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Motivation Challenges Results

System class - overview

PDE(u)
BC(u,yD)
output: yP

swDAE(w)
input: yP

output: yD

yPyD

PDE for x ∈ [a, b] and t ≥ t0:
∂tu(t, x) + A∂xu(t, x) = 0

P
[

u(a,t)
u(b,t)

]
= yD(t)

yP (t) = CP
[

u(a,t)
u(b,t)

]
switched DAE for t ≥ 0:
Eσ(t)ẇ(t) = Hσ(t)w(t) + Bσ(t)yP (t) + fσ(t)(t)

yD(t) = CD
σ(t)w(t)

› Switching signal: σ : [t0,∞)→ {1, 2, . . . , N}
› Coefficient matrices: A ∈ Rn×n, P ∈ R2n×n, CP ∈ Rν×2n,

E1, . . . ,EN ,H1, . . . ,HN ∈ Rm×m, B1, . . . ,BN ∈ Rm×ν , CD
1 , . . . ,C

D
N ∈ Rn×m

› Initial conditions: u(t0, x) = u0(x) for all x ∈ [a, b] and w(t0) = w0
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System class - networks PDE(u)
BC(u,yD)
output: yP

swDAE(w)
input: yP

output: yD

yPyD
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System class - example PDE(u)
BC(u,yD)
output: yP

swDAE(w)
input: yP

output: yD

yPyD

Simple power grid:

Generatorvoltage switching
transformer

node

node

consumption

consumption

E1
E2

E3

E4

Each line modelled by telegraph equation:
∂tI(t, x) + 1

L∂xV (t, x) = 0
∂tV (t, x) + 1

C ∂xI(t, x) = 0,
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System class - example PDE(u)
BC(u,yD)
output: yP

swDAE(w)
input: yP

output: yD

yPyD

P1

P2

κ12

κ13
i13

i12

I3, V3

I2, V2

I1, V1

I4, V4

P3

P4

L12

L13

v12

v13

Generator node: 0 = z1 − vG, yGD = z1
Consumption nodes:
0 = y24

D −R24(I4(·, a)− I2(·, b)),
0 = y34

D −R34(I3(·, b) + I4(·, b)),
Transformer:
L12

d
dt i12 = v12, L13

d
dt i13 = v13

y2
D = κ12v12, y3

D = κ13v13

Switch dependent:
0 = i12 − I1(·, b), 0 = i13 or
0 = i13 − I1(·, b), 0 = i12
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System class - example PDE(u)
BC(u,yD)
output: yP

swDAE(w)
input: yP

output: yD

yPyD

Overall coupled model:

∂tu + A∂xu = 0
P uab = yD

yP = CPuab

Eσẇ = Hσw + BσyP + fσ

yD = CD
σ w

with

u = (I1, V1, I2, V2, I3, V3, I4, V4)
yP = (I1(·, a), I2(·, a), I3(·, a), I4(·, a), V1(·, b), V2(·, b), V3(·, b), V4(·, b))
w = (z1, i23, ii3, v12, v13, z24, z34)

yD = (z1, ∗, ∗, v13, ∗, v13, z34, z34)
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Applications and existing results
Applications
› Large scale electrical circuits

› PDEs: telegraph equations of long power lines
› swDAEs: transformers, consumers, generators, switches, Kirchhoff laws

› Blood flow model
› PDEs: blood vessels to and from the heart
› swDAE: simple heart model with valves

› Gas networks
› PDEs: pipelines (Euler equations)
› swDAEs: valves, pumps/compressors

Existing results
› Coupling hyperbolic PDEs with ODEs (Borsche et al., Nonlinearity, 2010; JDE, 2012)

› Switched PDEs (Hante et al., AMO, 2009; JSCC, 2010)
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Ill-posed coupling PDE(u)
BC(u,yD)
output: yP

swDAE(w)
input: yP

output: yD

yPyD

Example

∂tv + ∂xv = 0

[ 1 0 ]
(
v(·,a)
v(·,b)

)
= yD

yP = v(·, a)

[ 1 0
0 0
] (

ẇ
ż

)
=
[ 1 0

0 1
]

(wz )−
[ 0

1
]
yP

yD = z

PDE and DAE are both well-posed individually
However, when coupled, we have yP = v(·, a) = yD = z, hence the DAE becomes:[ 1 0

0 0
] (

ẇ
ż

)
=
[ 1 0

0 1
]

(wz )−
[ 0

1
]
z =

[ 1 0
0 0
]

(wz )

  z is completely free   ill-posed coupling
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Distributional solutions
Non-standard solutions for switched DAEs (cf. Trenn 2009)
Solutions of switched DAEs may contain jumps and Dirac impulses

Example (Simple circuit producing a Dirac impulse)

−
+

Lu(t) v(t)

i(t) t < 0 : t ≥ 0 :

L d
dti(t) = v(t)

0 = v(t)− u(t)
L d

dti(t) = v(t)
0 = i(t)

t

v(t)

0 t

i(t)

0

u

δ

Stephan Trenn (Jan C. Willems Center, U Groningen) Coupled systems of PDEs and switched DAEs (6 / 14)



Motivation Challenges Results

Dirac impulse is “real”
Dirac impulse
Not just a mathematical artefact!

