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Abstract

In this paper stabilization of switched differential algebraic equations is considered, where Dirac impulses in both the
input and the state trajectory are to be avoided during the stabilization process. First it is shown that stabilizability of a
switched DAE and the existence of impulse-free solutions are merely necessary conditions for impulse-free stabilizability.
Then necessary and sufficient conditions for the existence of impulse-free solutions are given, which motivate the definition
of (impulse-free) interval-stabilization on a finite interval. Under a uniformity assumption, which can be verified for a
broad class of switched systems, stabilizability on an infinite interval can be concluded based on interval-stabilizability.
As a result a characterization of impulse-free interval stabilizability is given and as a corollary we provide a novel
impulse-free null-controllability characterization. Finally, the results are compared to results on interval-stabilizability
where Dirac impulses are allowed in the input and state trajectory.
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1. Introduction

In this paper we consider switched differential algebraic
equations (switched DAEs) of the following form:

Eσẋ = Aσx+Bσu, (1)

where σ : R → N is the switching signal and Ep, Ap ∈
Rn×n, Bp ∈ Rn×m, for p, n,m ∈ N. In general, trajectories
of switched DAEs exhibit jumps (or even impulses), which
may exclude classical solutions from existence. There-
fore, we adopt the piecewise-smooth distributional solution
framework introduced in [9]. We study impulse-free sta-
bilizability of (1) where impulse-free stabilizability means
the ability to find for each initial value a control signal such
the state converges towards zero and remains impulse free
(see the forthcoming Definition 9).

Differential algebraic equations (DAEs) arise naturally
when modeling physical systems with certain algebraic
constraints on the state variables. Examples of applica-
tions of DAEs in electrical circuits (with distributional so-
lutions) can be found in e.g. [8]. The algebraic constraints
are often eliminated such that the system is described by
ordinary differential equations (ODEs). In the case that
a system undergoes abrupt structural changes a switched
DAE is obtained. Examples of applications are electronic
circuits containing switches or mechanical systems with
component failure. Since each mode generally has differ-
ent algebraic constraints, there does not exist a switched
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ODE description of the system with a common state vari-
able. This problem can be overcome by studying switched
DAEs directly.

Several structural properties of switched DAEs have
been studied recently. Among those are null-controllability
[3], stability [5], stabilizability [12] and observability [4].
All of these studies allow for Dirac impulses in the state
trajectory, whereas for some applications Dirac impulses
are undesirable. Examples of such applications are electri-
cal circuits containing switches where Dirac impulses in the
voltage can damage components or cause electric sparks to
occur at the switch [11]. Furthermore, in the case compo-
nents need to be replaced, e.g. for maintenance reasons,
or if new components are attached to an operational elec-
trical circuit, some state components might, for safety rea-
sons, be required to be stabilized in a impulse-free fashion.
Impulse-controllability of switched DAEs, i.e., the ability
to avoid Dirac impulses in the state trajectory by means
on an input, has been studied in [13]. However, switched
systems that are both impulse-controllable and stabiliz-
able are not necessarily stabilizable with an impulse-free
trajectory, as is shown in the following example.

Consider the electrical circuit given in Figure 1. For
maintenance reasons the capacitor and the component con-
sisting of the operational amplifier combined with an in-
ductor are disconnected at t = t1. In order to keep the
network to which this circuit is connected running, the
voltage source V0 needs to remain constant. However,
there is another controllable voltage source u available.
Since the system is operational at t = t0 it is assumed
that the state at t0 is consistent. Defining the state as
x = [ VL IL VC ,IC ,V0 ], we obtain that for t ∈ [t0, t1) the sys-
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Figure 1: An example of an electrical circuit that is stabilizable and
impulse-controllable, but not stabilizable without Dirac impulses.

tem is described by equation (2), whereas for t ∈ [t1,∞)
it is described by equation (3).[

0 L 0 0 0
0 0 0 0 0
0 0 C 0 0
0 0 0 0 0
0 0 0 0 1

]
ẋ =

[
1 0 0 0 0
0 R 0 0 0
0 0 0 1 0
0 0 1 0 −1
0 0 0 0 0

]
x+

[
0
−1
0
1
0

]
u, (2)[

0 L 0 0 0
0 0 0 0 0
0 0 C 0 0
0 0 0 0 0
0 0 0 0 1

]
ẋ =

[
1 0 0 0 0
0 R 0 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 0

]
x (3)

The current through the resistors is given by IR = u/R
and hence RIL = u. After opening the switch, the voltage
over the resistor is zero and thus IR = IL = 0. Hence
for a non-zero input u at t−1 , we obtain that IL jumps
to zero at t+1 and consequently a Dirac impulse occurs
in VL = LİL. However, if the input is brought to zero
smoothly, no Dirac impulses occur and hence the system
is impulse-controllable.

However, since the amount of charge stored on the ca-
pacitor is given by q = C(V0 − u), we have that for a
nonzero u at t1, that the capacitor is charged and is un-
able to discharge, since the current IC = 0. The capacitor
can be discharged before t1, but that requires a nonzero
u at t−1 , which produces a Dirac impulse yet stabilizes the
state of the components. Hence we have an example of a
system which is impulse controllable and stabilizable, but
not stabilizable with an impulse free trajectory.

Motivated by this example, this paper considers stabi-
lization of switched DAEs where Dirac impulses are to be
avoided, so called impulse-free stabilization.

The outline of the paper is as follows: notations and
results for non-switched DAEs are presented in Section II.
In Section III the definition of impulse-free stabilizability
is given, together with the introduction of the concept of
interval-stabilizability. Results on impulse controllability
and (impulse-free) stabilizability are given in Section IV.
Finally, the paper ends with a conclusion in Section V.

Notation The sets of natural, real and complex num-
bers are denoted by N, R and C, respectively, C+ = {λ ∈
C | <(λ) > 0} denotes the closed right-half complex plane.
For a vector x ∈ Rn, |x| is its Euclidean norm; ei ∈ Rn
is the vector of all zeros except for a one in position i.
Let X , Y ⊆ Rn be vector spaces and consider the lin-
ear map A : X → Y. Then, imA = {Ax | x ∈ X} and
kerA = {x ∈ X |Ax = 0}, respectively. The inverse image
of a subspace V ⊆ Y is given as A−1V = {x ∈ X |Ax ∈ V}.
Finally, V⊥ = {x ∈ X | x>v = 0 ∀v ∈ V} is the orthogonal

complement of a subspace V ⊆ X in the inner product
space X .

2. Mathematical Preliminaries

2.1. Properties and definitions for regular matrix pairs

In the following, we consider regular matrix pairs (E,A),
i.e. for which the polynomial det(sE − A) is not the zero
polynomial. Recall the following result on the quasi-Wei-
erstrass form [1].

Proposition 1. A matrix pair (E,A) ∈ Rn×n × Rn×n
is regular if, and only if, there exists invertible matrices
S, T ∈ Rn×n such that

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (4)

where J ∈ Rn1×n1 , 0 6 n1 6 n, is some matrix and N ∈
Rn2×n2 , n2 := n− n1, is a nilpotent matrix.

