A solution theory for coupled systems of PDEs and switched DAEs

Stephan Trenn
Jan C. Willems Center for Systems and Control
University of Groningen, Netherlands
Joint work with Damla Kocoglu, Raul Borsche (TU Kaiserslautern, Germany)
This work was supported by DFG-grants BO 4768/1-1 and TR 1223/4-1 as well as NWO Vidi grant 639.032.733.

NDNS+ Workshop, U Twente, Netherlands (online), 22 June 2021, 9:30-10:00

System class - overview

PDE for $x \in[a, b]$ and $t \geq t_{0}$:

$$
\begin{aligned}
\partial_{t} u(t, x)+\boldsymbol{A} \partial_{x} u(t, x) & =0 \\
\boldsymbol{P}\left[\begin{array}{l}
u(a, t) \\
u(b, t)
\end{array}\right] & =y_{D}(t) \\
y_{P}(t) & =\boldsymbol{C}^{P}\left[\begin{array}{l}
u(a, t) \\
u(b, t)
\end{array}\right]
\end{aligned}
$$

switched DAE for $t \geq 0$:

$$
\begin{aligned}
\boldsymbol{E}_{\sigma(t)} \dot{\boldsymbol{w}}(t) & =\boldsymbol{H}_{\sigma(t)} \boldsymbol{w}(t)+\boldsymbol{B}_{\sigma(t)} \boldsymbol{y}_{P}(t)+\boldsymbol{f}_{\sigma(t)}(t) \\
\boldsymbol{y}_{D}(t) & =\boldsymbol{C}_{\sigma(t)}^{D} \boldsymbol{w}(t)
\end{aligned}
$$

, Switching signal: $\sigma:\left[t_{0}, \infty\right) \rightarrow\{1,2, \ldots, N\}$
, Coefficient matrices: $\boldsymbol{A} \in \mathbb{R}^{n \times n}, \boldsymbol{P} \in \mathbb{R}^{2 n \times n}, \boldsymbol{C}_{P} \in \mathbb{R}^{\nu \times 2 n}$, $\boldsymbol{E}_{1}, \ldots, \boldsymbol{E}_{N}, \boldsymbol{H}_{1}, \ldots, \boldsymbol{H}_{N} \in \mathbb{R}^{m \times m}, \boldsymbol{B}_{1}, \ldots, \boldsymbol{B}_{N} \in \mathbb{R}^{m \times \nu}, \boldsymbol{C}_{1}^{D}, \ldots, \boldsymbol{C}_{N}^{D} \in \mathbb{R}^{n \times m}$
, Initial conditions: $u\left(t_{0}, x\right)=u^{0}(x)$ for all $x \in[a, b]$ and $w\left(t_{0}\right)=w^{0}$

System class - networks

System class - example

Simple power grid:

Each line modelled by telegraph equation:

$$
\begin{aligned}
\partial_{t} I(t, x)+\frac{1}{L} \partial_{x} V(t, x) & =0 \\
\partial_{t} V(t, x)+\frac{1}{C} \partial_{x} I(t, x) & =0,
\end{aligned}
$$

System class - example

Generator node: $0=z_{1}-v_{G}, \quad y_{D}^{G}=z_{1}$ Consumption nodes:
$0=y_{D}^{24}-R_{24}\left(I_{4}(\cdot, a)-I_{2}(\cdot, b)\right)$,
$0=y_{D}^{34}-R_{34}\left(I_{3}(\cdot, b)+I_{4}(\cdot, b)\right)$,

Transformer:

$L_{12} \frac{\mathrm{~d}}{\mathrm{~d} t} i_{12}=v_{12}, L_{13} \frac{\mathrm{~d}}{\mathrm{~d} t} i_{13}=v_{13}$
$y_{D}^{2}=\kappa_{12} v_{12}, y_{D}^{3}=\kappa_{13} v_{13}$

Switch dependent:

$$
\begin{aligned}
& 0=i_{12}-I_{1}(\cdot, b), 0=i_{13} \quad \text { or } \\
& 0=i_{13}-I_{1}(\cdot, b), 0=i_{12}
\end{aligned}
$$