Induction coil

Drawing: Harry Winfield Secor, public domain

Spark plug

Photo: Ralf Schumacher, CC-BY-SA 3.0
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Novel distributional solution framework
Distributional solutions for PDE
› How to evaluate distributional solutions at boundary or at initial time?
› Method of characteristics for distributions?

Definition (Piecewise-smooth distributions in 2D)
A distribution D : C∞0 (T ×X)→ R is called piecewise-smooth :⇐⇒

D = βD +
∑
j∈J

∑
k,`

αk,`j ∂kt ∂
`
xδLj

where
› βD is a regular distribution induced by a piecewise-smooth function β : T ×X → R

› {Lj}j∈J is a locally finite family of line segments in T ×X
› δL for a line segment L ⊆ T ×X is called Dirac segment and is given by

δL : ϕ 7→
∫
L
ϕ =

∫ 1

0
ϕ(t0 + α(t1 − t0), x0 + α(x1 − x0))

√
∆t2 + ∆x2dα
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Some properties of piecewise-smooth distributions
› Closed under differentiation
› Trace-evaluation possible (resulting in 1D piecewise-smooth distribution):

D(t±, ·) := β(t±, ·)D +
∑
j∈J

∑
k,`

αk,`j ∂
(k)
t ∂

(`)
x

(
δLj

(t±, ·)
)
,

D(·, x±) := β(·, x±)D +
∑
j∈J

∑
k,`

αk,`j ∂
(k)
t ∂

(`)
x

(
δLj

(·, x±)
)
.

with

δL(t+, ·) :=


√

1 + ∆x2

∆t2 δx0+ ∆x
∆t (t−t0)

, t ∈ [t0, t1),

0, otherwise,

δL(·, x+) :=


√

1 + ∆t2
∆x2 δ

t0+ ∆t
∆x (x−x0)

, x ∈ [x0, x1),

0, otherwise,

and left-sided evaluation analogously (with intervals (t0, t1] and (x0, x1])
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Coupled system revisited PDE(u)
BC(u,yD)
output: yP

swDAE(w)
input: yP

output: yD

yPyD

∂tu + A∂xu = 0

P
(

u(·,a+)
u(·,b−)

)
= yD

u(t+0 , ·) = u0

yP = CP
(

u(·,a+)
u(·,b−)

)
Eσẇ = Hσw + BσyP + fσ

w(t−0 ) = w0

yD = CD
σ w

Well defined for 2D piecewise-smooth distribution u and 1D piecewise-smooth
distributions yP , u0, w, yD, f1, . . . ,fN !
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Equivalence to delay switched DAE
Assumption 1
The PDE is hyperbolic, i.e. A = [R−,R+]

[
Λ− 0
0 Λ+

]
[R−,R+]−1

Assumption 2
P =

[
Pa 0
0 Pb

]
with ker Pa ⊕R+ = Rn and ker Pb ⊕R− = Rn

Theorem (Borsche, Kocoglu, Trenn, MCSS, 2020)
z = [ w

uab ] is solution of coupled system ⇐⇒ z solves[
Eσ 0
0 0

]
ż =

[
Hσ BσCP

F CD
σ −I

]
z +

n∑
k=1

([
0 0
0 Dk

]
Sτk
timez

)
+
[
fσ
0

]

with suitable matrices F and D1, . . . ,Dn and distributional time shift operator Sτk
time
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Well-posedness of coupled system PDE(u)
BC(u,yD)
output: yP

swDAE(w)
input: yP

output: yD

yPyD

∂tu + A∂xu = 0

P
(

u(·,a+)
u(·,b−)

)
= yD

u(t+0 , ·) = u0

yP = CP
(

u(·,a+)
u(·,b−)

)
Eσẇ = Hσw + BσyP + fσ

w(t−0 ) = w0

yD = CD
σ w

Corollary (Cf. Trenn & Unger, CDC 2019)
The coupled system is well-posed if the matrix pairs (Eξ,Hξ + BξC

PF CD
ξ ) are

regular for each ξ = 1, . . . , N .
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Simulations for simple power grid example
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Summary PDE(u)
BC(u,yD)
output: yP

swDAE(w)
input: yP

output: yD

yPyD

› Coupling between PDEs and switched DAE well motivated
› Novel distributional solution framework to handle Dirac impulses
› Equivalence of coupled system with delay switched DAE
› Well-posedness result in terms of regularity-check of certain matrix pairs
› Simulations confirm solution theory

Open problems
› Adjusted numerical methods
› Extension to nonlinear case
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