The matrices S and T can be calculated by using the so-
called Wong sequences [1, 14]:

V0 := Rn, Vi+1 := A−1(EVi), i = 0, 1, ...
W0 := {0}, Wi+1 := E−1(AWi), i = 0, 1, ...

(5)

The Wong sequences are nested and get stationary after
finitely many iterations. The limiting subspaces are de-
fined as follows:

V∗ :=
⋂
i

Vi, W∗ :=
⋃
Wi. (6)

For any full rank matrices V,W with imV = V∗ and
imW =W∗, the matrices T := [V,W ] and S := [EV,AW ]−1

are invertible and (4) holds.
Based on the Wong sequences we define the following

projectors and selectors.

Definition 2. Consider the regular matrix pair (E,A) with
corresponding quasi-Weierstrass form (4). The consis-
tency projector of (E,A) is given by

Π(E,A) := T

[
I 0
0 0

]
T−1,

the differential selector and impulse selector are given by

Πdiff
(E,A) := T

[
I 0
0 0

]
S, Πimp

(E,A) := T

[
0 0
0 I

]
S,

respectively.

In all three cases the block structure corresponds to the
block structure of the quasi-Weierstrass form. Further-
more we define

Adiff := Πdiff
(E,A)A = T

[
J 0
0 0

]
T−1, Bdiff := Πdiff

(E,A)B,

Eimp := Πimp
(E,A)E = T

[
0 0
0 N

]
T−1, Bimp := Πimp

(E,A)B.
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Note that all the above defined matrices do not depend
on the specifically chosen transformation matrices S and
T ; they are uniquely determined by the original regular
matrix pair (E,A). An important feature for DAEs is the
so called consistency space, defined as follows:

Definition 3. Consider the DAE Eẋ(t) = Ax(t)+Bu(t),
then the consistency space is defined as

V(E,A) :=

{
x0 ∈ Rn

∣∣∣∣ ∃ smooth solution x of
Eẋ = Ax, with x(0) = x0

}
,

and the augmented consistency space is defined as

V(E,A,B) :=

{
x0 ∈ Rn

∣∣∣∣ ∃ smooth solutions (x, u) of
Eẋ = Ax+Bu and x(0) = x0

}
.

In order to express (augmented) consistency spaces in
terms of the Wong limits we introduce the following nota-
tion for matrices A,B of conformable sizes:

〈A | B〉 := im[B,AB, . . . , An−1B].

Proposition 4 ([2]). Consider the DAE Eẋ = Ax+Bu
and assume the matrix pair (E,A) is regular, then V(E,A) =

im Π(E,A) = im Πdiff
(E,A) and V(E,A,B) = V(E,A) ⊕ 〈Eimp |

Bimp〉.

2.2. Distributional Solutions

The switched DAE (1) usually will not have classical
solutions, because each mode of the switched DAE given
by the DAE Eiẋ = Aix + Biu might have different (aug-
mented) consistency spaces which enforce jumps in the
state-variable x. We therefore utilize the piecewise-smooth
distributional framework as introduced in [9], i.e. x and u
are vectors of piecewise-smooth distributions given by

DpwC∞ :=

D = fD +
∑
t∈T

Dt

∣∣∣∣∣∣
f ∈ C∞pw, T ⊆ R is
discrete,∀t ∈ T : Dt

∈ span{δt, δ′t, δ′′t , ...}

 ,

where C∞pw denotes the space of piecewise-smooth func-
tions, fD denotes the regular distribution induced by f , δt
denotes the Dirac impulse with support {t} and δ′t denotes
distributional derivative of δt. For a piecewise smooth dis-
tribution D = fD +

∑
t∈T Dt ∈ DpwC∞ three types of

“evaluation at time t” are defined: left side evaluation
D(t−) := f(t−), right side evaluation D(t+) := f(t+) and
the impulsive part D[t] := Dt if t ∈ T and D[t] = 0 other-
wise.

It can be shown (see e.g. [10]) that the space DpwC∞

can be equipped with a multiplication, in particular, the
multiplication of a piecewise-constant function with a
piecewise-smooth distribution is well defined and the
switched DAE (1) can be interpreted as an equation within
the space of piecewise-smooth distributions. Hence the fol-
lowing solution behavior (depending on σ) is well defined:

Bσ := {(x, u) ∈ Dn+m
pwC∞ | Eσẋ = Aσx+Bσu},

and restrictions of x and u to intervals, are well defined as
well. Given the notation xI for the restriction of x to the
interval I ⊆ R, it is shown in [9] that the initial trajectory
problem (ITP) (7)

x(−∞,0) = x0
(−∞,0), (7a)

(Eẋ)[0,∞) = (Ax)[0,∞) + (Bu)[0,∞), (7b)

has a unique solution for any initial trajectory if, and
only if, the matrix pair (E,A) is regular. As a direct
consequence, the switched DAE (1) with regular matrix
pairs is also uniquely solvable (with piecewise-smooth dis-
tributional solutions) for any switching signal with locally
finitely many switches.

2.3. Properties of DAEs

For the rest of this section we are considering the DAE

Eẋ = Ax+Bu. (8)

Recall the following definitions and characterization of (im-
pulse) controllability [2].

Proposition 5. The reachable space of the regular DAE (8)
defined as

R :=

{
xT ∈ Rn

∣∣∣∣ ∃T > 0 ∃ smooth solution (x, u) of (8)
with x(0) = 0 and x(T ) = xT

}
satisfies R = 〈Adiff | Bdiff〉 ⊕ 〈Eimp | Bimp〉.

It is easily seen that the reachable space for (8) coin-
cides with the (null-)controllable space, i.e.

R =

{
x0 ∈ Rn

∣∣∣∣ ∃T > 0 ∃ smooth solution (x, u) of (8)
with x(0) = x0 and x(T ) = 0

}
.

Note that V(E,A,B) = V(E,A)+R = V(E,A)⊕〈Eimp, Bimp〉.

Definition 6. The DAE (8) is impulse controllable if for
all initial conditions x0 ∈ Rn there exists a solution (x, u)
of the ITP (7) such that x(0−) = x0 and (x, u)[0] = 0, i.e.
the state and the input are impulse free at t = 0. The space
of impulse controllable states of the DAE (8) is given by

Cimp
(E,A,B) :=

{
x0 ∈ Rn

∣∣∣∣ ∃ solution (x, u) ∈ DpwC∞ of (7)
s.t. x(0−) = x0 and (x, u)[0] = 0.

}
.

In particular, the DAE (8) is impulse controllable if and

only if Cimp
(E,A,B) = Rn.

The impulse controllable space can be characterized as
follows [6].

Proposition 7. Consider the DAE (8) then

Cimp
(E,A,B) = V(E,A,B) + kerE

= V(E,A) +R+ kerE

= V(E,A) + 〈Eimp | Bimp〉+ kerE.
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Definition 8. The DAE (8) is stabilizable if for all initial
conditions x0 ∈ Rn there exists a solution (x, u) of the ITP
(7) such that x(0−) = x0 and limt→∞x(t) = 0.