System class - example

Overall coupled model:

$$
\begin{aligned}
\partial_{t} u+\boldsymbol{A} \partial_{x} u & =0 & \boldsymbol{E}_{\sigma} \dot{\boldsymbol{w}} & =\boldsymbol{H}_{\sigma} \boldsymbol{w}+\boldsymbol{B}_{\sigma} \boldsymbol{y}_{P}+\boldsymbol{f}_{\sigma} \\
\boldsymbol{P} u_{a b} & =y_{D} & \boldsymbol{y}_{D} & =\boldsymbol{C}_{\sigma}^{D} \boldsymbol{w} \\
\boldsymbol{y}_{P} & =\boldsymbol{C}^{P} u_{a b} & &
\end{aligned}
$$

with

$$
\begin{aligned}
u & =\left(I_{1}, V_{1}, I_{2}, V_{2}, I_{3}, V_{3}, I_{4}, V_{4}\right) \\
\boldsymbol{y}_{P} & =\left(I_{1}(\cdot, a), I_{2}(\cdot, a), I_{3}(\cdot, a), I_{4}(\cdot, a), V_{1}(\cdot, b), V_{2}(\cdot, b), V_{3}(\cdot, b), V_{4}(\cdot, b)\right) \\
\boldsymbol{w} & =\left(z_{1}, i_{23}, i_{i 3}, v_{12}, v_{13}, z_{24}, z_{34}\right) \\
\boldsymbol{y}_{D} & =\left(z_{1}, *, *, v_{13}, *, v_{13}, z_{34}, z_{34}\right)
\end{aligned}
$$

Applications and existing results

Applications

, Large scale electrical circuits
, PDEs: telegraph equations of long power lines
, swDAEs: transformers, consumers, generators, switches, Kirchhoff laws
, Blood flow model
, PDEs: blood vessels to and from the heart
, swDAE: simple heart model with valves
, Gas networks
, PDEs: pipelines (Euler equations)
, swDAEs: valves, pumps/compressors

Existing results

, Coupling hyperbolic PDEs with ODEs (Borsche et al., Nonlinearity, 2010; JDE, 2012)
, Switched PDEs (Hante et al., AMO, 2009; JSCC, 2010)

III-posed coupling

Example

$$
\begin{aligned}
& \partial_{t} v+\partial_{x} v=0 \\
& {\left[\begin{array}{ll}
1 & 0
\end{array}\right]\binom{v(\cdot, a)}{v(\cdot, b)}=y_{D}} \\
& y_{P}=v(\cdot, a) \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\binom{\dot{w}}{\dot{z}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\binom{w}{z}-\left[\begin{array}{l}
0 \\
1
\end{array}\right] y_{P}} \\
& y_{D}=z
\end{aligned}
$$

PDE and DAE are both well-posed individually
However, when coupled, we have $y_{P}=v(\cdot, a)=y_{D}=z$, hence the DAE becomes:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\binom{\dot{w}}{\dot{z}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\binom{w}{z}-\left[\begin{array}{l}
0 \\
1
\end{array}\right] z=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\binom{w}{z}
$$

$m \quad z$ is completely free m ill-posed coupling

Distributional solutions

Non-standard solutions for switched DAEs (cf. Trenn 2009)
Solutions of switched DAEs may contain jumps and Dirac impulses

Example (Simple circuit producing a Dirac impulse)

Dirac impulse is "real"

Dirac impulse

Not just a mathematical artefact!

Induction coil

Spark plug

Novel distributional solution framework

Distributional solutions for PDE

, How to evaluate distributional solutions at boundary or at initial time?
) Method of characteristics for distributions?

