(x)v,

y = he(x),

(12)

denoted by Σe = (fe, ge, he), where v ∈ Rm is an input
vector and m = n2 is the dimension of ξ2-subsystem in the
(NWF), and

fe :=

(
∂ψ

∂x

)−1 [
f∗◦ψ1

0

]
, ge :=

(
∂ψ

∂x

)−1 [
0
Im

]
, he := ψ2.

Note that condition (EQ) implies that fe(0) = 0

because Q(0)F (0) =
[
f∗(ψ1(0))
ψ2(0)

]
= 0 and fe(0) =(

∂ψ
∂x

)−1 [
f∗(ψ1(0))

0

]
= 0.

Remark 14. (i) It can be seen that any C1-solution of the
DAE Ξ coincides with a solution of the control system
Σ under the constraints 0 = y = he(x) = ψ2(x), i.e.,
a solution of the zero dynamics (see e.g., [9]) of Σ.
Observe that the zero dynamics of Σ is actually the ODE
ξ̇1 = f∗(ξ1), which has isomorphic C1-solutions with
Ξ (see Lemma 4) and can be written as ẋ = fe(x) in
x-coordinates. A jump-flow solution x(t) of Ξ starting
from any initial point (consistent or not) x0 can be
expressed as x(t) = Φf

e

t ◦ ΩE,F ◦ x0, where Φf
e

t is
the flow map of the vector field fe, i.e., fe(x) =
dΦfe

t (x)
dt |t=0 . Note that the vector field fe plays the

same role as the flow matrix Adiff = P−1
[
A1 0
0 0

]
P for

a linear DAE ∆, see e.g., [11], [19].
(ii) The nonlinear consistency projector ΩE,F can be seen

as the flow map Φv
e

τ (x) of the vector field ve :=
−gehe for τ = +∞. Indeed, the canonical projection
π attaching (ξ1, ξ2) 7→ (ξ1, 0) coincides with the flow
map Φṽ

e

τ (ξ) of the vector field ṽe := −
[

0
Im

]
ξ2

for τ = +∞. Observe that ṽe = ∂ψ
∂x v

e, thus by,
e.g., Proposition 1.1 of [10], their flow maps satisfy
Φv

e

τ (x) = ψ−1 ◦ Φṽ
e

τ (x) ◦ ψ = ψ−1 ◦ π ◦ ψ = ΩE,F .

Theorem 15. For a switched nonlinear DAE Ξσ , given by
(1), assume that conditions (SL), (NF), (EQ) are satisfied.
Let a control system Σep = (fep , g

e
p, h

e
p) be the jump-flow

explicitation of the model Ξp for each p ∈ N . Then the
switched DAE Ξσ is globally asymptotically stable, uniformly
for arbitrary switching signal σ if there exists a common C1-
positive definite (Lyapunov) function V : X → R such that
the level set La := {x ∈ X |V (x) ≤ a} is compact for every
a ∈ V (X) and ∀p, q ∈ N :

∂V (x)

∂x
fep (x) < 0, ∀x ∈M∗(Ξp)\ {0} , (13)

∂V (x)

∂x
vep(x) ≤ 0, ∀x ∈M∗(Ξq), (14)

where vep := −gephep is a vector field on X .

The following lemma is crucial for the proof of Theo-
rem 15 and shows a connection between the above results
and those in [12].



Lemma 16. Condition (14) is equivalent to the following
condition (it is also condition (14) in Theorem 4.1 of [12])

V (ΩEp,Fp
(x))− V (x) ≤ 0, ∀x ∈M∗(Ξq). (15)

The proofs of Theorem 15 and Lemma 16 are given in
Appendix. For the proof of Theorem 15, we first show the
stability of xc = 0 and then the asymptotic stability of
Ξσ , which is different than the proofs in [12]. We now
discuss the connections and differences between Theorem 15
of the present paper and Theorem 4.1 of [12]. Both of the
two theorems provide sufficient conditions for asymptotically
stability of switched nonlinear DAEs from a similar intuition,
i.e., to find a common Lyapunov function V (x) decreasing
along both the flow and the jump dynamics of each DAE
model Ξp. The main difference is that Theorem 15 gives
conditions based on the jump-flow explicitation Σ = (f, g, h)
rather on the original DAE Ξ = (E,F ), the advantages of
using explicitation are explained in the following remark.