According to [11] if the input u(·) is sufficiently smooth,
trajectories of (8) are continuous on the open interval
(t0,∞) and given by

x(t) = xu(t, t0;x0) = eA
diff(t−t0)Π(E,A)x0

+

∫ t

t0

eA
diff(t−s)Bdiffu(s) ds−

n−1∑
i=0

(Eimp)iBimpu(i)(t). (9)

In particular, all trajectories can be written as the sum of

an autonomous part xaut(t, t0;x0) = eA
difftΠ(E,A)x0 and a

controllable part xu(t, t0) as follows:

xu(t, t0;x0) = xaut(t, t0;x0) + xu(t, t0).

This decomposition remains valid for switched DAEs when
evaluated at the initial condition at time t−0 ; the impulsive
part of x at the initial time t0 is then given by

x[t0] = −
n−1∑
i=0

(Eimp)i+1

x0δ
(i) +

i∑
j=0

Bimpu(i−j)(t+0 )δ(j)

 .

3. Stabilizability concepts

The concepts introduced in the previous section are
now utilized to investigate impulse free stabilizability of
switched DAEs. In order to use the piecewise-smooth dis-
tributional solution framework and to avoid technical diffi-
culties in general, we only consider switching signals from
the following class

Σ :=

{
σ : R→ N

∣∣∣∣ σ is right continuous with a
locally finite number of jumps

}
,

i.e. we exclude an accumulation of switching times (see
[9]). By further excluding infinitely many switches in the
past and by appropriately relabeling the matrices we can
assume that

σ(t) = k, for tk 6 t < tk+1. (10)

and that for the first switching instant t1 it holds that t1 >
t0 := 0. After some results relating interval-wise properties
to global properties in the remainder of this section, we
will restrict our attention to the bounded interval (t0, tf )
for some tf > 0. As a consequence there are only finitely
many switches in this interval, say n ∈ N, and for notation
convenience we let tn+1 = tf .

Roughly speaking, in classical literature on non-switched
systems, a linear system is called stabilizable if every tra-
jectory can be steered towards zero as time tends to in-
finity. This definition can readily be applied to switched
DAEs. Hence we will define impulse free stabilizability for
switched DAEs in a similar fashion as follows, based on
the definition of stabilizability in [12].

Definition 9 (Impulse-free Stabilizability). The
switched DAE (1) with switching signal (10) is stabilizable
if the corresponding solution behavior Bσ is stabilizable in
the behavioral sense on the interval [0,∞), i.e.

∀(x, u) ∈ Bσ ∃(x∗, u∗) ∈ Bσ :

(x∗, u∗)(−∞,0) = (x, u)(−∞,0),

and lim
t→∞

(x∗(t+), u∗(t+)) = 0.

If in addition (x, u)[t] = 0 for all t ∈ [0,∞), then the
system is called impulse-free stabilizable.

In the case of switched DAEs, it is reasonable to assume
that there are an infinite amount of switching instances as
time tends to infinity. This poses a problem when it comes
to verifying conditions for stabilizability in a finite amount
of steps. To overcome this problem, we investigate stabi-
lizability on a bounded interval. Therefore we introduce
the following definition of (impulse-free) interval stabiliz-
ability.

Definition 10 (Interval stabilizability). The switched
DAE (1) is called (t0, tf )-stabilizable for a given switching
signal σ, if there exists a class KL function1 β : R>0 ×
R>0 → R>0 with

β(r, tf − t0) < r, ∀r > 0,

and for any initial value x0 ∈ VE0,A0,B0 there exist a local
solution (x, u) of (1) on (t0, tf ) with x(t−0 ) = x0 such that

|x(t+)| 6 β(|x0|, t− t0), ∀t ∈ (t0, tf ).

If in addition (x, u)[t] = 0 for all t ∈ (t0, tf ), then the
system is called impulse-free (t0, tf )-stabilizable.

One should note that a solution on some interval is
not necessarily a part of a solution on a larger interval.
Consequently, stabilizability does not always imply inter-
val stabilizability. The switched system 0 = x on [0, t1)
and ẋ = 0 on [t1,∞) is obviously stabilizable, since the
only global solution is the zero solution. However, on the
interval [t1, s) there are nonzero solutions which do not
converge towards zero.

Furthermore according to Definition 10 it is required
that the norm of the state is smaller at the end of an inter-
val. This means that (impulse-free) interval stability could
depend on the length of the interval considered instead of
the asymptotic behavior of the system. An unstable oscil-
lating system is thus possibly (impulse-free) interval stable
and an asymptotically stable oscillating system is not nec-
essarily (impulse-free) interval stable, depending on the
choice of interval. However, under the following unifor-
mity assumption on the switched DAE we can conclude
global stabilizability.

1A function β : R>0 × R>0 → R>0 is called a class KL function
if 1) for each t > 0, β(·, t) is continuous, strictly increasing, with
β(0, t) = 0; 2) for each r > 0, β(r, ·) is decreasing and converging to
zero as t→∞.
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Assumption 11 (Uniform interval-stabilizability).
Consider the switched system (1) with switching signal σ.
Let τ0 := t0 and assume that there exists an unbounded,
strictly increasing sequence τi ∈ (t0,∞), i ∈ N \ {0}, of
non-switching times such that the system is (impulse-free)
(τi−1, τi) -stabilizable with KL function βi for which addi-
tionally it holds that

βi(r, τi − τi−1) 6 αr, ∀r > 0,∀i ∈ N>0

βi(r, 0) 6Mr, ∀r > 0,∀i ∈ N>0,

for some uniform α ∈ (0, 1) and M > 1.

Proposition 12. If the switched system (1) is uniformly
(impulse-free) interval-stabilizable in the sense of Assump-
tion 11 then (1) is (impulse-free) stabilizable.

The proof of Proposition 12 is along the same lines as the
proof of Proposition 8 in [7].

4. Impulse-free stabilization and controllability

Assumption 11 can be verified for a general class of sys-
tems such as systems with periodic switching and systems
with a finite amount of modes. Therefore we turn our at-
tention to finding necessary and sufficient conditions for
interval stabilizability. As follows from Definition 10, for
any initial condition x0, there needs to exist a solution on
[t0, tf ) that is impulse-free and satisfies the stability prop-
erty. Hence we will first discuss necessary and sufficient
conditions for a switched DAE to have impulse free solu-
tions for any initial condition x0 on a bounded interval,
i.e. impulse controllability for switched DAEs. Once these
conditions are discussed, we will investigate under which
conditions these impulse-free solutions are satisfying the
stability property.

In the remainder of this section we will use Πi, A
diff
i ,

Eimp
i , Bimp

i , Bdiff
i ,Ri, Ci, Cimp

i to denote the corresponding
matrices and subspaces associated to the i-th mode.

4.1. Impulse controllability

As mentioned above, we will first investigate the con-
cept of impulse controllability of a switched DAE, of which
the definition is formalized as follows.

