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Summary

In this paper, we propose two normal forms for nonlinear differential-algebraic con-
trol systems DACSs under external feedback equivalence, using a notion called
maximal controlled invariant submanifold. The two normal forms simplify the
system structures and facilitate understanding the various roles of variables for non-
linear DACSs. Moreover, we study when a given nonlinear DACS is internally
regularizable, i.e., when there exists a state feedback transforming the DACS into
a differential-algebraic equation DAE with internal regularity, the later notion is
closely related to the existence and uniqueness of solutions of DAEs. We also revise
a commonly used method in DAE solution theory, called the geometric reduction
method. We apply this method to DACSs and formulate it as an algorithm, which
is used to construct maximal controlled invariant submanifolds and to find internal
regularization feedbacks. Two examples of mechanical systems are used to illustrate
the proposed normal forms and to show how to internally regularize DACSs.
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1 INTRODUCTION

Consider a nonlinear differential-algebraic control system DACS of the form

Ξu ∶ E(x)ẋ = F (x) + G(x)u, (1)

where x ∈ X is the generalized state, withX an n-dimensional differentiable manifold (or an open subset ofℝn), where u ∈ ℝm

is the control vector, and where E ∶ TX → ℝl, F ∶ X → ℝl and G ∶ X → ℝl×m are smooth maps and the word “smooth” will
always mean ∞-smooth throughout the paper. For each x ∈ X, we have E(x) ∶ TxX → ℝl, which is a linear map ẋ → E(x)ẋ.
In particular, if X is an open subset of ℝn, then for each x ∈ X, we have E(x) ∶ ℝn → ℝl, i.e., E(x) ∈ ℝl×n. A DACS of the
form (1) will be denoted by Ξul,n,m = (E, F ,G) or, simply, Ξu. A particular case of (1) is a linear DACS of the form

Δu ∶ Eẋ = Hx + Lu, (2)

where E ∈ ℝl×n, H ∈ ℝl×n, L ∈ ℝl×m, denoted by Δul,n,m = (E,H,L). From a practical point of view, numerous physical
systems can be modeled via DACSs of the form (1), e.g., constrained mechanics [1, 2], electrical circuits [3, 4], and chemical
processes [5].

†This work was supported by Vidi-grant 639.032.733.
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For a DACS of the form (1), the map E is not necessarily square (i.e., in general, l ≠ n) nor invertible (even if l = n) and, as a
consequence, some variables of the generalized state x play different roles for the system. More specifically, the non-invertibility
of E may imply the existence of algebraic constraints and some variables of x (even some u-variables) are constrained by those
algebraic constraints. On the other hand, because of the non-squareness of E, some other variables of x may enter into system
statically (since there are no differential equations implying their evolutions) and we may call them algebraic variables. Note
that although the algebraic variables of xmay perform “like” inputs of the system, throughout we will distinguish them from the
original control inputs u. The variables u are predefined control inputs, such as external forces, which have “accesses” to acting
on the system. However, the algebraic variables of x are predefined states which can not be changed actively and arbitrarily.
Such algebraic variables may come from unknown constraint forces or some redundancies of mathematical modeling.
A typical example to illustrate that the control variables u and the algebraic variables of x are different is the following DACS

which may represent the dynamics of a mechanical system under both nonholonomic and holonomic constraints (see e.g. [1]
for the definitions of nonholonomic and holonomic constraints).

M(p)p̈ + V (ṗ, p) = � +HT (p)�n +NT (p)�ℎ (3a)
H(p)ṗ = 0 (3b)
C(p) = 0, (3c)

where p is the vector of position variables,M(p) is a matrix-valued function which is associated with masses (or inertia) and
V (ṗ, p) is a vector function which characterizes the Coriolis, the centrifugal and the gravity forces, and � is a vector of external
torques, C(p) is a vector of scalar functions ci(p), i = 1,… , k andN(p) = )C(p)

)p
, andH(p) is matrix-valued functions of appro-

priate size. Clearly, equation (3b) defines nonholonomic constraints, which depend on both velocities and positions, equation
(3c) defines holonomic constraints, which depend on positions only. The variables �n and �ℎ are the Lagrange multipliers with
respect to the nonholonomic and holonomic constraints, respectively. We can regard system (3) as a DACS of the form (1), with
the generalized state x = (p, ṗ, �n, �ℎ) and the control input u = �. Observe that the variables �ℎ and �n are algebraic variables
since there are no equations for �̇n and �̇ℎ but they are not control inputs contrary to the external force �. The later can be realized
by some actuators (e.g., electric and hydraulic motors) while �ℎ and �n are variables related to unknown constrained forces.
One purpose of this paper is to find normal forms under the external feedback equivalence (see Definition 3.1 below). We

will construct our normal form using a notion called maximal controlled invariant submanifold, which is, roughly speaking, the
locus where the solutions of the DACSs exist and is defined by the constraints which the system should respect (for the precise
definition, see Definition 2.2 below). For linear DACSs of the form (2), a canonical form, which consists of six independent
subsystems, was proposed in [6]. We can easily conclude the roles of the variables (e.g., which variables are algebraic or con-
strained) from the canonical structure of each subsystem. For nonlinear DACSs, although it is hard to find a fully decoupled
normal form, we intend to simplify the system structures utmost such that the above mentioned various roles of variables can
be explicitly and easily seen from our proposed form. The authors of [7] offered a nonlinear generalization of the Kronecker
canonical form using an inversion algorithm for differential-algebraic equations DAEs of the general form F (ẋ, x, t) = 0. A
zero dynamics form for DACSs with outputs was proposed in [8] using the notion of maximal output zeroing submanifold
introduced in [9]. Note that our system Ξu is different in two ways from the DACSs studied in [8] and [9]. First, in [9],[8], the
distribution ker E(x) is assumed to be involutive while we consider any E(x). Second, systems in [9],[8] are equipped with out-
puts. Calculating the zero dynamics of a DACS Ξu with zero output y = ℎ(x) = 0 can be seen as studying an extended DACS
Ξuext ∶ E(x)ẋ = F (x) + G(x)u, 0 = ℎ(x), because the maximal output zeroing submanifold of Ξu (with the output y = ℎ(x))
coincides with the maximal controlled invariant submanifold of Ξuext. Some differences of our proposed normal forms and the
zero dynamics form in [8] are explained in Remark 3(vi) below.
We also investigate the internal regularizability of DACSs, i.e., given a DACS Ξu, when there exists a feedback u = �(x)

such that the resulting DAE E(x)ẋ = F (x) + G(x)�(x) is internally regular. The later notion characterizes the existence and
uniqueness of solutions of DAEs, its formal definitionwill be given in Definition 4.1 below. Regularization problems of nonlinear
DAEs andDACSs can be consulted in [10–14], etc, in which both numerical and geometrical methods have appeared. The second
aim of this paper is to give a geometric characterization of the internal regularizability of nonlinear DACSs. For linear DACSs,
some equivalent characterization of the internal regularizability are given in Theorem 3.5 of [15] using a geometric notion named
the augmented Wong sequences (see Remark 1(iv) below). Note that the internal regularizability is called autonomizability in
[15], the reason for whichwe insist to use the word “internal”, is to stress the difference between two cases. One case is to consider
a DAE “internally” on its maximal invariant submanifold (i.e. on the set where the solutions exist). Another is to consider a DAE
“externally” on a whole neighborhood, even although there exist no solutions for any initial point outside the maximal invariant
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submanifold, it is still meaningful to study how to steer the initial point towards the constraints via e.g., jumps and impulses.
The reader may consult [16–19] for the details of the differences between the internal and external analysis of DAEs.
The paper is organized as follows. In Section 2, we recall the notion of maximal controlled invariant submanifold and discuss

its relations with the solutions of DACSs. In Section 3, we define the external feedback equivalence of two DACSs and propose
two normal forms. In Section 4, we discuss the internal regularization problem. In Section 5, we illustrate our results of Section
3 and Section 4 by two examples of mechanical systems. In Section 6, we give the conclusions of the paper. The Appendix
contains an algorithm using which we can construct the maximal controlled invariant submanifold and the feedback which we
need to internally regularize a DACS. We use the following notations. We use ℝn×m to denote the set of real valued matrices
with n rows and m columns, GL (n,ℝ) to denote the group of nonsingular matrices of ℝn×n and In to denote the n × n-identity
matrix. We denote by TxM the tangent space at x ∈M of a submanifoldM of ℝn and by k the class of k-times differentiable
functions. For a smooth map f ∶ X → ℝ, we denote its differentials by df =

∑n
i=1

)f
)xi
dxi = [ )f

)x1
,… , )f

)xn
] and for a vector-

valued map f ∶ X → ℝm, where f = [f1,… , fm]T , we denote its differential byDf =
[ df1
⋯
dfm

]

. For two column vectors v1 ∈ ℝm

and v2 ∈ ℝn, we write (v1, v2) = [vT1 , v
T
2 ]
T ∈ ℝm+n. We assume the reader is familiar with some basic notions from differential

geometry as smooth manifolds, embedded submanifolds, tangent bundles, distributions, the reader can also consult e.g., the
book by Lee [20] for definitions of those notions.