Remark 17. (i) The construction of the Lyapunov func-
tion V (x) for the flow dynamics (C1-solutions) of
each DAE model Ξp shown in Definition 2.5 of [12]
requires the existence of a map Fp such that ∂V (x)

∂x =
Fp(x,Ep(x)z), ∀x ∈ C(Ξp) and z ∈ TxC(Ξp) to define
V̇ (x) := F(x, Fp(x)). While we can see from (13) that
the differentiation of V (x) along the flow dynamics of
Ξp can be explicitly expressed as V̇ (x) = ∂V (x)

∂x fep (x)
since the flow dynamics of Ξp coincides with the zero
dynamics ẋ = fep (x) of the explicitation Σp (see
Remark 14(i)).

(ii) Condition (14) is shown to be equivalent to (14) of The-
orem 4.1 in [12] by Lemma 16. Both conditions mean
that V (x) decreases along any jump x−0 ∈ M∗(Ξq)→
x+

0 = ΩEp,Fp(x−0 ) ∈ M∗(Ξq). Note that vep = −gephep
is a vector field whose flow map Φ

vep
a coincides with

nonlinear consistency projector ΩEp,Hp (see Remark
14(ii)), so condition (15), which is not involved with the
set value map ΩEp,Hp

, is actually a stability condition
for the ODE ẋ = vep(x). Since both fep and vep are both
vector fields, a straightforward corollary of Theorem 15
is that if V (x) is a common Lyapunov function for a
switched ODE with both ẋ = fep (x) and ẋ = veq(x)
as switching models, then V (x) is also a common
Lyapunov function for the switched DAE Ξσ .

IV. EXAMPLES

Consider a switched nonlinear DAE Ξσ with the gener-
alized states x = (x1, x2, x3) ∈ X = R3 and two models
Ξ1 = (E1, F1) and Ξ2 = (E2, F2), where

E1(x) =
[

1 0 x1
0 0 0
x3 1 x1

]
, F1(x) =

[
x2+x1(x3−(ex3x1)2)

x2+x1x3
x3

]
,

E2(x) =

[
(x1)2+1 0 0

(x1)2+1 0 0
0 0 0

]
, F2(x) =

[ −x1

x2+x1(x3−1)

x3+(x1)2

]
.

The DAE Ξ1 is ex-equivalent to

Ξ̃1 :
[

1 0 0
0 0 0
0 1 0

] [ ˙̃x1
˙̃x2
˙̃x3

]
=

[
−(x̃1)3

x̃2
x̃3

]
,

via the diffeomorphism ψ1(x) = (x̃1, x̃2, x̃3) = (ex3x1, x2+

x1x3, x3) and Q1(x) =
[
ex3 −ex3 0
0 1 0
0 0 1

]
; the DAE Ξ2 is ex-

equivalent to

Ξ̄2 :
[

1 0 0
0 0 0
0 0 0

] [ ˙̄x1
˙̄x2
˙̄x3

]
=

[ −x̄1
(x̄1)2+1

x̄2
x̄3

]
,

via the diffeomorphism ψ2(x) = (x̄1, x̄2, x̄3) = (x1, x2 +

x1x3, x3 +(x1)2) and Q2 =
[

1 0 0
−1 1 0
0 0 1

]
. Observe that both Ξ̃1

and Ξ̄2 are in the (NWF). It follows by (7) and (9) that

M∗(Ξ1) =
{
x ∈ R3 |x2 = x3 = 0

}
,

M∗(Ξ2) =
{
x ∈ R3 |x2 + x1x3 = x3 + (x1)2 = 0

}
,

M∗IF (Ξ1) =
{
x ∈ R3 |x2 + x1x3 = 0

}
, M∗IF (Ξ2) = R3.

It can been seen that conditions (SL), (NF), (EQ) and (IF)
are all satisfied. The jump-flow explicitations of Ξ1 and Ξ2,
constructed by Definition 13, are Σe1 = (fe1 , g

e
1, h

e
1) and

Σe2 = (fe2 , g
e
2, h

e
2), respectively, where

fe1 (x) = e2x3

[
−(x1)3

(x1)3x3

0

]
, ge1(x) =

[
0 −x1
1 x1x3−x1
0 1

]
,

he1(x) =
[
x2+x1x3

x3

]
, fe2 (x) = −x1

(x1)2+1

[
1

2(x1)2−x3

−2x1

]
,

ge2(x) =
[

0 0
1 −x1
0 1

]
, he2(x) =

[
x2+x1x3

x3+(x1)2

]
.