Definition 13. The switched DAE (1) with some fixed
switching signal σ is called impulse controllable on the in-
terval (t0, tf ), if for all x0 ∈ V(E0,A0,B0) there exists a

solution (x, u) ∈ Dn+m
pwC∞ of (1) with x(t+0 ) = x0 which is

impulse free.

Remark 14. As an alternative for Definition 13, impulse
controllability could also be defined in terms of arbitrary
initial values x0 ∈ Rn. This would result in the immedi-
ate necessary condition that the first mode of a switched
DAE needs to be impulse controllable. However, given a
higher index DAE, Dirac impulses cannot be avoided for

initial conditions in (Cimp
0 )⊥. Therefore it is reasonable to

consider initial conditions in Cimp
0 = V(E0,A0,B0) + kerE0.

Considering the linearity of solutions and the fact that ini-
tial conditions in kerE0 result in trajectories that jump to
zero in an impulse free manner, the initial conditions of
interest are those contained in V(E0,A0,B0).

Remark 15. If the interval (t0, tf ) does not contain a
switch, then the corresponding switched DAE is always im-
pulse controllable on that interval due the definition of the
augmented consistency space in terms of smooth (in par-
ticular, impulse free) solutions. This seems counter in-
tuitive, because the active mode on that interval is not
necessarily impulse controllable; however, recall that im-
pulse controllability for a single mode (see Definition 6) is
formulated in terms of the ITP (7), which can be inter-
preted as a switched system with one switch at t1 = 0. In
fact, letting t0 = −ε, tf = ε, (E0, A0, B0) = (I, 0, 0) and
(E1, A1, B1) = (E,A,B), the DAE (8) is impulse control-
lable if, and only if, the corresponding ITP (reinterpreted
as a switched DAE) is impulse controllable on (−ε, ε).

A solution of a switched DAE can only be impulse free,
if at each switching instance the solution evaluated at t−i
is in the impulse controllable space Cimp

i . Therefore we
consider the largest set of points from which the impulse
controllable space of the next mode can be reached impulse
freely from the preceding mode. To that extent we define
the following sequence of subspaces regarding the switched
DAE (1) with switching signal (10):

Kbn = Cimp
n ,

Kbi−1 = im Πi−1 ∩
(
e−A

diff
i−1(ti−1−ti)Kbi +Ri−1

)
+ 〈Eimp

i−1 | B
imp
i−1 〉+ kerEi−1,

i = n, n− 1, . . . , 1.

(11)

Note that im Πi−1 = V(Ei,Ai) and that Cimp
i = V(Ei,Ai) +

Ri + kerEi. Therefore we have that Kbi ⊆ C
imp
i . Note

furthermore, that the definition is backwards in time; the
sequences starts with the last mode n and ends with the
initial mode 0. With these sets, we can prove the following
lemma.

Lemma 16. Consider the (interval restricted) switched DAE
(Eσẋ)[ti−1,ti) = (Aσ)[ti−1,ti) + (Bσu)[ti−1,ti). Then Kbi−1 is

the largest set of points at time t−i−1 from which Kbi can be

reached (at t−i ) in an impulse free way.

The proof is similar to the proof of Lemma 19 in [13]
and therefore omitted.

Corollary 17. Consider the switched system (1) with switch-
ing signal (10). The system is impulse controllable if and
only if

V(E0,A0,B0) ⊆ Kb0.
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The proof is similar to the proof of Theorem 21 in [13] and
therefore omitted.

Example 18. Consider the example given in the intro-
duction on the interval (0, tf ) with a switch at t = t1.
The matrices (E0, A0, B0) correspond the system matri-
ces given in (2) and (E1, A1, B1) are the system matrices

given in (3). The projectors Πi and selectors Πdiff
i ,Πimp

i ,
i ∈ {0, 1} can be calculate from the Wong sequences. Then
it follows that

Cimp
1 = span

{[
0
0
1
0
0

]
,

[
1
0
0
0
0

]
,

[
0
0
0
1
0

]}
, Π0 = span

{[
0
0
1
0
1

]}
,

R0 = span

{[
0
−1
R
0
0

]
,

[ −L
0
0
RC
0

]}
= 〈Eimp

0 | Bimp
0 〉

and thus from (11) it is calculated that Kb0 = R5. Further-
more, it can be calculated that

V[E0,A0,B0] = span

{[
0
−1
R
0
0

]
,

[ −L
0
0
RC
0

]
,

[
0
0
1
0
1

]}
. (12)

and hence we can conclude that the system is impulse-
controllable.

4.2. Impulse-free stabilizability

As shown in the introduction, a switched DAE which
is impulse controllable and stabilizable is not necessarily
impulse-free stabilizable. However, impulse-controllability
is an obvious necessary condition for impulse-free stabiliz-
ability. In order to stabilize a state on a bounded interval
in an impulse-free way, there needs to exists an impulse-
free solution in the first place. To that extent, we will
make the following standing assumptions throughout the
rest of this section:

1. The switched DAE (1) is impulse-controllable.
2. The initial condition is consistent, i.e. x(t+0 ) = x0 ∈
VE0,A0,B0 .

Under these assumptions, we will derive necessary and
sufficient conditions for impulse-free stabilizability. The
approach taken is as follows. First we consider the space
of points that can be reached in an impulse free way from
an initial value x0. It will then be shown that this space
is an affine subspace. We then consider an element of this
affine subspace with minimal norm; if this norm is smaller
than the norm of the corresponding initial value, we can
conclude interval stabilizability.

Towards this goal, we consider the following sequence
of (affine) subspaces (defined forward in time)

Kf0 (x0) = eA
diff
0 (t1−t0)Π0x0 +R0,

Kfi (x0) = eA
diff
i (ti+1−ti)Πi(Kfi−1(x0) ∩ Cimp

i ) +Ri, i > 0,
(13)

For x0 = 0 we drop the dependency on x0, i.e.

Kfi := Kfi (0).

Remark 19. Note that the above Kfi is different from Kfi
in [13], the latter is defined as the space of all points that
can be reached in an impulse-free way, i.e., it is the union
of Kfi (x0) over all x0 ∈ V(E0,A0,B0).

The intuition behind the sequence is as follows: Kf0 (x0)
are all values for xu(t−1 , x0) which can be reached in an
impulse free (in fact, smooth) way during the initial mode

0. Now, inductively, we calculate the set Kfi (x0) of points
which can be reached just before the switching time ti+1 by
first consider the points Kfi−1(x0) which can be reached in
an impulse free way just before ti, then pick those which
can be continued in mode i impulse-freely by intersect-
ing them with Cimp

i , propagate this set forward according
to the evolution operator and finally add the reachable
space of mode i. This intuition is verified by the following
lemma.

Lemma 20. Consider the switched system (1) on some
bounded interval (t0, tf ) with the switching signal given by
(10). Then for all i = 0, 1, . . . , n and x0 ∈ V(E0,A0,B0)

Kfi (x0) =

{
ξ ∈ Rn

∣∣∣∣∣∣
∃ an impulse-free solution (x, u)
of (1) on (t0, ti+1) s.t.
x(t+0 ) = x0 ∧ x(t−i+1) = ξ

}
.