2 PRELIMINARIES ON THE SOLUTIONS OF DIFFERENTIAL-ALGEBRAIC CONTROL
SYSTEMS

We define a solution of a DACS as follows.

Definition 2.1. (Solution) For a DACS Ξul,n,m = (E, F ,G), a curve (x, u) ∶ I → X × ℝm defined on an open interval I ⊆ ℝ
with x(⋅) ∈ 1(I) and u(⋅) ∈ 0(I) is called a solution of Ξu, if for all t ∈ I , E(x(t))ẋ(t) = F (x(t)) + G(x(t))u(t).

We call a point x0 ∈ X an admissible point of Ξu if there exists at least one solution (x(⋅), u(⋅)) satisfying x(t0) = x0 for a
certain t0 ∈ I . We will denote admissible points by xa and the set of all admissible points by Sa. Note that for any DACS Ξu,
there may exist some free variables among the components of x. As a consequence, even for a fixed u(⋅) defined on ℝ, there is
not a unique prolongation of a solution (x, u) defined on I to a maximal solution. For this reason, we will not use the concept of
maximal solutions (although they can be defined, see e.g., [8]) except for Section 4, where we can deal with maximal solutions
due to an identification of free (algebraic) variables.

Definition 2.2 (controlled invariant submanifold). Consider a DACS Ξul,n,m = (E, F ,G). A smooth connected embedded sub-
manifoldM is called a controlled invariant submanifold ofΞu if for any point x0 ∈M , there exists a solution (x, u) ∶ I → X×ℝm

such that x(t0) = x0 for a certain t0 ∈ I and x(t) ∈M for all t ∈ I .

We fix a point xp ∈ X, a smooth embedded submanifold M containing xp is locally controlled invariant (around xp) if ∃
a neighborhood U of xp in X such thatM ∩ U is controlled invariant (and thus, by definition, connected). Consider a DACS
Ξul,n,m = (E, F ,G), letN ⊆ X and fix a point xp ∈ N ; we introduce the following constant rank assumption:

(CR) there exists a neighborhood U in X of xp such that N ∩ U is a smooth connected embedded submanifold, and such that
dimE(x)TxN = const. and dim(E(x)TxN + ImG(x)) = const. for x ∈ N ∩ U .

The following characterization of local controlled invariance, under the constant rank assumption (CR) satisfied for M , was
given as Theorem 9 in [9] for DACSs whose ker E(x) is an involutive distribution. The proof proposed in [9] holds actually for
any E(x), whose kernal is involutive or not.

Proposition 2.3. Consider a DACS Ξu = (E, F ,G) and letM be a smooth embedded submanifold. Assume thatM satisfies the
above assumption (CR) around a point xp ∈M . ThenM is a locally controlled invariant submanifold (around xp) of Ξu if and
only if there exists a neighborhood U of xp in X such that

F (x) ∈ E(x)TxM + ImG(x), ∀x ∈M ∩ U. (4)

A locally controlled invariant submanifoldM∗, around a point xp, is called maximal if there exists a neighborhood U of xp
such that for any other locally controlled invariant submanifoldM containing xp, we haveM ∩ U ⊆ M∗ ∩ U . The following
procedure is a geometric method to construct the locally maximal controlled invariant submanifold.
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Consider a DACS Ξul,n,m = (E, F ,G) and fix a point xp ∈ X. SetM0 = X and suppose that there exist an open neighborhood
Uk−1 of xp and a sequence of smooth connected embedded submanifoldsM c

k−1 ⊊ ⋯ ⊊ M c
0 of Uk−1 for a certain k ≥ 1, have

been constructed. Define recursively

Mk ∶=
{

x ∈M c
k−1 |F (x) ∈ E(x)TxM

c
k−1 + ImG(x)

}

. (5)

Then either xp ∉ Mk or xp ∈ Mk, and in the latter case assume that M c
k = Mk ∩ Uk is a smooth connected embedded

submanifold of Uk for some open neighborhood Uk ⊆ Uk−1 of xp.

Proposition 2.4. In the above recursive procedure, there always exists k ≤ n such that either k is the smallest for which
xp ∉ Mk (and then there exists a neighborhood of xp in which there does not exist any controlled invariant submanifold) or k
is the smallest such that xp ∈M c

k andM
c
k+1 =M

c
k in Uk+1. In the latter case, we denote k

∗ = k and assume thatM∗ =M c
k∗+1

satisfies the constant rank condition (CR) in a neighborhood U ∗ ⊆ Uk∗+1 of xp in X and then

(i) xp is an admissible point andM∗ is a locally maximal controlled invariant submanifold;

(ii) M∗ coincides locally with the admissible set Sa, i.e.,M∗ ∩ U ∗ = Sa ∩ U ∗ (by taking a smaller U ∗, if necessary).

Proof. If xp ∉ Mk, thenMi−1 ⊊ Mi for 1 ≤ i ≤ k, thus k ≤ n. Since the setMk is closed, there always exists an open neigh-
borhood U of xp such thatMk ∩ U = ∅. So there are no solutions in U and, in particular, no controlled invariant submanifolds
in U . If xp ∈Mk, then again byMi−1 ⊊ Mi for 1 ≤ i ≤ k, there exists the smallest k ≤ n such that dimM c

k = dimM
c
k+1. Since

M c
k+1 ⊆ M

c
k , it follows thatM

c
k+1 =M

c
k in a well chosen Uk+1 ⊆ Uk.

(i) Denoting k∗ = k, we have M c
k∗+1 = M c

k∗ in Uk∗+1 and thus F (x) ∈ E(x)TxM c
k∗+1 + ImG(x) for all x ∈ M c

k∗+1. Since
M∗ = M c

k∗+1 satisfies the assumption (CR) in U ∗ ⊆ Uk∗+1 of xp, we conclude that M∗ = M c
k∗+1 is a locally controlled

invariant submanifold (around xp) by Proposition 2.4. It is clear that xp is admissible since xp ∈ M∗. Then we show by by
an induction argument that any other controlled invariant submanifoldM ′ ⊆ U∗ is contained inM∗. First, sinceM ′ ∩ U ∗ is
controlled invariant, we have that for any x0 ∈ M ′ ∩ U ∗, there exist a solution (x(⋅), u(⋅)) and t0 ∈ I such that x(t0) = x0 and
x(t) ∈M ′ ∩ U ∗, ∀t ∈ I . Observe that for all t ∈ I ,

E(x(t))ẋ(t) = F (x(t)) + G(x(t))u(t). (6)

It follows that F (x(t)) ∈ ImE(x(t)) + ImG(x(t)), ∀t ∈ I . Thus by equation (5), we have x(t) ∈ M1, ∀t ∈ I . Suppose that for
a certain k > 1, we have x(t) ∈ Mk−1, ∀t ∈ I . We then have that ẋ(t) ∈ Tx(t)Mk−1, ∀t ∈ I (note that when restricted to U ∗,
the setMk−1 is a submanifold). Thus in U ∗ ⊆ Uk, equation (6) implies F (x(t)) ∈ E(x(t))Tx(t)M c

k−1 + ImG(x(t)). It follows that
x(t) ∈Mk ∩U ∗ , ∀t ∈ I by equation (5). So we have x(t) ∈Mk ∩U ∗, ∀t ∈ I , and for every k ≥ 0. Therefore, x(t) ∈M∗ ∩U ∗,
∀t ∈ I and in particular, we have x0 = x(t0) ∈ M∗ ∩ U ∗, which implies that M ′ ∩ U ∗ ⊆ M∗ ∩ U ∗ (actually, M ′ ∩ U ∗ is
contained in the only connected component ofM∗ ∩ U ∗).
(ii) We now prove thatM∗ locally coincides with the admissible set Sa on U ∗. SinceM∗ is locally controlled invariant, for

any point x0 ∈ M∗ ∩ U ∗ (take a smaller U ∗, if necessary), there exist at least one solution (x(⋅), u(⋅)) and t0 ∈ I such that
x(t0) = x0 (by Definition 2.2), which implies that x0 is admissible i.e., x0 ∈ Sa. It follows thatM∗∩U ∗ ⊆ Sa∩U ∗. Conversely,
consider any point x0 ∈ Sa ∩ U ∗, i.e., x0 is admissible, then there exists a solution (x(t), u(t)) and t0 ∈ I such that x(t0) = x0,
so equation (6) holds for the solution x(t) passing through x0 ∈ Sa ∩U ∗. By the same induction argument as that used to prove
M ′ ∩ U ∗ ⊆ M∗ ∩ U ∗ of (i) above, we can also show Sa ∩ U ∗ ⊆ M∗ ∩ U ∗. Hence we have Sa ∩ U ∗ =M∗ ∩ U ∗.