A direct calculation gives

ve1 =−ge1he1 =

[
x1x3

−x2−x1(x3)2

−x3

]
, ve2 =−ge2he2 =

[
0

(x1)2−x2

(x1)2−x3

]
.

We construct the following common Lyapunov function
candidate:

V (x) =
1

2
(x1)2 +

1

4
(x1)4 +

1

2
(x2 + x1x3)2 +

1

2
(x3)2.

For a function V : X → R and a vector field f :
X → Rn, denote LfV (x) := ∂V (x)

∂x f(x), then we have
Lfe

1
V (x)|M∗(Ξ1) = −e2x3((x1)4 + (x1)6) < 0, ∀x ∈

M∗(Ξ1)\ {0}; Lve1V (x)|M∗(Ξ2) = ((x1)2 + (x1)4)x3 −
(x3)2 = −(x1)6 − 2(x1)4 ≤ 0, ∀x ∈ M∗(Ξ2);
Lfe

2
V (x)|M∗(Ξ2) = −(x1)2 + 2(x1)2x3

(x1)2+1 = −(x1)2 −
2(x1)4

(x1)2+1 < 0, ∀x ∈ M∗(Ξ2)\ {0}; Lve2V (x)|M∗(Ξ1) = 0,
∀x ∈ M∗(Ξ1). Hence conditions (13) and (14) are satisfied
and the switched DAE Ξσ is globally asymptotically stable
under arbitrary switching signal.

Consider an initial point x−0 = (−1.5, 0.75, 0.5) ∈
M∗IF (Ξ1) and a switched signal σ with σ(0) = 1 and
switches at t = 0.3, 0.6, 1.2, 1.8, . . ., respectively. Observe
that x−0 /∈ M∗(Ξ1), so we have an initial jump x−0 →
x+

0 ∈ M∗(Ξ1), given by x+
0 = ΩE1,H1

(x−0 ) = (−1.5, 0, 0),
where ΩE1,H1

is the nonlinear consistency projector of Ξ1.
We draw the jump-flow solution of Ξσ starting from x−0 in
the following figure, this jump-flow solution is impulse-free
(because x−0 ∈ M∗IF (Ξ1) and (IF) holds) and converges to
zero.



•
x−0

•x+
0

x1

x2

x3

Fig. 1: x1-axis: M∗(Ξ1), light blue curve: M∗(Ξ2), dark red curve: C1-
solutions of Ξ1, dark blue curve: C1-solutions of Ξ2, dashed lines: jumps.

V. CONCLUSIONS

In this paper, we use a nonlinear Weierstrass form to
define the nonlinear consistency projectors for nonlinear
DAEs. The nonlinear consistency projector can be used to
calculate the consistent initialization jump and to formulate
an impulse-free condition for switched nonlinear DAEs. New
sufficient conditions are provided for a switched nonlinear
DAE being globally asymptotically stable under arbitrary
switching signal, those conditions are derived with the help
of the jump-flow explication of each model of the switched
DAE.

APPENDIX

Proof of Theorem 15. Step 1: We prove that t 7→ V (x(t))
is monotonically decreasing for any jump-flow solution x :
[0,∞) → X of Ξσ . For any interval Ii ⊆ [0,∞) without
switching times, x(t) is a C1-solution of the model Ξp, where
p = σ(t) for any t ∈ Ii, so x(t) is also a solution of the
ODE ẋ = fep (x) defined on M∗(Ξp) (see Remark 14(i)). By
(13), we have V̇ (x(t)) = ∂V

∂x f
e
p (x(t)) < 0, ∀t ∈ Ii. For any

switching time ti, denote q = σ(t−i ) and p = σ(t+i ), then
x(t−i ) ∈ M∗(Ξq) and x(t+i ) = ΩEp,Fp

(x(t−i )) ∈ M∗(Ξp),
thus by (15) of Lemma 16, we have V (x(t+i ))−V (x(t−i )) ≤
0. Hence t 7→ V (x(t)) is decreasing on the whole interval
[0,∞).

Step 2: We show xc = 0 is stable. Fix ε > 0, choose
r ∈ (0, ε] such that

Br := {x ∈ X | ||x|| ≤ r} .