Definition (Piecewise-smooth distributions in 2D)

A distribution $D: \mathcal{C}_{0}^{\infty}(T \times X) \rightarrow \mathbb{R}$ is called piecewise-smooth $: \Longleftrightarrow$
where

$$
D=\beta_{\mathbb{D}}+\sum_{j \in \mathcal{J}} \sum_{k, \ell} \alpha_{j}^{k, \ell} \partial_{t}^{k} \partial_{x}^{\ell} \delta_{L_{j}}
$$

, $\beta_{\mathbb{D}}$ is a regular distribution induced by a piecewise-smooth function $\beta: T \times X \rightarrow \mathbb{R}$
, $\left\{L_{j}\right\}_{j \in \mathcal{J}}$ is a locally finite family of line segments in $T \times X$
, δ_{L} for a line segment $L \subseteq T \times X$ is called Dirac segment and is given by

$$
\delta_{L}: \varphi \mapsto \int_{L} \varphi=\int_{0}^{1} \varphi\left(t_{0}+\alpha\left(t_{1}-t_{0}\right), x_{0}+\alpha\left(x_{1}-x_{0}\right)\right) \sqrt{\Delta t^{2}+\Delta x^{2}} \mathrm{~d} \alpha
$$

Some properties of piecewise-smooth distributions

, Closed under differentiation
, Trace-evaluation possible (resulting in 1D piecewise-smooth distribution):

$$
\begin{aligned}
D\left(t^{ \pm}, \cdot\right) & :=\beta\left(t^{ \pm}, \cdot\right)_{\mathbb{D}}+\sum_{j \in \mathcal{J}} \sum_{k, \ell} \alpha_{j}^{k, \ell} \partial_{t}^{(k)} \partial_{x}^{(\ell)}\left(\delta_{L_{j}}\left(t^{ \pm}, \cdot\right)\right), \\
D\left(\cdot, x^{ \pm}\right) & :=\beta\left(\cdot, x^{ \pm}\right)_{\mathbb{D}}+\sum_{j \in \mathcal{J}} \sum_{k, \ell} \alpha_{j}^{k, \ell} \partial_{t}^{(k)} \partial_{x}^{(\ell)}\left(\delta_{L_{j}}\left(\cdot, x^{ \pm}\right)\right) .
\end{aligned}
$$

$$
\begin{aligned}
\delta_{L}\left(t^{+}, \cdot\right) & := \begin{cases}\sqrt{1+\frac{\Delta x^{2}}{\Delta t^{2}}} \delta_{x_{0}+\frac{\Delta x}{\Delta t}\left(t-t_{0}\right)}, & t \in\left[t_{0}, t_{1}\right), \\
0, & \text { otherwise, }\end{cases} \\
\delta_{L}\left(\cdot, x^{+}\right) & := \begin{cases}\sqrt{1+\frac{\Delta t^{2}}{\Delta x^{2}}} \delta_{t_{0}+\frac{\Delta t}{\Delta x}\left(x-x_{0}\right)}, & x \in\left[x_{0}, x_{1}\right), \\
0, & \text { otherwise, }\end{cases}
\end{aligned}
$$

and left-sided evaluation analogously (with intervals $\left(t_{0}, t_{1}\right]$ and $\left.\left(x_{0}, x_{1}\right]\right)$

Coupled system revisited

$$
\begin{aligned}
\partial_{t} u+\boldsymbol{A} \partial_{x} u & =0 \\
\boldsymbol{P}\binom{u\left(\cdot, a^{+}\right)}{u\left(\cdot, b^{-}\right)} & =y_{D} \\
u\left(t_{0}^{+}, \cdot\right) & =u^{0} \\
\boldsymbol{y}_{P} & =\boldsymbol{C}^{P}\binom{u\left(\cdot, a^{+}\right)}{u\left(\cdot, b^{-}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{E}_{\sigma} \dot{\boldsymbol{w}} & =\boldsymbol{H}_{\sigma} \boldsymbol{w}+\boldsymbol{B}_{\sigma} \boldsymbol{y}_{P}+\boldsymbol{f}_{\sigma} \\
\boldsymbol{w}\left(t_{0}^{-}\right) & =\boldsymbol{w}^{0} \\
\boldsymbol{y}_{D} & =\boldsymbol{C}_{\sigma}^{D} \boldsymbol{w}
\end{aligned}
$$

Well defined for 2D piecewise-smooth distribution u and 1D piecewise-smooth distributions $y_{P}, u^{0}, w, y_{D}, f_{1}, \ldots, \boldsymbol{f}_{N}$!