Proof. First we will show that xu(t−i , x0) is contained

in Kfi (x0) if (x, u) is an impulse free solution on (t0, tf ).
To that extent, consider an impulse-free solutions (x, u)
of (1) on (t0, t1), which by definition satisfies the solution
formula (9), i.e.,

xu(t−1 , x0) = eA
diff
0 (t1−t0)Π0x0 + η0,

for some η0 ∈ R0 and x0 ∈ V(E0,A0,B0). This shows that

xu(t−1 , x0) ∈ Kf0 (x0). We proceed inductively by assuming
that the statement holds for i > 0 and prove the statement
for i+ 1.

Let (x, u) be an impulse-free solution on (t0, ti+1). Then
we have that xu(t−i+1, x0) is of the form

xu(t−i+1, x0) = eA
diff
i (ti+1−ti)Πiξi−1 + ηi,

for some ηi ∈ Ri and ξi−1 ∈ Cimp
i . Furthermore, since

(x, u) is impulse-free on (t0, ti+1), it follows that ξi can be

reached impulse-freely from x0 and hence ξi−1 ∈ Kfi−1(x0).

This proves that xu(t−i+1, x0) ∈ Kfi (x0).
In the following we will prove that for all elements of

Kfi (x0) there exists an impulse-free solution (x, u) with
initial condition xu(t+0 , x0) = x0. We will again prove this

inductively. Therefore, consider ξ0 ∈ Kf0 (x0). Then for
some η0 ∈ R0 we have

ξ0 = eA
diff
0 (t1−t0)Π0x0 + η0.

Since x0 ∈ V(E0,A0,B0) ⊆ Cimp, we have that there exists
a ũ such that xũ(t, x0) is impulse-free on [t0, t1). Then it
follows from the solution formula (9) that

xũ(t−1 , x0) = eA
difft1Πx0 + η̃0,
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for some η̃0 ∈ R0. Since η0 ∈ R0, there exists a smooth in-
put û such that xû(t−1 , 0) = η0− η̃0 and xû(t, 0) is impulse-
free on [t0, t1).

If we define u = û + ũ it then follows from linearity
of solutions that xu(t−1 , x0) = ξ0 and is impulse-free on
(t0, t1). Assuming that the statement holds for i > 0 we
continue by proving the statement for i+ 1.

Let ξi ∈ Kfi+1(x0), then we have for some ξi−1 ∈
Kfi (x0) ∩ Cimp

i−1 that

ξi = eA
diff
i (ti+1−ti)Πiξi−1 + ηi.

It follows from the induction assumption that there exists
an impulse-free solution (x, u) on (t0, ti) with xu(t−i , x0) =

ξi−1, beause ξi−1 ∈ Kfi (x0). Furthermore, ξi−1 ∈ Cimp
i−1

and ηi ∈ Ri implies that the impulse-free input u can be
altered on the interval [ti, ti+1) such that xu(t−i+1, x0) = ξi
and xu(·, x0) is impulse-free. �

Remark 21. The assumption that x0 ∈ V(E0,A0,B0) is of
crucial importance for Lemma 16. If the zeroth mode is not
impulse controllable and we would choose x0 ∈ (V(E0,A0,B0)+

kerE0)⊥ the occurrence of a dirac impulse would be in-

evitable. This means that Kf0 (x0) should be empty. How-

ever, the algorithm (13) would state that Kf0 (x0) is nonempty,
which is not true.

Remark 22. If the system is not impulse controllable,
then there exist x0 for which Kfi (x0) = ∅ as follows from
the definition. This also follows from the subspace algo-
rithm because Kfi−1(x0) ∩ Cimp

i would be empty for some
mode i and the sum of an empty set and a subspace is
empty.

Lemma 20 gives rise to another characterization of impulse
controllability, which follows as a corollary.

Corollary 23. Consider the switched system (1) on some
interval (t0, tf ) with the switching signal given by (10)

and the sequence of affine subspaces Kfi (x0) given by (13).
Then (1) is impulse controllable on (t0, tf ) if and only if

∀x0 ∈ V(E0,A0,B0) : Kfn (x0) 6= ∅.

Proof. If the system is impulse controllable, then for
every initial condition x0 there exists an impulse free solu-
tion (x, u) on (t0, tf ). Therefore x(t−f ) ∈ Kfn+1(x0) (recall

the convention that tn+1 := tf ) and hence Kfn+1(x0) 6= ∅.

Conversely, if Kn(x0) 6= ∅, then let ξ ∈ Kfn+1(x0). By
definition there exists an impulse free solution (x, u) on
(t0, tf ) with x(t−0 ) = x0 and x(t−f ) = ξ. This holds for ev-
ery x0 ∈ V(E0,A0,B0) and hence (1) is impulse controllable.

�

Note that in contrast to Corollary 17 the computations
in Corollary 23 run forward in time. Hence this result

is useful in the case that not all modes are determined
yet and the next mode is to be chosen. If Corollary 17
would be used, all computations would need to be redone,
whereas with a forward computation only parts need to be
redone.

In the following we will show that Kfi (x0) is an affine

shift of Kff and hence Kfi (x0) is an affine subspace. In
proving this statement, we will use some general results
which can be found in the appendix.

Lemma 24. Consider the switched system (1) with switch-
ing signal (10) and assume it is impulse-controllable. The
impulse-free-reachable space from x0 at ti is an affine shift
from the impulse-free reachable space, i.e., there exists a
matrix Mi, such that

Kfi (x0) = Mix0 +Kfi . (14)

Proof.
First we simplify the notation introducing the following

short hand notation Yi := eA
diff
i (ti+1−ti)Πi. Then we prove

the statement inductively. The statement holds trivially
for n = 0, for Kf0 = Y0x0 + R0 and hence we assume
that the statement holds for n. Since we assumed that
the system is impulse controllable, we have that Kfi (x0)∩
Cimp
i+1 6= ∅ for all x0. Then for n+ 1 we obtain that

Kfi+1(x0) = Yi+1(Kfi (x0) ∩ Cimp
i+1 ) +Ri+1

∗
= Yi+1((Mix0 +Kfi ) ∩ Cimp

i+1 ) +Ri+1,
∗∗
= Yi+1(NiMix0 + (Kfi ∩ C

imp
i+1 )) +Ri+1,

= Yi+1NiMix0 +Kf
i+1,

for some matrix Ni, i ∈ {0, 1, ..., n}, where (∗) follows from
the induction step and (∗∗) follows from Proposition 42
in the appendix. Defining Mi+1 = Yi+1NiMi yields the
result. �

Note that the matrix Mi in (14) exists only in case that
the system is impulse-controllable, otherwise Mi would
also need to map to the empty set. In the case Mi does
exists, this matrix can be chosen independently of x0. It
is however not necessarily unique, because Mi+1 is depen-
dent on Ni obtained from Proposition 42 in a nonunique
way. It follows from Lemma 43 from the Appendix that
Ni can be any matrix for which

1. im(Ni − I)Mi ⊆ Ri,

2. imNiMi ⊆ Cimp
i+1 .