Remark 1. (i) Proposition 2.4 is a geometric method to construct the locally maximal controlled invariant submanifold
M∗. Such an iterative way of identifying the admissible set of a DAE is called the geometric reduction method and has
appeared frequently in the geometric analysis of nonlinear DAEs (see e.g., [21–23, 4] and the recent papers [9, 19]). We
state a practical implementation of this geometric method as Algorithm 1 of the Appendix, where we also compare our
Algorithm 1 with an existing geometric reduction method of Section 3.4 of [4]. A previous version of Algorithm 1 for
DAEs (without control u) can be consulted in [24].

(ii) Item (ii) of Proposition 2.4 asserts that in the neighborhood U ∗ of an admissible point xp = xa, the solutions of Ξu exist
onM∗ only, which implies that for any point x0 ∈ U ∗∖M∗, there are no solutions passing through x0.

(iii) If for a fixed xp, we drop the requirements that xp ∈Mk and thatM c
k are connected, then Proposition 2.4 allows to detect

all admissible points xa in U ∗ that form the union
⋃

M∗
i of all locally maximal controlled invariant submanifolds in U ∗.

Notice that, first, that union
⋃

M∗
i may have more than one connected components (each of them being a locally maximal



5

controlled invariant submanifold), second, xp may not be in
⋃

M∗
i (implying that xp is not accessible) and, third,

⋃

M∗
i

can be empty (implying that there are no accessible points in U ∗).

(iv) The recursive procedure of Proposition 2.4 leads to the sequence of nested submanifolds

M c
k∗+1 =M

c
k∗ ⊊ M

c
k∗−1 ⊊⋯ ⊊ M c

0 = U0.

At each step, we construct a submanifold M c
k+1 that is of a smaller dimension than M c

k , except for the last step, where
Mk∗+1, defined by equation (5), coincides withM c

k∗ , although not onUk∗ but on a smaller neighborhoodUk∗+1 andM c
k∗+1 is

actuallyM c
k∗ restricted to Uk∗+1. The need to take a smaller neighborhood Uk∗+1 ⊆ Uk∗ is a purely nonlinear phenomenon

and in the linear case, we haveℳ∗ =M∗ =M c
k∗ , see item (v) below.

(v) If we apply the above procedure of constructingMk to a linear DACSΔ = (E,H,L), then we get a sequence of subspaces

V0 = ℝn, Vk = H−1(EVk−1 + ImL). (7)

The sequenceVk is one of the augmented Wong sequences (see [25]), that play an important role in the geometric analysis
of linear DACSs (see e.g., [26]). In particular, it is shown in [6] and [15] that the indices of the feedback canonical form of
linear DACSs are closely related to these sequences. In the linear case, the submanifoldM∗ is the largest subspace such
thatHM∗ ⊆ EM∗ + imL, which we denote byℳ∗. Clearly,ℳ∗ = V ∗ = Vk∗ , where k∗ is the smallest integer k such
that Vk = Vk+1.

3 TWO NORMAL FORMS UNDER EXTERNAL FEEDBACK EQUIVALENCE

The canonical form of linear DACSs in [6] is under the equivalence relation: (E,H,L) ∼ (QEP −1, Q(H +LF u)P −1, QLT −1),
where Q, P , T are invertible real matrices and F u defines a static state feedback. In the following definition, we generalize this
equivalence relation to the nonlinear case.

Definition 3.1 (External feedback equivalence). Two DACSs Ξul,n,m = (E, F ,G) and Ξ̃ũl,n,m = (Ẽ, F̃ , G̃) defined on X and X̃,
respectively, are called external feedback equivalent, shortly ex-fb-equivalent, if there exists a diffeomorphism  ∶ X → X̃ and
smooth functions Q ∶ X → GL(l,ℝ), � ∶ X → ℝm, � ∶ X → GL(m,ℝ) such that

Ẽ( (x)) = Q(x)E(x)
(

) (x)
)x

)−1
,

F̃ ( (x)) = Q(x) (F (x) + G(x)�(x)) ,
G̃( (x)) = Q(x)G(x)�(x).

(8)

The ex-fb-equivalence of twoDACSs is denoted byΞu
ex−fb∼ Ξ̃ũ. If ∶ U → Ũ is a local diffeomorphism between neighborhoods

U of x0 and Ũ of x̃0, and Q(x), �(x), �(x) are defined on U , we will talk about local ex-fb-equivalence.

Remark 2. If two DACSs are ex-fb-equivalent, the diffeomorphism x̃ =  (x) and the feedback transformation u = �(x)+�(x)ũ
establish a one-to-one correspondence of solutions (x(⋅), u(⋅)) and (x̃(⋅), ũ(⋅)) of the DACSs, i.e., x̃(⋅) =  (x(⋅)) and u(⋅) =
�(x(⋅)) + �(x(⋅))ũ(⋅). On the other hand, if the solutions of two DACSs correspond to each other via a diffeomorphism and
a feedback transformation, then the two DACSs are not necessarily ex-fb-equivalent (since the diffeomorphism is defined on
the whole neighborhood U but the solutions exist on the maximal controlled invariant submanifoldM∗ only), which is a main
reason we distinguish the “external” and “internal” analysis of DACSs. As a simple example, we consider the following two
DAEs Ξu2,1,1 = (E, F ,G) and Ξ̃

ũ
2,1,1 = (Ẽ, F̃ , G̃), where

E(x) =
[

0
0

]

, F (x) =
[

(x − 1)2

−x2

]

, G(x) =
[

0
ex

]

, Ẽ(x̃) =
[

0
1

]

, F̃ (x̃) =
[

x̃
0

]

, G̃(x̃) =
[

0
1

]

,

It is clear that (x, u) = (1, e−1) and (x̃, ũ) = (0, 0) are the unique solutions of the two DACSs and the diffeomorphism x̃ =  (x) =
x− 1 and the feedback transformation ũ = −x2 + exu map (x, u) to (x̃, ũ). However, the two DACSs can not be ex-fb-equivalent
since E and Ẽ are not of the same rank (two ex-fb-equivalent DACSs should have E-matrices of the same point-wise rank).

Theorem 3.2. (Normal forms) Consider a DACS Ξul,n,m = (E, F ,G) and fix a point xp ∈ X. LetM∗ ⊆ X be a smooth connected
embedded submanifold containing xp. Assume that M∗ is a locally maximal controlled invariant submanifold around xp and
there exists a neighborhood V of xp such that



6

(A1) rank E(x) = const. = r and rank
[

E(x) G(x)
]

= const. = r + m2, ∀x ∈ V .

(A2) The submanifold M∗ satisfies the constant rank assumption (CR), that is, dimE(x)TxM∗ = const. = r1 and
dim(E(x)TxM∗ + ImG(x)) = const. = r1 + m1 + m2, ∀x ∈M∗ ∩ V .

