

faculty of science and engineering bernoulli institute for mathematics, computer science and artificial intelligence

A solution theory for coupled systems of PDEs and switched DAEs

Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Joint work with Damla Kocoglu, Raul Borsche (TU Kaiserslautern, Germany)

This work was supported by DFG-grants BO 4768/1-1 and TR 1223/4-1 as well as NWO Vidi grant 639.032.733.

NDNS+ Workshop, U Twente, Netherlands (online), 22 June 2021, 9:30 - 10:00

Results

System class - overview

 $\begin{aligned} \textbf{PDE for } x \in [a,b] \text{ and } t \geq t_0: \\ \partial_t u(t,x) + A \partial_x u(t,x) &= 0 \\ P\left[\begin{bmatrix} u(a,t) \\ u(b,t) \end{bmatrix} = y_D(t) \\ y_P(t) &= C^P\left[\begin{bmatrix} u(a,t) \\ u(b,t) \end{bmatrix} \right] \end{aligned}$ $\begin{aligned} \textbf{switched DAE for } t \geq 0: \\ E_{\sigma(t)} \dot{\boldsymbol{w}}(t) &= H_{\sigma(t)} \boldsymbol{w}(t) + B_{\sigma(t)} y_P(t) + f_{\sigma(t)}(t) \\ y_D(t) &= C_{\sigma(t)}^D \boldsymbol{w}(t) \end{aligned}$

- > Switching signal: $\sigma:[t_0,\infty)\to\{1,2,\ldots,N\}$
- $\begin{array}{l} & \text{Coefficient matrices: } \boldsymbol{A} \in \mathbb{R}^{n \times n}, \, \boldsymbol{P} \in \mathbb{R}^{2n \times n}, \, \boldsymbol{C}_{P} \in \mathbb{R}^{\nu \times 2n}, \\ & \boldsymbol{E}_{1}, \ldots, \boldsymbol{E}_{N}, \boldsymbol{H}_{1}, \ldots, \boldsymbol{H}_{N} \in \mathbb{R}^{m \times m}, \, \boldsymbol{B}_{1}, \ldots, \boldsymbol{B}_{N} \in \mathbb{R}^{m \times \nu}, \, \boldsymbol{C}_{1}^{D}, \ldots, \boldsymbol{C}_{N}^{D} \in \mathbb{R}^{n \times m} \end{array}$
- > Initial conditions: $u(t_0,x) = u^0(x)$ for all $x \in [a,b]$ and ${m w}(t_0) = {m w}^0$

$$\begin{split} \partial_t I(t,x) &+ \frac{1}{L} \partial_x V(t,x) = 0 \\ \partial_t V(t,x) &+ \frac{1}{C} \partial_x I(t,x) = 0, \end{split}$$

university of groningen Motivation

System class - example

Challenges

Generator node: $0 = z_1 - v_G$, $y_D^G = z_1$ Consumption nodes: $0 = y_D^{24} - R_{24}(I_4(\cdot, a) - I_2(\cdot, b)),$ $0 = y_D^{34} - R_{34}(I_3(\cdot, b) + I_4(\cdot, b)),$ Transformer: $L_{12} \frac{d}{dt} i_{12} = v_{12}, L_{13} \frac{d}{dt} i_{13} = v_{13}$ $y_D^2 = \kappa_{12} v_{12}, y_D^3 = \kappa_{13} v_{13}$ Switch dependent:

$$\begin{array}{ll} 0=i_{12}-I_1(\cdot,b), \ 0=i_{13} & \text{ or } \\ 0=i_{13}-I_1(\cdot,b), \ 0=i_{12} \end{array}$$

Results

Overall coupled model:

$$egin{aligned} \partial_t u + A \partial_x u &= 0 \ P u_{ab} &= y_D \ y_P &= C^P u_{ab} \end{aligned} egin{aligned} E_\sigma \dot{oldsymbol{w}} &= H_\sigma oldsymbol{w} + B_\sigma y_P + f_\sigma \ oldsymbol{y}_D &= C_\sigma^D oldsymbol{w} \end{aligned}$$