(15)

Thus, from the proof of Lemma 24 together with Lemma 43
from the Appendix the following constructive result can be
obtained.

Corollary 25. Consider the switched system (1) with switch-
ing signal (10) and assume it is impulse-controllable. Let
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M0 = eA
diff
0 (t1−t0)Π0. Then for any choice of Ni satisfy-

ing (15), a matrix Mi+1 satisfying (14) can be calculated
sequentially as follows:

Mi+1 = eA
diff
i+1(ti+2−ti+1)Πi+1NiMi.

Remark 26. In order to compute an Ni that satisfies (15)
we can invoke Lemma 44 from the Appendix. This means
that given projectors onto Ri and Cimp

i+1 , an Ni that satisfies
the conditions (15) can be constructed by solving

(I −ΠRi
)ΠCimp

i+1
QiMi = (I −ΠRi

)Mi (16)

for Qi and defining Ni := ΠCimp
i+1
Qi. Since the existence

of a solution of (16) is guaranteed by the assumption of
impulse-controllability, such a matrix equation can be solved
using a linear programming solver.

Since Kfi (x0) contains all the states that can be reached
from x0 in an impulse free way, it follows that the norm
of the state with minimal norm is given by the distance
dist(Kfi (x0), 0). The computation of this distance is straight-

forward, because Kfi (x0) is an affine subspace. It follows
from elementary linear algebra that the distance between
an affine subspace and the origin, is equal to the norm
of any element projected to the orthogonal complement
of the vector space associated to the affine subspace. In
the case of Kfi (x0) we would need to project onto (Kfi )⊥

with a projector Π(Kf
i )⊥ . An important property of these

projectors is that their restriction to the corresponding
augmented consistency space is well defined.

Lemma 27. Consider the DAE (1) with switching signal
(10). For any i ∈ {0, 1, . . . , n} let ξ ∈ V(Ei,Ai,Bi), then

Π(Kf
i )⊥ξ ∈ V(Ei,Ai,Bi).

Proof. From ξ ∈ V(Ei,Ai,Bi) and Π(Kf
i )⊥ +(I−Π(Kf

i )⊥) =

I, it follows that

Π(Kf
i )⊥ξ + (I −Π(Kf

i )⊥)ξ ∈ V(Ei,Ai,Bi).

Since im(I−Π(Kf
i )⊥) = Kfi and Kfi ⊆ V(Ei,Ai,Bi) we obtain

Π(Kf
i )⊥ξ ∈ V(Ei,Ai,Bi) − (I −Π(Kf

i )⊥)ξ ⊆ V(Ei,Ai,Bi).

as was to be shown. �

Consequently, the following result follows.

Lemma 28. Consider the DAE (1) with switching signal
(10) and assume it is impulse-controllable. For any Mi

satisfying (14) we have that

min
x∈Kf

i (x0)
|x| = |Π

(Kf
i )
⊥Mix0|

It follows that we can consider Π
(Kf

i )
⊥Mi as a linear

map from the initial condition x0 to the state with minimal
norm in Kfi (x0). This allows us to formulate the following
characterization of impulse-free stabilizability, which is in-
dependent of the initial condition x0 and independent of
any coordinate system.

Theorem 29. Consider the switched DAE (1) with switch-
ing signal (10) and assume it is impulse controllable. Then
the system is impulse-free interval-stabilizable on (t0, tf ) if
and only if

||Π(Kf
n )⊥Mn||2 = sup

x 6=0

|Π
(Kf

n )
⊥Mnx|2
|x|2

< 1

Proof. It follows from Lemma 28 that Π
(Kf

n )
⊥Mn is the

linear operator that maps x0 to the element in Kfn (x0) with
minimal norm. Therefore we see that if ||Π

(Kf
i )
⊥Mi||2 < 1

that for all x0 there exists an input u such that

|xu(tf , x0)| = |Π
(Kf

i )
⊥Mix0| < |x0|.

From this we can conclude that there exists a class KL
function β(|x0|, tf − t0) such that the system is impulse-
free interval stabilizable in the sense of Definition 8.

Conversely, if the system is impulse-free interval stabi-
lizable, then there exists a trajectory for each initial condi-
tion x0 ∈ V(E0,A0,B0) such that |xu(t−f , x0)| 6 βi(|x0|, tf −
t0) < |x0|. This means that for the operator Π(Kf

n )⊥Mn

that maps |x0| to the element with minimal norm that
can be reached in an impulse-free way it must hold that

||Π(Kf
n )⊥Mn||2 = sup

x 6=0

|Π
(Kf

n )
⊥Mnx|2
|x|2

< 1,

which proves the result. �

For many applications it is not sufficient to reduce the
norm of the state, but it is necessary to control the state
to zero without any Dirac impulses occurring. If a state
can be steered to zero in an impulse free way, we call this
state impulse-free null-controllable. A formal definition of
this concept is as follows.

Definition 30. Consider the system (1) with switching
signal (10). An initial condition x0 is called impulse-
free null-controllable if there exists an input u such that
xu(t−f , x0) = 0 and the trajectory is impulse-free. We
call the system impulse-free null-controllable if every x0 ∈
V(E0,A0,B0) is impulse-free null-controllable.

Using the method from the previous section, the fol-
lowing characterization can readily be stated.

Theorem 31. Consider the system (1) with switching sig-
nal (10). An initial value x0 is impulse-free null-controllable,
if and only if for some i > 0

Kfi (x0) ⊆ Kfi .
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Proof. If an initial condition is impulse-free null-controllable,
there exists an input u such that xu(t−f , x0) = 0 and the

trajectory is impulse free. This means that 0 ∈ Kfn+1(x0).
As a consequence

0 ⊆Mn+1x0 +Kfn+1,

from which it follows that Mn+1x0 ∈ Kfn+1 and therefore

Kfn+1(x0) ⊆ Kfn+1.

Conversely if for some i = k > 0 Kfi (x0) ⊆ Kfi , it

follows that Mix0 ∈ Kfi . As a consequence 0 ∈ Mix0 +

Kfi = Kfi (x0). It follows from the sequence (13) ifKfi ⊆ K
f
i

for i = k > 0 that it holds for all i > k. �

As a direct consequence we can state the following re-
sult.

Corollary 32. Consider the switched system (1) with switch-
ing signal (10) and assume it is impulse controllable. Then
the system is impulse-free null-controllable on (t0, tf ) if,
and only if, for some i ∈ {0, 1, . . . , n}

Π(Kf
i )⊥Mi = 0.

Proof. If the system is impulse-null controllable, we have
that Kfi (x0) ⊆ Kfi for all x0. Then it follows that

Mix0 +Kfi ⊆ K
f
i ,

for all x0 and hence imMi ⊆ Kfi . The result then follows.

Conversely, if Π(Kf
i )⊥Mi = 0, then Π(Kf

i )⊥K
f
i (x0) = 0

for all x0, which implies that Kfi (x0) ⊆ Kfi for all x0. �

Kfi and Mi can both be computed sequentially forward
in time. This means that it might not be necessary to
have knowledge of all the modes of the switched system.
According to Corollary 32 we can conclude impulse-free
null-controllability already if the conditions are satisfied
for some i ∈ N.