Then there exist a neighborhood U ⊆ V of xp such that Ξu is locally ex-fb-equivalent to a DACS represented in the following
normal form

(NF) ∶

⎡

⎢

⎢

⎢

⎢

⎣

Ir1 E
2
1 (z) 0 E4

1 (z)
0 E2

2 (z) Ir2 E
4
2 (z)

0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

ż1
ż2
ż3
ż4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

F1 (z)
F2 (z)
0

F4 (z)

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

G1(z) 0
G2(z) 0
0 Im2
0 0

⎤

⎥

⎥

⎥

⎥

⎦

[

u1
u2

]

, (9)

where (z1, z2) are local coordinates onM∗ =
{

z | z3 = 0, z4 = 0
}

and z = (z1, z2, z3, z4), where E2
1 , E

4
1 , E

2
2 , E

4
2 are smooth

matrix-valued functions defined onU with values inℝr1×(n1−r1),ℝr1×(n2−r2),ℝr2×(n1−r1),ℝr2×(n2−r2), respectively, where r = r1+r2,
n1 = dimM∗, n = n1+n2 andm ≥ m1+m2. Moreover, for all z ∈M∗, we have thatE2

2 (z) = 0, F4(z) = 0 and rankG2(z) = m1.
Furthermore, if the above (A2) is replaced by the condition that there exist a neighborhood V of xp and an involutive

distribution  satisfying that (x) = TxM∗, ∀x ∈M∗ ∩ V and

(A3) dimE(x)(x) = const. = r1 and dim (E(x)(x) + ImG(x)) = const. = r1 + m1 + m2, ∀x ∈ V ,

then there exists a neighborhood U ⊆ V of xp such that Ξu is locally ex-fb-equivalent to equation (9), however, with E2
2 (z) ≡ 0

and rankG2(z) = m1, ∀z ∈ U , which we call the special normal form

(SNF) ∶

⎡

⎢

⎢

⎢

⎢

⎣

Ir1 E
2
1 (z) 0 E4

1 (z)
0 0 Ir2 E

4
2 (z)

0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

ż1
ż2
ż3
ż4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

F1 (z)
F2 (z)
0

F4 (z)

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

G1(z) 0
G2(z) 0
0 Im2
0 0

⎤

⎥

⎥

⎥

⎥

⎦

[

u1
u2

]

. (10)

Proof. Since M∗ is a smooth connected embedded submanifold, there exist a neighborhood U1 of xp and two vector-valued
functions �1 ∶ U1 → ℝn1 and �2 ∶ U1 → ℝn2 such thatM∗ ∩ U1 = {x∈ U1 | �2(x) = 0}, and the differentials d�1 and d�2 are
linearly independent. In local (�1, �2)-coordinates, defined by the local diffeomorphism � (x) = (�1(x), �2(x)), Ξu is expressed as

[

Ẽ1(� ) Ẽ2(� )
]

[

�̇1
�̇2

]

= F̃ (� ) + G̃(� )u,

where Ẽ1 ∶ U1 → ℝl×n1 and Ẽ2 ∶ U1 → ℝl×n2 , and where
[

Ẽ1(� (x)) Ẽ2(� (x))
]

= E(x)
(

)� (x)
)x

)−1
, F̃ (� (x)) = F (x), G̃(� (x)) =

G(x). Then, by assumption (A1), for all � ∈ U2 = U1 ∩ V , we have

rank
[

Ẽ1(� ) Ẽ2(� )
]

= const. = r, rank
[

Ẽ1(� ) Ẽ2(� ) G̃(� )
]

= const. = r + m2.

Thus, by Dolezal’s theorem (see [27]), there exists a smooth map Q1 ∶ U2 → GL(l,ℝ),

Q1(� )
[

Ẽ1(� ) Ẽ2(� ) G̃(� )
]

=
⎡

⎢

⎢

⎣

Ē1(� ) Ē2(� ) Ḡ1(� )
0 0 Ḡ2(� )
0 0 0

⎤

⎥

⎥

⎦

,

where Ē1 ∶ U2 → ℝr×n1 , Ē2 ∶ U2 → ℝr×n2 and Ḡ2 ∶ U2 → ℝm2×m, such that the matrices [Ē1(� ), Ē2(� )] and Ḡ2(� ) above are
of full row rank.
By dim E(x)TxM∗ = const. = r1 of assumption (A2), it is immediate to see that rank Ē1(� ) = r1 for � ∈M∗. It follows from

the smoothness of Ē1(� ) that by taking a smaller U2, if necessary, there exist r1 columns of Ē1(� ) that are linearly independent
in U2. Now we write the matrix

[

Ē1(� ) Ē2(� )
]

=
[

E1
1 (� ) E

2
1 (� ) E1

2 (� ) E
2
2 (� )

E3
1 (� ) E

4
1 (� ) E3

2 (� ) E
4
2 (� )

]

,

where E1
1 ∶ U2 → ℝr1×r1 and E3

2 ∶ U2 → ℝr2×r2 and where r2 = r − r1. We can always permute the rows (by a constant Q-
transformation) and the columns (by permuting the components of �1) of the above matrix such that E1

1 (� ) is invertible. Then
by a suitable Q-transformation, [Ē1, Ē2] admits the form

[

Ē1(� ) Ē2(� )
]

=
[

Ir1 E
2
1 (� ) E1

2 (� ) E
2
2 (� )

0 E4
1 (� ) E3

2 (� ) E
4
2 (� )

]

.
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Since rank E(x) = rank [Ē1(� ), Ē2(� )] = r, the matrix [E4
1 , E

3
2 , E

4
2 ] is of full row rank r2 = r − r1. Notice that E4

1 (� ) = 0 for
� ∈ M∗ (since rank Ē1(� ) = r1 for � ∈ M∗), so rank [E3

2 (� ), E
4
2 (� )] = r2 for � ∈ M∗. By the smoothness of Ē2(� ), we have

that [E3
2 (� ), E

4
2 (� )] is of full row rank r2 for � ∈ U2. Then we can always permute the columns (by permuting the components

of �2) of Ē2 such that E3
2 is invertible. On the other hand, we write

[

Ḡ1(� )
Ḡ2(� )

]

=
⎡

⎢

⎢

⎣

G11(� ) G
2
1(� )

G31(� ) G
4
1(� )

G12(� ) G
2
2(� )

⎤

⎥

⎥

⎦

,

where G22(� ) is a m2 × m2 matrix. Since Ḡ2(� ) is of full row rank m2 for � ∈ U2, we can permute the components of u (by a
feedback transformation) such that G22(� ) is invertible. Since both E

3
2 (� ) and G

2
2(� ) are invertible, we can set

Q2(� ) =

⎡

⎢

⎢

⎢

⎢

⎣

Ir1 Q
2
1(� ) Q

3
1(� ) 0

0 Q2
2(� ) Q

3
2(� ) 0

0 0 Q3
3(� ) 0

0 0 0 Il−m−r

⎤

⎥

⎥

⎥

⎥

⎦

,

where Q2
1 = −E

1
2 (E

3
2 )
−1, Q3

1 = −(G
2
1 −E

1
2 (E

3
2 )
−1G41)(G

2
2)
−1, Q2

2 = (E
3
2 )
−1, Q3

2 = −(E
3
2 )
−1G41(G

2
2)
−1, Q3

3 = (G
2
2)
−1, and then we

have

Q2(� )Q1(� )
[

Ẽ1(� ) Ẽ2(� ) G̃(� )
]

=

⎡

⎢

⎢

⎢

⎢

⎣

Ir1 Ẽ
2
1 (� ) 0 Ẽ2

2 (� ) G̃11(� ) 0
0 Ẽ4

1 (� ) Ir1 Ẽ
4
2 (� ) G̃31(� ) 0

0 0 0 0 G̃12(� ) Im2
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

where Ẽ2
1 = E2

1 + Q
2
1E

4
1 , Ẽ

2
2 = E2

2 + Q
2
1E

4
2 , G̃

1
1 = G11 + Q

2
1E

4
1 + Q

3
1G

1
2, Ẽ

4
1 = Q2

2E
4
1 , Ẽ

4
2 = Q2

2E
4
2 , G̃

3
1 = Q2

2G
3
1 + Q

3
2G

1
2,

G̃12 = Q
3
3G

1
2. Denote Q2Q1F̃ = (F1, F2, F3, F4). Then by the feedback transformation

[

0
F3(� )

]

+
[

Im1 0
G̃12(� ) Im2

]

u =
[

ũ1
ũ2

]

,

both G̃12 and F3 become zero. Rewrite z = � , (z1, z2) = �1, (z3, z4) = �2, (u1, u2) = (ũ1, ũ2), E2
1 = Ẽ2

1 , E
2
2 = Ẽ4

1 , E
4
1 = Ẽ2

2 ,
E4
2 = Ẽ4

2 , G1 = G̃11, G2 = G̃31, then it is not hard to see that Ξu is locally ex-fb-eq on U = U2 to the normal form (NF), given
by (9).