Challenges

with

$$u = (I_1, V_1, I_2, V_2, I_3, V_3, I_4, V_4)$$

$$y_P = (I_1(\cdot, a), I_2(\cdot, a), I_3(\cdot, a), I_4(\cdot, a), V_1(\cdot, b), V_2(\cdot, b), V_3(\cdot, b), V_4(\cdot, b))$$

$$w = (z_1, i_{23}, i_{i3}, v_{12}, v_{13}, z_{24}, z_{34})$$

$$y_D = (z_1, *, *, v_{13}, *, v_{13}, z_{34}, z_{34})$$

Results

Applications and existing results

Applications

- > Large scale electrical circuits
 - > PDEs: telegraph equations of long power lines
 - > swDAEs: transformers, consumers, generators, switches, Kirchhoff laws

> Blood flow model

- > PDEs: blood vessels to and from the heart
- > swDAE: simple heart model with valves

> Gas networks

- > PDEs: pipelines (Euler equations)
- > swDAEs: valves, pumps/compressors

Existing results

- > Coupling hyperbolic PDEs with ODEs (BORSCHE et al., Nonlinearity, 2010; JDE, 2012)
- > Switched PDEs (HANTE et al., AMO, 2009; JSCC, 2010)

Example

$$\partial_t v + \partial_x v = 0$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{pmatrix} v(\cdot, a) \\ v(\cdot, b) \end{pmatrix} = y_D$$

$$y_P = v(\cdot, a)$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \frac{w}{z} \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \frac{w}{z} \end{pmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} y_P$$

$$y_D = z$$

PDE and DAE are both well-posed individually

However, when coupled, we have $y_P = v(\cdot, a) = y_D = z$, hence the DAE becomes:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{w} \\ \dot{z} \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} w \\ z \end{pmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} z = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} w \\ z \end{pmatrix}$$

 \rightsquigarrow z is completely free \rightsquigarrow ill-posed coupling

Results

Distributional solutions

Non-standard solutions for switched DAEs (cf. TRENN 2009)

Solutions of switched DAEs may contain jumps and Dirac impulses

Coupled systems of PDEs and switched DAEs (6 / 14)

Results

Dirac impulse is "real"

Dirac impulse

Not just a mathematical artefact!

Induction coil

Drawing: Harry Winfield Secor, public domain

Photo: Ralf Schumacher, CC-BY-SA 3.0

Results

Novel distributional solution framework

Distributional solutions for PDE

- > How to evaluate distributional solutions at boundary or at initial time?
- > Method of characteristics for distributions?

Definition (Piecewise-smooth distributions in 2D)

A distribution $D: \mathcal{C}_0^\infty(T \times X) \to \mathbb{R}$ is called piecewise-smooth : \iff

$$D = \beta_{\mathbb{D}} + \sum_{j \in \mathcal{J}} \sum_{k,\ell} \alpha_j^{k,\ell} \partial_t^k \partial_x^\ell \delta_{L_j}$$

where

- $\ \ \, \to \ \ \, \beta_{\mathbb D} \text{ is a regular distribution induced by a piecewise-smooth function } \beta:T\times X\to \mathbb R$
- > $\{L_j\}_{j\in\mathcal{J}}$ is a locally finite family of line segments in $T\times X$
-) δ_L for a line segment $L \subseteq T \times X$ is called Dirac segment and is given by

$$\delta_L: \varphi \mapsto \int_L \varphi = \int_0^1 \varphi(t_0 + \alpha(t_1 - t_0), x_0 + \alpha(x_1 - x_0)) \sqrt{\Delta t^2 + \Delta x^2} d\alpha$$

Some properties of piecewise-smooth distributions

- > Closed under differentiation
- > Trace-evaluation possible (resulting in 1D piecewise-smooth distribution):

$$D(t^{\pm}, \cdot) := \beta(t^{\pm}, \cdot)_{\mathbb{D}} + \sum_{j \in \mathcal{J}} \sum_{k, \ell} \alpha_j^{k, \ell} \partial_t^{(k)} \partial_x^{(\ell)} \left(\delta_{L_j}(t^{\pm}, \cdot) \right),$$
$$D(\cdot, x^{\pm}) := \beta(\cdot, x^{\pm})_{\mathbb{D}} + \sum_{j \in \mathcal{J}} \sum_{k, \ell} \alpha_j^{k, \ell} \partial_t^{(k)} \partial_x^{(\ell)} \left(\delta_{L_j}(\cdot, x^{\pm}) \right).$$

with

$$\begin{split} \delta_L(t^+,\cdot) &:= \begin{cases} \sqrt{1 + \frac{\Delta x^2}{\Delta t^2}} \, \delta_{x_0 + \frac{\Delta x}{\Delta t}(t-t_0)} \,, & t \in [t_0,t_1), \\ 0, & \text{otherwise,} \end{cases} \\ \delta_L(\cdot,x^+) &:= \begin{cases} \sqrt{1 + \frac{\Delta t^2}{\Delta x^2}} \, \delta_{t_0 + \frac{\Delta t}{\Delta x}(x-x_0)} \,, & x \in [x_0,x_1), \\ 0, & \text{otherwise,} \end{cases} \end{split}$$

and left-sided evaluation analogously (with intervals $(t_0, t_1]$ and $(x_0, x_1]$)