4.3. Impulsive stabilizability and impulse-controllability

In the case that Dirac impulses are allowed in the
trajectory similar results as in the above can be formu-
lated. The crucial condition for impulse-free trajectories
is that the state is in the impulse controllable space of the
next mode at each switching instance. If this condition is
dropped, a similar lemma as Lemma 20 can be formulated
after considering the following sequence of sets

K̃f0 (x0) = eA
diff
0 (t1−t0)Π0x0 +R0,

K̃fi (x0) = eA
diff
i (ti+1−ti)ΠiK̃fi−1(x0) +Ri, i > 0,

(17)

For x0 = 0 we drop the dependency on x0, i.e.

K̃fi := K̃fi (0).

Lemma 33. Consider the switched system (1) on some
bounded interval (t0, tf ) with the switching signal given by
(10). Then for all i = 0, 1, . . . , n

K̃fi (x0) =

{
ξ ∈ Rn

∣∣∣∣∣∣
∃ a solution (x, u)
of (1) on (t0, ti+1) s.t.
x(t+0 ) = x0 ∧ x(t−i+1) = ξ

}
.

Proof. The proof is along similar lines as the proof of
Lemma 20 when Cimp

i is replaced by Rn for all i ∈ {1, 2, ..., n}.
�

It follows directly that K̃fi (x0) is an affine shift from

K̃fi , whether the system is impulse controllable or not.
This is formalized in the next lemma.

Lemma 34. Consider the switched system (1) with switch-

ing signal (10). Then K̃fi (x0) is an affine shift of K̃fi , i.e.
for all i there exists a matrix M̃i such that

K̃fi (x0) = M̃ix0 + K̃fi . (18)

Proof. Denote Yi = eA
diff
i (ti+1−ti)Πi for shorthand no-

tation. Then for i = 0 we have M̃0 = Y0 satisfies (18).
Hence assume the statement holds for i. Then if we define
M̃i+1 = YiM̃i for i+ 1 we have that

K̃fi+1(x0) = Yi+1K̃fi (x0) +Ri,

= Yi(M̃ix0 + K̃fi ) +Ri,

= YiM̃ix0 + K̃fi+1

= M̃i+1x0 + K̃fi

which proves the statement. �

Lemma 35. Consider the DAE (1) with switching signal
(10). For any M̃i satisfying (18) we have that

min
x∈K̃f

i (x0)
|x| = |Π

(K̃f
i )
⊥M̃ix0|

Theorem 36. Consider the switched DAE (1) with switch-
ing signal (10). Then the system is stabilizable if and only
if for any M̃n satisfying (18)

||Π(K̃f
n )⊥M̃n||2 = sup

x 6=0

|Π
(K̃f

n )
⊥M̃nx|2
|x|2

< 1

Proof. The proof is follows the proof of Theorem 29 anal-
ogously. �

As was already shown in the introduction, not every
stabilizable system that is also impulse-controllable, is au-
tomatically impulse-free stabilizable. This can be explained
by viewing Kfi (x0) and K̃fi (x0) as affine subspaces. Note
that since every state that can be reached impulse-free
from x0 is by definition also an element of K̃fi (x0). This
leads to the following result.
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Lemma 37. Consider the switched system (1) with switch-
ing signal (10) and assume the system is impulse-controllable.
Then

Kfi (x0) ⊆ K̃fi (x0).

Proof. This follows immediately from Lemma 20 and 33.
�

As a consequence, we can state the following corollary.

Corollary 38. Consider the system (1) with switching sig-
nal (10) and assume it is impulse-controllable. Then for
any Mi satisfying (14) we have

K̃fi (x0) = Mix0 + K̃fi ,

i.e. Mi satisfies (18).

Proof. For any two x, y ∈ K̃fi (x0) we have that x − y ∈
K̃fi . This means that x = y + η̃ for some η̃ ∈ K̃fi . By

Lemma (37) we have that y = Mix0 + η ∈ Kfi (x0) ⊆
K̃fi (x0). This means that for any x ∈ K̃fi (x0) we obtain

that x = Mix0 +η+ η̄ ⊆Mix0 + K̃fi (x0). This proves that

Kfi (x0) ⊆Mix0 + K̃fi .

Consider α = Mix0 + η̃ for some η̃ ∈ K̃fi . Then since

Kfi ⊆ K̃
f
i there exits an η̄ ∈ K̃fi and an η ∈ Kfi such that

η̃ = η̄+η. Hence we obtain that α = Mix0 + η̄+η = β+η
for some β ∈ Kfi (x0) ⊆ K̃fi (x0). But this means that for

some M̃i satisfying (18) and η̂ ∈ K̃fi that α = M̃ix0+ η̂+η.

Because η̂+η ∈ K̃fi we have that α ∈ K̃fi (x0). Since α was

chosen arbitrary, it follows that Mix0 + K̃fi ⊆ K̃
f
i (x0). �

Given that a system is impulse-controllable and stabi-
lizable, we have that there exist an Mi satisfying (14) and
we know that ||Π(K̃f

n )⊥Mn||2 < 1. However, the system

is impulse-free stabilizable if and only if ||Π(Kf
n )⊥Mn||2 <

1. This is however not implies by the statement that
||Π(K̃f

n )⊥Mn||2 < 1. Indeed, since Kfi ⊆ K̃
f
i we have that

im Π(K̃f
n )⊥ ⊆ im Π(Kf

n )⊥ , which means that it could happen

that there exists an initial condition x0 6= 0 for which

|Π(Kf
n )⊥Mnx0|
|x0|

> 1, and
|Π(K̃f

n )⊥Mnx0|
|x0|

< 1.

Example 39. Again consider the example given in the in-
troduction on the interval (0, tf ) with a switch at t = t1.
The matrices (E0, A0, B0) correspond the system matri-
ces given in (2) and (E1, A1, B1) are the system matrices
given in (3). Then it follows from the algorithm (17) that

the reachable space of the switched system K̃f1 , a suitable
matrix M̃1 and Π(K̃f

1 )⊥ are given respectively by

K̃f1 = span

{[
0
0
1
0
0

]}

M̃1 =

[
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

]
, Π(K̃f

1 )⊥ =

[
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

]
.

From which it follows that ||Π(K̃f
1 )⊥M̃1|| = 1√

2
< 1 and

hence the system is stabilizable. However, the impulse-free
reachable space Kf1 can be calculated from (13) and is given
by

Kf1 = 0, Π(K̃f
1 )⊥ = I, M1 =

[
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0

]
= Π(Kf

1 )⊥M1

From which it follows that ||Π(K̃f
1 )⊥M̃1|| =

√
2√
2

= 1 and

hence the system is not impulse-free stabilizable.

Remark 40. In the case V0 becomes a control input af-
ter the switch the system would be null-controllable, but
not impulse-free null-controllable. Furthermore, since the
state of the initial condition can be reduced via an impulse-
free trajectory, the system would also become impulse-free
(interval) stabilizable. However, since there is no way of
discharging the capacitor, it follows that there exists no
input such that limt→∞ x(t) = 0.