Then we prove that there exists βr > 0 depending on r such
that the set Lβr := {x ∈ X |V (x) ≤ βr} is strictly contained
in Br, i.e., Lβr ( Br. Assume the contrary, i.e., for all
βr > 0, there exists x ∈ Lβr

satisfying ||x|| ≥ r, which
implies that there exists a sequence (xn)n∈N ∈ L 1

n
such

that ||xn|| ≥ r. By construction, lim
n→∞

V (xn) = 0. Moreover,
since L 1

n
is compact by assumption (for sufficiently large n),

there exists a subsequence of (xn) whose limit x∗ exists and
satisfies ||x∗|| ≥ r. Then we get lim

n→∞
V (xn) = V (x∗) > 0,

which is a contradiction. Thus we have Lβr
( Br.

Now we choose βr > 0 such that Lβr ( Br. Recall from
Step 1 that t 7→ V (x(t)) is decreasing, it follows that Lβr

is an invariant set for any jump-flow solution x(t) starting

from x(0) = x0 ∈ Lβr
because V (x(t)) ≤ V (x(0)) ≤ βr

implies that x(t) ∈ Lβr , ∀t ≥ 0. Since V (x) is continues
and V (0) = 0, there exists δ > 0 such that Bδ ( Lβr

. We
thus have x(0) ∈ Bδ ( Lβr

⇒ x(t) ∈ Lβr
( Br, which

implies that ||x(0)|| < δ ⇒ ||x(t)|| < ε, hence xc = 0 is
stable.

Step 3: Let 0 = t0 < t1 < t2 < . . . < tk <
. . . be the switching time of a signal σ. We prove that
all jump-flow solutions x(t) converge to zero. Seeking a
contradiction, assume that x(t) does not converge to zero.
Then, since V (x(t)) is nonnegative and decreasing, we
have lim

t→∞
V (x(t)) = c > 0. Notice that The set Lc,d =

{x ∈ X | c ≤ V (x) ≤ V (x(0)) = d} is compact by assump-
tion, it follows that, for each p ∈ N , the continues function
∂V (x)
∂x fep (x) attains its maximum sp < 0 within Lc,d. Then

with s = maxp∈N sp, we have that V̇ (x(t)) ≤ s < 0 for
all t ∈ Ii for any interval Ii = (ti, ti+1) ⊆ [0,+∞) without
switching times. Consequently, for any k ≥ 1,

V (x(t−k )) = V (x(t−0 )) +

k−1∑
i=0

∫ t−i+1

t+i

V̇ (x(t))dt+

k−1∑
i=0

(
V (x(t+i ))− V (x(t−i ))

)
≤ V (x(t−0 )) + stk.

So for tk > −V (x(0−))
s , the above relation results in

V (x(t−k )) < 0, which is a contradiction. Hence all jump-
flow solutions x(t) converge to zero.

Proof of Lemma 16. Recall that Ξp is ex-equivalent to its
(NWF) via a diffeomorphism ψp and an invertible matrix
Qp. We have ∂ψp(x)

∂x gep(x) =
[

0
Imp

]
and hep(ψ

−1
p (ξp)) = ξ2p,

where ξp = (ξ1p, ξ2p) = ψp(x) are the coordinates of the
(NWF) of Ξp. It follows that

∂V (x)

∂x
gep(x)hep(x)=

∂V (ψ−1(ξp))

∂ξp

∂ψ(x)

∂x
gep(x)hep(ψ

−1(ξp))

=
∂Ṽ (ξ1p, ξ2p)

∂ξ2p
ξ2p

where Ṽ (ξ1p, ξ2p) = V (ψ−1(ξp)). By Definition 5, we have
V ◦ΩEp,Fp

◦x = V ◦ΩEp,Fp
◦ψ−1

p ◦ ξp = V ◦ψ−1
p ◦ (ξ1p, 0).

So V (x) − V (ΩEp,Fp
(x)) = Ṽ (ξ1p, ξ2p) − Ṽ (ξ1p, 0). Then

by the mean value theorem, we have

Ṽ (ξ1p, ξ2p)− Ṽ (ξ1p, 0) =
∂Ṽ

∂ξ2p
(ξ1p, cξ2p)(ξ2p − 0)

=
1

c

∂Ṽ

∂ξ2p
(ξ1p, cξ2p)cξ2p,

for some c ∈ [0, 1]. It follows that Ṽ (ξ1p, ξ2p)− Ṽ (ξ1p, 0) ≥
0 if and only if ∂Ṽ (ξ1p,ξ2p)

∂ξ2p
ξ2p ≥ 0, which implies that (14)

is equivalent to (15).
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