Consider equation (9), by dim E(x)TxM∗ = rank
[

Ir1 E
2
1 (z)

0 E2
2 (z)

]

= r1 for all z ∈ M∗ of the assumption (A2), we have

E2
2 (z) = 0, for all z ∈ M∗ and then by dim(E(x)TxM∗ + ImG(x)) = rank

⎡

⎢

⎢

⎣

Ir1 E
2
1 (z) G1(z) 0

0 E2
2 (z) G2(z) 0

0 0 0 Im2

⎤

⎥

⎥

⎦

= r1 + m1 + m2 for all

z ∈M∗ of (A2), we get rankG2(z) = m1, for all z ∈M∗. Moreover, by the fact thatM∗ is a controlled invariant submanifold
and due to equation (4) Proposition 2.4, it follows that F4(z) = 0 for all z ∈M∗.
Now we prove that under the assumptions (A1) and (A3), Ξu is locally ex-fb-equivalent to the special normal form (SNF),

given by (10). The construction of the (SNF) is similar to the above construction of the (NF) of equation (9), but we choose
the new coordinates � = (�1, �2) differently. By the involutivity of  of the assumption (A3) and Frobenius theorem (see e.g.
[20]), there exist a neighborhood U1 of x0 and two vector-valued functions �1 ∶ U1 → ℝn1 and �2 ∶ U1 → ℝn2 such that
span{d�1} = span{d�11 ,… , d�n11 } = ⊥, where ⊥ denotes the annihilator of the distribution , and d�1 and d�2 are linearly
independent. Since (x) = TxM∗ locally for x ∈ M∗, we still haveM∗ ∩ U1 = {x | �2(x) = 0}. Observe that the assumption
(A3) implies (A2), we may transform Ξu into the (NF), given by (9) using the constructions shown above. But now under
assumption (A3):

dimE(z)(z) = rank
[

Ir1 E
2
1 (z)

0 E2
2 (z)

]

= r1,

dim (E(z)(z) + ImG(z)) = rank
⎡

⎢

⎢

⎣

Ir1 E
2
1 (z) G1(z) 0

0 E2
2 (z) G2(z) 0

0 0 0 Im2

⎤

⎥

⎥

⎦

= r1 + m1 + m2,

for all z ∈ U2, we have that E2
2 (z) ≡ 0 and rankG2(z) = m1, ∀z ∈ U2. Therefore, under the assumptions (A1) and (A3), the

DACS Ξu is locally ex-fb-equivalent to the (SNF) of (10).
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The following observations are crucial.

Remark 3. (i) If the submanifoldM∗ exists and Ξu satisfies the constant rank assumptions (A1) and (A2), which are reg-
ularity assumptions, then Ξu is locally ex-fb-equivalent to the (NF), given by (9). If Ξu satisfies the constant rank and
involutivity assumptions (A1) and (A3), then it is locally ex-fb-equivalent the (SNF), given by (10), in which, addition-
ally compared to (9), we have E2

2 (z) ≡ 0 and rankG2(z) = m1 for all z ∈ U . Note that if M∗ is replaced by M being
any controlled invariant submanifold (not necessarily maximal) and satisfying (A1) and (A2) or (A1) and(A3), we may
still transform Ξ into the form (9) or (10) since we do not use the maximality ofM∗ to construct the two normal forms as
shown in the above of proof. However, ifM∗ is not locally maximal, we can neither conclude thatM∗ = {z | z3 = z4 = 0}
nor that (z1, z2) are the local coordinates on the admissible set Sa =M∗.

(ii) By a suitable feedback transformation introducing new controls (u11, u
2
1) (possibly also by a permutation of z3-variables),

the second equation of (10) can be further simplified as

[

Ir2 E
4
2 (z)

]

[

ż3
ż4

]

= F2(z) + G2(z)u1 ⇒
[

Ir2−m1 0 Ẽ4
2 (z)

0 Im1 Ē
4
2 (z)

]

⎡

⎢

⎢

⎣

ż13
ż23
ż4

⎤

⎥

⎥

⎦

=
[

F̄2(z)
0

]

+
[

0 Ḡ2(z)
0 Im1

] [

u11
u21

]

.

where u11 ∈ ℝr2−m1 , u21 ∈ ℝm1 and F̄2(z) = 0 for z ∈M∗.

(iii) The forms (NF) and (SNF) are two normal forms under the external feedback equivalence, meaning that both hold locally
everywhere around xp, not just on the maximal controlled invariant manifold M∗ passing through xp. For any point
x0 ∉ M∗ around xp, the system does not have solutions passing through x0 (see item (ii) of Remark 1), but the system
admits the above normal forms, which can be useful if we want to steer x0 towardsM∗.

(iv) Note thatM∗ =
{

z | z3 = 0, z4 = 0
}

. If we consider Ξu “internally”, i.e., locally onM∗, by setting z3 and z4 to be zero,
we get from equation (9) the following system (we may do the same for equation (10)):

[

Ir E2
1 (z1, z2)

0 0

] [

ż1
ż2

]

=
[

F1(z1, z2)
F2(z1, z2)

]

+
[

G1(z1, z2)
G2(z1, z2)

]

u1.

Since rankG2(z) = m1 for z ∈ M∗, via a suitable feedback transformation with new controls (u11, u
2
1) and a Q(x)-

transformation (defined on M∗ but it can be extended to U ∗ that is open in X), the above DACS can be transformed
into

⎡

⎢

⎢

⎣

Ir E2
1 (z1, z2)

0 0
0 0

⎤

⎥

⎥

⎦

[

ż1
ż2

]

=
⎡

⎢

⎢

⎣

F̃1(z1, z2)
0
0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

G11(z1, z2) 0
0 0
0 Im1

⎤

⎥

⎥

⎦

[

u11
u21

]

,

for some maps F̃1 and G11. It can be seen from item (i) of Theorem 4.3 below that Ξu has solutions isomorphic with those
of the first subsystem ż1 +E2

1 (z1, z2)ż2 = F̃1(z1, z2) +G
1
1(z1, z2)u

1
1, which we denote by Ξ

u
|M∗ and call the restriction of

Ξu toM∗; the latter can be regarded as an ODE control system with controls w = ż2 and u11:
{

ż1 = F̃1(z1, z2) + G11(z1, z2)u
1
1 − E

2
1 (z1, z2)w

ż2 = w.
(This is a particular case of a general procedure proposed in [19] under the name of (Q,w)-explicitation). From the above
analysis, it is seen that for a fixed control u, the original Ξu has a unique maximal solution (see the definition of maximal
solution in Section 4) if and only if n1 = r1 (since in this case, the z2-variables are absent).

(v) The above two normal forms (NF) and (SNF) facilitate understanding the actual roles of the variables in the nonlinear
DACS Ξu. As a result, some generalized states, namely (z1, z3), behave like state variables of differential equations and
some generalized states, namely (z2, z4), enter into the system statically and are algebraic variables. Moreover, some
generalized states, namely (z3, z4) are constrained and some controls, namely u21 and u2 are also not free to be chosen
(since they are forced to be 0 by the constraints) when the DACS is considered internally onM∗. The generalized state
z2 and the control u11 are the truly free variables of the system.

(vi) Our forms (NF) and (SNF) are different from the zero dynamics form (ZDF) proposed in [8] in many ways. First, the
feedback transformations, which play important roles for our normal forms, are not used for the (ZDF). Second, it is
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assumed for the (ZDF) that

dimE(x)TxM∗ + ImG(x) = dimM∗ + m, (11)

while we only assume that dimE(x)TxM∗ + ImG(x) = const., which is more general since assumption (11) excludes
the existence of free generalized states and control inputs in the internal dynamics. Third, the utilization of the involutive
distribution , not present in (ZDF), shows a possibility to further simplify the structure of the matrix E(x) in (SNF).

4 INTERNAL REGULARIZATION OF NONLINEAR DACSS

In this section, we first consider the uncontrolled case of (1) i.e., nonlinear DAEs, which are of the form

Ξ ∶ E(x)ẋ = F (x),

and denoted by Ξl,n = (E, F ) or, equivalently, Ξul,n,0 = (E, F , 0). If we apply Definition 2.2 to a DAE Ξ, then M∗ is called a
locally maximal invariant submanifold. It is well known (see e.g., [22], [23], [4], [17] and [19]) that the solutions of a DAE Ξ
exist locally on its maximal invariant submanifold M∗ only and that the uniqueness of solutions can be characterized by the
notion of local internal regularity, which is defined below. We will say that a solution x ∶ I →M∗ satisfying x(t0) = x0, where
t0 ∈ I and x0 ∈M∗, is maximal if for any solution x̃ ∶ Ĩ →M∗ such that t0 ∈ Ĩ , x̃(t0) = x0 and x(t) = x̃(t) for all t ∈ I ∩ Ĩ ,
we have Ĩ ⊆ I .

Definition 4.1 (local internal regularity). Consider a DAE Ξl,n = (E, F ) and letM∗ be a locally maximal invariant submanifold
around a point xp ∈ M∗. Then Ξ is called locally internally regular (around xp) if there exists a neighborhood U ⊆ X of xp
such that for any point x0 ∈M∗ ∩U , there exists only one maximal solution x ∶ I →M∗ ∩U satisfying t0 ∈ I and x(t0) = x0.