Stephan Trenn (Jan C. Willems Center, U Groningen)

Coupled systems of PDEs and switched DAEs (9 / 14)

Results

$$egin{aligned} \partial_t oldsymbol{u} + oldsymbol{A} \partial_x oldsymbol{u} &= 0 \ oldsymbol{P} \left(egin{aligned} oldsymbol{u}(\cdot,a^+) \ oldsymbol{u}(\cdot,b^-) \end{array}
ight) &= oldsymbol{y}_D \ oldsymbol{u}(t_0^+, \cdot) &= oldsymbol{u}^0 \ oldsymbol{y}_P &= oldsymbol{C}^P \left(egin{aligned} oldsymbol{u}(\cdot,a^+) \ oldsymbol{u}(\cdot,b^-) \end{array}
ight) & oldsymbol{E}_\sigma \dot{oldsymbol{w}} = oldsymbol{H}_\sigma oldsymbol{w} + oldsymbol{B}_\sigma oldsymbol{y}_P + oldsymbol{f}_\sigma \ oldsymbol{w}(t_0^-) &= oldsymbol{w}^0 \ oldsymbol{y}_D = oldsymbol{C}_\sigma^D oldsymbol{w} \ oldsymbol{y}_D = oldsymbol{C}_\sigma^D oldsymbol{w} \end{aligned}$$

Well defined for 2D piecewise-smooth distribution u and 1D piecewise-smooth distributions y_P , u^0 , w, y_D , f_1, \ldots, f_N !

Results

Equivalence to delay switched DAE

Assumption 1

The PDE is hyperbolic, i.e.
$$\boldsymbol{A} = [\boldsymbol{R}^-, \boldsymbol{R}^+] \begin{bmatrix} \Lambda^- & 0\\ 0 & \Lambda^+ \end{bmatrix} [\boldsymbol{R}^-, \boldsymbol{R}^+]^{-1}$$

Assumption 2 $P = \begin{bmatrix} P_a & 0 \\ 0 & P_b \end{bmatrix}$ with $\ker P_a \oplus R^+ = \mathbb{R}^n$ and $\ker P_b \oplus R^- = \mathbb{R}^n$

Theorem (BORSCHE, KOCOGLU, TRENN, *MCSS*, 2020) $z = \begin{bmatrix} w \\ u_{ab} \end{bmatrix}$ is solution of coupled system $\iff z$ solves $\begin{bmatrix} E_{\sigma} & 0 \\ 0 & 0 \end{bmatrix} \dot{z} = \begin{bmatrix} H_{\sigma} & B_{\sigma}C^{P} \\ FC^{D}_{\sigma} & -I \end{bmatrix} z + \sum_{k=1}^{n} \left(\begin{bmatrix} 0 & 0 \\ 0 & D_{k} \end{bmatrix} \mathcal{S}_{time}^{\tau_{k}} z \right) + \begin{bmatrix} f_{\sigma} \\ 0 \end{bmatrix}$

with suitable matrices $m{F}$ and $m{D}_1,\ldots,m{D}_n$ and distributional time shift operator $\mathcal{S}_{\mathsf{time}}^{ au_k}$

Corollary (Cf. TRENN & UNGER, CDC 2019)

The coupled system is well-posed if the matrix pairs $(E_{\xi}, H_{\xi} + B_{\xi}C^{P}FC_{\xi}^{D})$ are regular for each $\xi = 1, ..., N$.

Results

Simulations for simple power grid example

Coupled systems of PDEs and switched DAEs (13 / 14)

- > Novel distributional solution framework to handle Dirac impulses
- > Equivalence of coupled system with delay switched DAE
- > Well-posedness result in terms of regularity-check of certain matrix pairs
- > Simulations confirm solution theory

Open problems

- > Adjusted numerical methods
- > Extension to nonlinear case