Remark 41. All the results on stabilizability in this paper
can be applied to switched ordinary differential equations
(ODEs) without difficulty. In the case of a switched ODE
we have Ei = I, Πi = I, Bdiff

i = Bi and Adiff
i = Ai. Note

that all solutions are trivially impulse-free, hence, impulse-
free stabilizability is equivalent to stabilizability.

5. Conclusion

In this paper stabilization of switched differential alge-
braic equations was considered, where Dirac impulses in
both the input and state-trajectory were to be avoided.
Necessary and sufficient conditions for the existence of
impulse-free solutions were given, followed by character-
izations of (impulse-free) interval stabilizability. The re-
sults rely on the fact that the points that can be reached
from an initial condition form an affine subspace. It fol-
lowed that the system is (impulse-free) interval stabilizable
if and only if the operator that maps the initial condition
to the element of minimal norm (that can be reached in
an impulse-free manner) has a norm strictly smaller than
one.

A natural future direction of research would be the in-
vestigation of controllers achieving interval stabilizability
for switched systems. The theory established in this paper
could be used as starting point in the search (for feedback)
controllers. Furthermore, a natural extension would be to
consider stabilizability properties of switched systems with
unknown switching signals.
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[4] Ferdinand Küsters, Stephan Trenn, and Andreas Wirsen.
Switch observability for homogeneous switched DAEs. In Proc.
of the 20th IFAC World Congress, Toulouse, France, pages
9355–9360, 2017. IFAC-PapersOnLine 50 (1).

[5] Daniel Liberzon and Stephan Trenn. On stability of linear
switched differential algebraic equations. In Proc. IEEE 48th
Conf. on Decision and Control, pages 2156–2161, December
2009.

[6] K. Maciej Przy luski and Andrzej M. Sosnowski. Remarks on the
theory of implicit linear continuous-time systems. Kybernetika,
30(5):507–515, 1994.

[7] Aneel Tanwani and Stephan Trenn. Detectability and observer
design for switched differential algebraic equations. Automatica,
99:289–300, 2019.

[8] Javier Tolsa and Miquel Salichs. Analysis of linear networks
with inconsistent initial conditions. IEEE Trans. Circuits Syst.,
40(12):885 – 894, Dec 1993.

[9] Stephan Trenn. Distributional differential algebraic equations.
PhD thesis, Institut für Mathematik, Technische Universität
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Appendix

Here we recap some general results on (affine) sub-
spaces that result from linear algebra.

Proposition 42. Let V and S be subspaces of Rn and let
M ∈ Rn×n be of rank r 6 n. If (Mx0 +S)∩V 6= ∅ for all
x0 ∈ Rn, then there exists a matrix N ∈ Rn×n such that
for all x0

(Mx0 + S) ∩ V = NMx0 + S ∩ V. (19)

Proof. Let m1,m2, ...,mp be a basis for the image of M .
Then the statement is proven if we can prove that

(mi + S) ∩ V = Nmi + S ∩ V, ∀i ∈ {1, 2, ..., p}

Since we have that (mi + S) ∩ V 6= ∅ we have that
for all i we have that there exists an ηi ∈ S such that
mi + ηi ∈ V. Let N̂ be a linear map such that

N̂mi = ηi.

Then if we define N = I + N̂ we have that

Nmi = mi + N̂mi,

= mi + ηi,

∈ V ∩ (mi + S)

Since subspaces are closed under addition, it follows that
for all η̄ ∈ S ∩ V ⊆ V we have that

Nmi + η̄ = mi + ηi + η̄ ∈ V.

and

mi + ηi + η̄ = mi + η̂ ∈ mi + S,

for some ηi + η̄ = η̂ ∈ S, which proves that there exists an
N such that Nmi + S ∩ V ⊆ (mi + S) ∩ V.

Conversely, we have for ξ ∈ (mi + S)∩V and for some
β ∈ S that ξ = mi + β ∈ V. Let β = N̂mi + γ, for some
γ ∈ S. Then we obtain

mi + β = mi + N̂mi + γ,

= Nmi + γ,

= ξ ∈ (mi + S) ∩ V.

It remains to prove that γ ∈ S ∩ V. Since Nmi ∈ (mi +
S) ∩ V ⊆ V by definition, we have that ξ − Nmi = γ ∈
V. Furthermore, by definition, we had γ ∈ S and hence
γ ∈ S ∩ V. Hence we have proven that (mi + S) ∩ V ⊆
Nmi+S ∩V. With the inclusion in both direction proven,
the equality follows. �

It follows from Proposition 42 that if the intersection
(Mx0 + S) ∩ V 6= ∅ for all x0, that this matrix N is not
unique. In fact, this observation results in the next lemma.

Lemma 43. With the same notation as in Proposition 42
we have that N ∈ Rn×n satisfies (19) if and only if

1. im(N − I)M ⊆ S,
2. imNM ⊆ V,

Proof. Assume that N satisfies im(N − I) ⊆ S and
imNY ⊆ V. This means that im(N − I)Y ⊆ S. Hence
NMx0 ∈ S + Mx0. Furthermore, by assumption we had
that NMx0 ∈ imN ⊆ V and hence NMx0 ∈ (Mx0 +S)∩
V. Hence it follows that NMx0 +S ∩V ⊆ (Mx0 +S)∩V.

On the otherhand, let ξ ∈ (Mx0 + S) ∩ V. Then ξ =
Mx0 + η for some η ∈ S and ξ ∈ V. Since NMx0 ∈ V
we have that NMx0 − ξ ∈ V. From which it follows that
(N − I)Mx0 ∈ V and also (N − I)Mx0 ∈ S. Thus we
have that NMx0 − ξ ∈ S ∩ V. From this it follows that
ξ ∈ NMx0 + S ∩ V and thus it is proven that under the
assumptions (14) holds.

Next assume that (14) holds. Then it follows that

NMx0 ∈ (Mx0 + S) ∩ V + S ∩ V
= (Mx0 + S) ∩ V.

Since this holds for all x0 it follows that imNM ⊆ V.
Furthermore, it follows that NMx0 ∈ Y x0+S, from which
it follows that (N−I)Mx0 ∈ S for all x0, and thus im(N−
I)M ⊆ S. Which proves the result. �

Given the subspaces V, S and the matrix M , a matrix
N satisfying the conditions of Lemma 43 can construc-
tively be computed.
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Lemma 44. Let ΠV and ΠS be projectors onto V and S
respectively. For any Q that solves

(I −ΠS)ΠVQM = (I −ΠS)M

the matrix N = ΠVQ solves (19).

Proof. Since imN ⊆ im ΠV = V the condition imNM ⊆
V is satisfied. Furthermore, we have that

im(N − I)M = im(ΠVQ− I)M,

= im(ΠS + (I −ΠS))(ΠVQ− I)M

⊆ S + im(I −ΠS)(ΠVQ− I)M,

= S + im ((I −ΠS)M − (I −ΠS)M) = S

HenceN satisfies the conditions of Lemma 43, which proves
the result. �
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