Remark 4. Consider a DAE Ξl,n = (E, F ) and letM∗ be a locally maximal invariant submanifold around a point xp ∈ M∗.
Assume that there exists a neighborhood U of xp such that dimE(x)TxM∗ = const., ∀x ∈ M∗ ∩ U . Then the following
conditions are equivalent (see Theorem 4.3.14 of [16] or [19]):

(i) Ξ is internally regular around xp;

(ii) dimE(x)TxM∗ = dimM∗, ∀x ∈M∗ ∩ U ;

(iii) Via aQ-transformation and a local diffeomorphism  defined onM∗ around xp, the system Ξ|M∗ can be transformed into
an ODE ż∗ = f (z∗), where z∗ are local coordinates onM∗, given by  , and Ξ|M∗ denotes Ξ restricted to the submanifold
M∗ (compare item (iv) of Remark 3).

Definition 4.2 (Local internal regularizability). A DACS Ξu = (E, F ,G) is called locally internally regularizable (around xp)
if there exist a neighborhood U of xp and a smooth map � ∶ U → ℝm such that the DAE Ξl,n = (E, F +G�) is internally regular
around xp.

Now we use Algorithm 1 in the appendix to study the problems that when is a DACS is locally internally regularizable and
that how to design internal regularization feedback laws. Note that Algorithm 1 is a practical implementation of the recursive
procedure of Proposition 2.4 (see Remark 1(i)) with additionalAssumptions 1 and 2. At every step of Algorithm 1, we construct
a submanifoldM c

k and a local form (equation (24)) under the external feedback equivalence, based on which we give an explicit
expression of the restricted/reduced system (see equation (25)). Moreover, at every k-step, we show in details how to construct
the coordinate transformations  k and the feedback transformations (vk, v̄k) = ak + bkvk−1, which lead to the local form. In the
statement of Theorem 4.3, we refer to the submanifoldM∗ = M c

k∗+1, and the open neighborhood U ∗ = Uk∗+1 (in X) of Step
k∗ + 1 of Algorithm 1.

Theorem 4.3. Consider a DACS Ξul,n,m = (E, F ,G), fix a point xp ∈ X. Suppose that Assumptions 1 and 2 of Algorithm 1
are satisfied. Then M c

k , for k = 0,… , k∗ + 1, of the recursive procedure of Proposition 2.4 are smooth connected embedded
submanifolds andM∗ =M c

k∗+1 satisfies the constant rank condition (CR) inU ∗ and thus by that proposition, xp is an admissible
point andM∗ is a locally maximal controlled invariant submanifold around xp, given by

M∗ =
{

x | z̄1(x) = 0,… , z̄k∗(x) = 0
}

.

Moreover,
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(i) locally, around xp there exist a diffeomorphism x = Ψ(ẑ) and a feedback u = a(x) + b(x)v̂, where ẑ = (z∗, z̄) =
(z∗, z̄1,… , z̄k∗) and v̂ = (v∗, v̄) =(v∗, v̄1,… , v̄k∗+1), transforming the set of all solutions of Ξul,n,m into that of Ξ̂v̂

l̂,n̂,m̂
=

(Ê, F̂ , Ĝ), where l̂ = r∗ + (n − n∗) + (m − m∗), n̂ = n and m̂ = m, given by

Ξ̂v̂ ∶

⎧

⎪

⎨

⎪

⎩

E∗(z∗)ż∗ = F ∗(z∗) + G∗(z∗)v∗,
z̄1 = 0,… , z̄k∗ = 0,
v̄1 = 0,… , v̄k∗ = 0, v̄k∗+1 = 0,

(12)

where E∗ = Ek∗+1 ∶ M∗ → ℝr∗×n∗ , F ∗ = Fk∗+1 ∶ M∗ → ℝr∗ , G∗ = Gk∗+1 ∶ M∗ → ℝr∗×m∗ and n∗ = nk∗ = nk∗+1, r∗ =
rk∗+1,m∗ = mk∗+1 come from Step k∗+1 of Algorithm 1, and where z∗ are local coordinates onM∗, and rank E∗(z∗) = r∗,
∀z∗ ∈M∗, i.e., E∗(z∗) is of full row rank.

(ii) The DACS Ξu is internally regularizable around xp if and only if r∗ + m̄ ≥ n∗, where m̄ = m − m∗, i.e., for any point
x ∈M∗ ∩ U , where U ⊆ X is an open neighborhood of xp,

dim(E(x)TxM∗ + ImG(x)) ≥ dimM∗. (13)

(iii) SinceE∗(z∗) of equation (12) is of full row rank r∗, we assume that the first r∗ columns ofE∗(z∗) are linearly independent
(if not, we can always permute the components of z∗). Rewrite E∗(z∗)ż∗ = [E∗

1 (z
∗) E∗

2 (z
∗)]

[

ż∗1
ż∗2

]

such that E∗
1 (z

∗) is
invertible. If (13) holds, then define the following feedback law for (12):

v̂ =

⎡

⎢

⎢

⎢

⎢

⎣

v∗

v̄1
⋮

v̄k∗+1

⎤

⎥

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

�∗(z∗1, z
∗
2)

z∗2
0

⎤

⎥

⎥

⎦

= �̂(z∗). (14)

where v∗ = �∗(z∗1, z
∗
2) and �

∗ ∶ M∗ → ℝm∗ is an arbitrary smooth map. Finally, the feedback law u = �(x) = a(x) +
b(x)�̂( −1(x)), where the diffeomorphism x = Ψ(z∗, z̄) and invertible feedback u = a(x) + b(x)v̂ are those of item (i) and
 (z∗) = Ψ(z∗, 0), internally regularizes the original system Ξu.

Proof. (i) At every Step k of Algorithm 1, consider the DACSs Ξ̃ṽk = Ξvk−1 = (Ek−1, Fk−1, Gk−1) and Ξ̂v̂k = (Êk, F̂k, Ĝk), the
latter given by (24). Then we show that the following items are equivalent.

(a) (zk−1(⋅), vk−1(⋅)), where zk−1(⋅) =  −1k (zk(⋅), z̄k(⋅)) and vk−1(⋅) = �k(zk−1(⋅)) + �k((zk−1(⋅))(vk(⋅), v̄k(⋅)), is a solution of
Ξvk−1;

(b) (zk(⋅), z̄k(⋅), vk(⋅), v̄k(⋅)) is a solution of Ξ̂v̂k;

(c) z̄k(⋅) = 0, v̄k(⋅) = 0 and (zk(⋅), vk(⋅)) is a solution of

Ξvk ∶ Ek(zk)żk = Fk(zk) + Gk(zk)vk,

where Ek = Ê1
k , Fk = F̂

1
k , Gk = Ĝ

1
k, and where Ê

1
k , F̂

1
k , Ĝ

1
k are defined by formula (25).

Since Ξ̃ṽk = Ξ
v
k−1 is locally ex-fb-equivalent to Ξ̂

v̂
k viaQk,  k, �k and �k, we have that item (a) and item (b) above are equivalent

(see Remark 2). The equivalence of item (b) and item (c) follows from the fact that the solution exists onMk only and should
respect the constraints (z̄k = 0 and v̄k = 0).
Then by the equivalence of (c) and (a), at the first step of Algorithm 1, we have that (z1(⋅), 0, v1(⋅), 0) is a solution of

E1(z1)ż1 = F1(z1) + G1(z1)v1, z̄1 = 0, v̄1 = 0, if and only if (z0(⋅), v0(⋅)) is a solution of Ξv0 = Ξu = (E, F ,G), where
z0(⋅) =  −11 (z1(⋅), z̄1(⋅)) and v0(⋅) = �1(z0(⋅)) + �1(z0(⋅))(v1(⋅), v̄1(⋅)). In general, by an induction argument, we can prove that
(zk(⋅), 0,… , 0, vk(⋅), 0,… , 0) is a solution of

Ek(zk)żk = Fk(zk) + Gk(zk)vk, z̄1 = 0,… , z̄k = 0, v̄1 = 0,… , v̄k = 0,

if and only if (x(⋅), u(⋅)) is a solution of Ξu, where x(⋅) and u(⋅) are given by the following iterative formula

x(⋅) = z0(⋅) =  −11 (z1(⋅), 0), z1(⋅) =  
−1
2 (z2(⋅), 0), … , zk−1(⋅) =  −1k (zk(⋅), 0),
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and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

u(⋅) = �1(x(⋅)) + �1(x(⋅))(v1(⋅), 0),
v1(⋅) = �2(z1(⋅)) + �2(z1(⋅))(v2(⋅), 0),
⋮

vk−1(⋅) = �k(zk−1(⋅)) + �k(zk−1(⋅))(vk(⋅), 0).