Equivalence to delay switched DAE

Assumption 1

The PDE is hyperbolic, i.e. $\boldsymbol{A}=\left[\boldsymbol{R}^{-}, \boldsymbol{R}^{+}\right]\left[\begin{array}{cc}\Lambda^{-} & 0 \\ 0 & \Lambda^{+}\end{array}\right]\left[\boldsymbol{R}^{-}, \boldsymbol{R}^{+}\right]^{-1}$
Assumption 2
$\boldsymbol{P}=\left[\begin{array}{cc}P_{a} & 0 \\ 0 & P_{b}\end{array}\right]$ with \quad ker $\boldsymbol{P}_{a} \oplus \boldsymbol{R}^{+}=\mathbb{R}^{n} \quad$ and $\quad \operatorname{ker} \boldsymbol{P}_{b} \oplus \boldsymbol{R}^{-}=\mathbb{R}^{n}$
Theorem (Borsche, Kocoglu, Trenn, MCSS, 2020)
$z=\left[\begin{array}{c}w \\ u_{a b}\end{array}\right]$ is solution of coupled system $\Longleftrightarrow z$ solves

$$
\left[\begin{array}{cc}
\boldsymbol{E}_{\sigma} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] \dot{z}=\left[\begin{array}{cc}
\boldsymbol{H}_{\sigma} & \boldsymbol{B}_{\sigma} \boldsymbol{C}^{P} \\
\boldsymbol{F} \boldsymbol{C}^{D} & -\boldsymbol{I}
\end{array}\right] \boldsymbol{z}+\sum_{k=1}^{n}\left(\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{D}_{k}
\end{array}\right] \mathcal{S}_{\text {time }}^{\tau_{k}} \boldsymbol{z}\right)+\left[\begin{array}{c}
\boldsymbol{f}_{\sigma} \\
\mathbf{0}
\end{array}\right]
$$

with suitable matrices \boldsymbol{F} and $\boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{n}$ and distributional time shift operator $\mathcal{S}_{\text {time }}^{\tau_{k}}$

Well-posedness of coupled system

$$
\begin{aligned}
\partial_{t} \boldsymbol{u}+\boldsymbol{A} \partial_{x} \boldsymbol{u} & =0 \\
\boldsymbol{P}\binom{u\left(\cdot, a^{+}\right)}{\boldsymbol{u}\left(\cdot, b^{-}\right)} & =y_{D} \\
\boldsymbol{u}\left(t_{0}^{+}, \cdot\right) & =u^{0} \\
y_{P} & =\boldsymbol{C}^{P}\binom{\boldsymbol{u}\left(\cdot, a^{+}\right)}{\boldsymbol{u}\left(\cdot, b^{-}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{E}_{\sigma} \dot{\boldsymbol{w}} & =\boldsymbol{H}_{\sigma} \boldsymbol{w}+\boldsymbol{B}_{\sigma} \boldsymbol{y}_{P}+\boldsymbol{f}_{\sigma} \\
\boldsymbol{w}\left(t_{0}^{-}\right) & =\boldsymbol{w}^{0} \\
\boldsymbol{y}_{D} & =\boldsymbol{C}_{\sigma}^{D} \boldsymbol{w}
\end{aligned}
$$

Corollary (Cf. Trenn \& Unger, CDC 2019)

The coupled system is well-posed if the matrix pairs $\left(\boldsymbol{E}_{\xi}, \boldsymbol{H}_{\xi}+\boldsymbol{B}_{\xi} \boldsymbol{C}^{P} \boldsymbol{F} \boldsymbol{C}_{\xi}^{D}\right)$ are regular for each $\xi=1, \ldots, N$.

Simulations for simple power grid example

Summary

, Coupling between PDEs and switched DAE well motivated
, Novel distributional solution framework to handle Dirac impulses
, Equivalence of coupled system with delay switched DAE
, Well-posedness result in terms of regularity-check of certain matrix pairs
, Simulations confirm solution theory

Open problems

, Adjusted numerical methods
, Extension to nonlinear case