We may write x(⋅) = Ψ(zk(⋅), 0,… , 0) and u(⋅) = a(zk(⋅), 0,… , 0) + b(zk(⋅), 0,… , 0)(vk(⋅), 0,… , 0), for some maps Ψ ∶ Uk →
ℝn, a ∶ Uk → ℝm×n, b ∶ Uk → ℝm×m. Since for each k,  k is a local diffeomorphism, it can be deduced that the Jacobian matrix
ofΨ at xp is invertible, which implies thatΨ (and thusΨ−1) is a local diffeomorphism. By the invertibility of all �k at xp, we may
deduce that b is invertible at xp as well, which means that a and b define a feedback transformation. In particular, set k = k∗+1,
we can see that any solution of Ξu is mapped via the diffeomorphism Ψ and the feedback transformation defined by a and b into
that of equation (12). Consider Step k∗ + 1 of Algorithm 1, note that the Qk∗+1-transformation ensures that Ẽ1

k∗+1(zk∗) is of full
row rank. ByM c

k∗+1 =
{

zk∗ ∈M c
k∗ ∩ Uk∗+1 | F̃

3
k∗+1(zk∗) = 0

}

and the fact that dimM c
k∗ = nk∗ = nk∗+1 = dimM c

k∗+1, we have
F̃ 3k∗+1(zk∗) ≡ 0, ∀zk∗ ∈M

c
k∗ ∩Uk∗+1. As a consequence, the z̄k∗+1-coordinates are not present, so there is no equation z̄k∗+1 = 0

in (12). Moreover, we haveM c
k∗+1 =M

c
k∗ in Uk∗+1, it follows that zk∗+1 = zk∗ . Finally, it is seen from E∗(z∗) = Ek∗+1(zk∗+1) =

Ê1
k∗+1(zk∗) = Ẽ

1
k∗+1(zk∗) that E

∗(z∗) is of full row rank for all z∗ = zk∗+1 ∈M∗=M c
k∗+1.

(ii) To begin with, we prove that Ξu is internally regularizable if and only if Ξ̂v̂, given by (12), is internally regularizable.
Observe that Ξu is internally regularizable, i.e., there exists a feedback u = �(x) such that Ξ = (E, F +G�) is internally regular

if and only if the algebraic constraint 0 = u − �(x) is such that the DAE Ξ� ∶
{

E(x)ẋ= F (x) + G(x)u
0 = u − �(x)

has a unique maximal

solution (x(⋅), u(⋅)) satisfying x(t0) = x0 and u(t0) = �(x0) for any x0 ∈ M∗
� ∩ U , where M∗

� is a locally maximal invariant
submanifold of Ξ� and U is a neighborhood of xp. By item (i) of Theorem 4.3, there is a one-to-one correspondence, given by
a local diffeomorphism ẑ = Ψ−1(x) and a feedback transformation u = a(ẑ) + b(ẑ)v̂, between the solutions of Ξu and those of
Ξ̂v̂. As a consequence, Ξu is internally regularizable if and only if there exists � ∶M∗ → ℝn such that the DAE

{

Ê(ẑ) ̇̂z= F̂ (ẑ) + Ĝ(ẑ)v̂
0 = v̂ − �̂(ẑ),

where �̂(ẑ) = b−1(�(Ψ(ẑ)) − a(Ψ(ẑ))), has a unique maximal solution (ẑ(⋅), v̂(⋅)) satisfying ẑ(t0) = ẑ0, where ẑ0 = Ψ−1(x0), and
v̂(t0) = b−1(�(x0) − a(x0)), for any x0 ∈ M∗

� ∩ U , i.e., Ξ̂v̂ is internally regularizable. Now we will show that Ξ̂v̂ is internally
regularizable if and only if (13) holds. SinceE∗(z∗) of (12) is of full row rank, we may view the first equation of (12) as an ODE
control system with extra free variables. More precisely, assume that the first r∗ columns of E∗(z∗) are linearly independent (if

not, we can always permute the components of z∗), then we can rewrite E∗(z∗)ż∗ as
[

E∗
1 (z

∗) E∗
2 (z

∗)
]

[

ż∗1
ż∗2

]

, where z∗ = (z∗1, z
∗
2)

and E∗
1 ∶M

∗ → Rr∗×r∗ is invertible. Thus we can rewrite the first equation of (12) as
{

ż∗1 = (E
∗
1 )
−1F ∗(z∗) + (E∗

1 )
−1G∗(z∗)v∗ − (E∗

1 )
−1E∗

2 (z
∗)w

ż∗2 = w.
(15)

It follows that Ξ̂v̂ is internally regularizable if and only if the free variables z∗2 can be fixed via the constraints v̄ = 0, which is
equivalent to the number of constrained inputs v̄ (there are m̄ = m−m∗ of them) being not less than the number of components
of z∗2 (which is n

∗ − r∗) and thus to (13).
(iii) If m̄ = m − m∗ ≥ n∗ − r∗, then there are enough components of constrained inputs v̄ = 0 that can be used to fix the free

variables z∗2. Namely, set v̂ = (v∗, v̄′, v̄′′) ∈ ℝm∗ × ℝm̄′ × ℝm̄′′ , where m̄′ = n∗ − r∗ and m̄′′ = m̄ − (n∗ − r∗) then we impose
z∗2 = 0 by setting v̄′ = z∗2 = 0 and the remaining components v̄′′ = 0 to construct a controlled invariant submanifold. We can
choose v∗ = �∗(z∗) arbitrarily and thenM∗

� =
{

z∗ ∈M∗
| z∗2 = 0

}

is an invariant submanifold of the closed loop system Ξ̂�̂ ,
obtained from Ξ̂v̂ via v̂ = �̂(z∗), where

v̂ = (v∗, v̄′, v̄′′) = (�∗(z∗), z∗2, 0) = �̂(z
∗). (16)

Now using the diffeomorphism x = Ψ(z∗, z̄) and invertible feedback u = a(x) + b(x)v̂ that transform solutions of Ξu into
that of Ξ̂v̂ (see item (i)), we conclude that the feedback laws u = �(x) = a(x) + b(x)�̂( −1(x)), where �̂ is given by (16) and
 (z∗) = Ψ(z∗, 0), internally regularizes the original system Ξu. The obtained feedback law gives (14).



12

Remark 5. (i) Note that we perform k∗ + 1 steps of Algorithm 1. Actually, we getM∗ already at the step k∗, however, we
need to perform one step more to know that Algorithm 1 stops (because nk∗+1 = nk∗) but also in order to normalize the
system Ξvk∗ and obtain Ξv∗ = Ξvk∗+1 = (E

∗, F ∗, G∗).

(ii) The first equation of (12), i.e., E∗(z∗)ż∗ = F ∗(z∗) +G∗(z∗)v∗, which we denote by Ξu|M∗ , has isomorphic solutions with
Ξu and can be seen as the “internal” dynamics of Ξu. Since E∗(z∗) is of full row rank, we may view Ξu|M∗ as an ODE
control system with two kinds of inputs, namely v∗ and w (see equation (15) or item (iv) of Remark 3).

(iii) The procedure of internal regularization, leading to Theorem 4.3(iii), that we propose is not unique at two stages. First,
by setting v̄′ = �̄(z∗) for any �̄ such that )�̄(z

∗)
)z∗2

is invertible, we can find z∗2 = (z∗1) satisfying �̄(z
∗
1, (z

∗
1)) = 0 and thus

we constrain the z∗2-variables via v̂
′ = �̄(z∗) = 0. Second, we can choose v∗ = �∗(z∗) arbitrarily and that choice does not

affect internal regularity of Ξu (nor the invariant submanifoldM∗
� ) since the feedback law v∗ = �∗(z∗) does not influence

the constraints v̄′ = �̄(z∗) = 0.

(iv) A linear DACS Ξ = (E,H,L), given by (2), is internally regularizable/autonomizable (see Theorem 3.5 of [15]) if and
only if

dim(EV ∗ + ImL) ≥ dimV ∗,
where V ∗ is the limit of the augmented Wong sequence Vk of (7), which is, clearly, a linear counterpart of M∗. Thus
item (ii) of Theorem 4.3 is a nonlinear generalization of the above result for linear DACSs.

(v) Combining the results of Theorem 3.2 and Theorem 4.3, it is seen that if a DACS Ξu is ex-fb-equivalent to the (NF) or
the (SNF), then Ξu is internally regularizable if and only if r1 + m1 + m2 ≥ n1.

5 EXAMPLES

Example 5.1. Consider the model of a 3-link manipulator taken from [28] as shown in the following figure, where Joint 1 and
Joint 2 are active, and Joint-3 is passive and called the free joint.

Joint 1

y

x

Joint 2

�l

Joint 3:(x, y)

The dynamic equations of the system are given by:
{ mẍ − ml sin ��̈ − ml�̇2 cos � = fx

mÿ + ml cos ��̈ − ml�̇2 sin � = fy
−ml sin �ẍ + ml cos �ÿ + (I + ml2)�̈ = f� ,

(17)

where m, I , l are constants representing the mass, the moment of inertia and the half length of the free-link, respectively, x and
y are the position variables of the free joint, and � is the angle between the base frame and the link frame, fx and fy are the
translational force at the free joint, f� is the torque around the free joint. We regard fx and fy as the control inputs to the system
and

f� = 0,
due to the passivity of the free joint. We require the trajectories of system (17) to respect the following constraint:

x − y = 0. (18)
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Denote J = I
m
, x1 = x, x2 = ẋ, y1 = y, y2 = ẏ, �1 = �, �2 = �̇ and choose the generalized state z0 = (x1, x2, y1, y2, �1, �2).

Rewrite (17) and (18) together as a DACS Ξu6,6,2 = (E1, F1, G1), given by

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 m 0 0 0 −ml sin �1
0 0 1 0 0 0
0 0 0 m 0 ml cos �1
0 −ml sin �1 0 ml cos �1 0 m(J + l2)
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ẋ1
ẋ2
ẏ1
ẏ2
�̇1
�̇2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x2
ml�22 cos �1

y2
ml�22 sin �1

0
x1 − y1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
1 0
0 0
0 1
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

fx
fy

]

.

Consider Ξu around a point z0p = (x1p, x2p, y1p, y2p, �1p, �2p), where

x1p = x2p = y1p = y2p = �1p = �2p = 0.

We now apply Algorithm 1 to Ξu. Step 0: Set X = S1 ×ℝ5.
Step 1: We have that rank E1(z0) = rank

[

E1(z0) G1(z0)
]

= 5 around z0p. Since E(z0) and G(z0) are already in the desired
form, set Q1 = I6 and we get

M1 =
{

z0 |F1(z0) ∈ ImE1(z0) + ImG1(z0)
}

=
{

z0 | x1 − y1 = 0
}

.

Clearly, z0p ∈ M1, choose a new coordinate z̄1 = x1 − y1, keep the remaining coordinates z1 = (x2, y1, y2, �1, �2) unchanged
and we can see that the transformed system is different from Ξu by the first and the last equations only, i.e.,

ẋ1 = x2 ⇒ ẏ1 + ̇̄z1 = x2 and 0 = x1 − y1 ⇒ 0 = z̄1.

Thus Ξu restricted toM c
1 =

{

z0 ∈ X | z̄1 = 0
}

is Ξu|M c
1
= Ξu2 = (E2, F2, G2):

⎡

⎢

⎢

⎢

⎣

0 1 0 0 0
m 0 0 0 −ml sin �1
0 1 0 0 0
0 0 m 0 ml cos �1

−ml sin �1 0 ml cos �1 0 m(J + l2)

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

ẋ2
ẏ1
ẏ2
�̇1
�̇2

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

x2
ml�22 cos �1

y2
ml�22 sin �1

0

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

0 0
1 0
0 0
0 1
0 0

⎤

⎥

⎥

⎥

⎦

[

fx
fy

]

. (19)

Step 2: We have that rank E2(z1) = rank
[

E2(z1) G2(z1)
]

= 4, so via a suitableQ2(z1), we transform the first equation ẏ1 = x2
of (19) into 0 = x2 − y2 and get

M2 =
{

z1 ∈M c
1 |F2(z1) ∈ ImE2(z1) + ImG2(z1)

}

=
{

z1 | x2 − y2 = 0
}

.

Clearly, z0p ∈ M1, we then choose a new coordinate z̄2 = x2 − y2 and keep the remaining coordinates z2 = (y1, y2, �1, �2)
unchanged. The system Ξu represented in new coordinates and restricted to M c

2 =
{

z1 ∈M c
1 | z̄2 = 0

}

is Ξ̂u|M c
2
= Ξu3 =

(E3, F3, G3), given by

⎡

⎢

⎢

⎣

0 m 0 −ml sin �1
1 0 0 0
0 m 0 ml cos �1
0 ml(cos �1 − sin �1) 0 m(J + l2)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ẏ1
ẏ2
�̇1
�̇2

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

ml�22 cos �1
y2

ml�22 sin �1
0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

1 0
0 0
0 1
0 0

⎤

⎥

⎥

⎦

[

fx
fy

]

.

Step 3: we have locally that rank E3(z2) = 3 and rank
[

E3(z2) G3(z2)
]

= 4. Then choose

Q3(z2) =
⎡

⎢

⎢

⎣

0 1 0 0
0 0 1 0
1 0 0 0

c(�1) 0 d(�1) l(cos �1 + sin �1)

⎤

⎥

⎥

⎦

,

where c(�1) = J + l2 sin �1(cos �1 + sin �1) and d(�1) = −J − l2 cos �1(cos �1 + sin �1). Thus applying the left-multiplication
by Q3 on Ξu3, we get

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 m 0 ml cos �1
0 m 0 m(J + l2)
0 0 0 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

ẏ1
ẏ2
�̇1
�̇2

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

y2
ml�22 sin �1

0
ml�22J (cos �1 − sin �1)

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

0 0
0 1
0 0

c(�1) d(�1)

⎤

⎥

⎥

⎥

⎦

[

fx
fy

]

.

It follows that k∗ = 2 andM∗ =M c
2 since

M3 =
{

z2 |Q3F3(z2) ∈ ImQ3E3(z2) + ImQ3G3(z2)
}

=M c
2 .

Thus z0p ∈M∗ is an admissible point. Now set
[

v
v̄

]

= a(z2) + b(z2)
[

fx
fy

]

=
[

0
ml�22J (cos �1 − sin �1)

]

+
[

0 1
c(�1) d(�1)

] [

fx
fy

]

.
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Via Q3 and the above feedback transformation, Ξu3 is ex-fb-equivalent (onM
∗) to

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 m 0 ml cos �1
0 m 0 m(J + l2)
0 0 0 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

ẏ1
ẏ2
�̇1
�̇2

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

y2
ml�22 sin �1

0
0

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

0 0
1 0
0 0
0 1

⎤

⎥

⎥

⎥

⎦

[

v
v̄

]

.

Hence we get z∗ = z2 = (y1, y2, �1, �2) and

E∗(z∗) =
[

1 0 0 0
0 m 0 ml cos �1
0 m 0 m(J+l2)

]

, F ∗(z∗) =
[ y2
ml�22 sin �1

0

]

, G∗(z∗) =
[ 0
1
0

]

.

By item (ii) of Theorem 4.3, r∗ + (m−m∗) = 3 + 1 = n∗ = 4 implies that our system Ξu is internally regularizable. A feedback
that internally regularizes Ξu can be deduced, by item (iii) of Theorem 4.3, from

v̄ = �1 − �ref ⇒ ml�22J (cos �1 − sin �1) + c(�1)fx + d(�1)fy = �1 − �ref . (20)

where �ref is a constant and represents a desired value of �. The above equation has a infinite number of solutions. However, if
we have designed v = K(z∗) for some function K(z∗) to, e.g., stabilize the internal system Ξu∗ = (E∗, F ∗, G∗) (which can be
viewed as an ODE since E∗ is of full row rank), then the feedback which internal regularizes and stabilizes Ξu can be uniquely
solved via (20) together with v = fy = K(z∗). The solution is

[

fx
fy

]

=
[

0 1
c(�1) d(�1)

]−1 [ K(z∗)
�1 − �ref − ml�22J (cos �1 − sin �1)

]

.

Note that our system Ξu satisfies the assumptions (A1) and (A3) of Theorem 3.2 since rank E(z0) = 5, rank
[

E(z0) G(z0)
]

=
5, and the distribution

(z0) = span
{

)
)x1

+ )
)y1

, )
)x2

+ )
)y2

, )
)�1

, )
)�2

}

satisfies (z0) = Tz0M
∗ locally for all z0 ∈ M∗ and dimE(z0)(z0) = 3, dim(E(z0)(z0) + ImG(z0)) = 4. In fact, Ξu is

locally ex-fb-equivalent to

(SNF) ∶
⎡

⎢

⎢

⎣

I3 0 0
0 0 I2
0 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̇1
�̇2
�̇3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

F1(� )
F2(� )
F4(� )

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

G1(� )
G2(� )
0

⎤

⎥

⎥

⎦

[

u11
u21

]

,

where � = (�1, �2, �3) (we use � for (SNF) since z are already used as coordinates of the system obtained via Algorithm 1),
�1 = (y1, y2, �2), �2 = �1, �3 = (z̄2, z̄1) = (x2 − y2, x1 − y1),

F1(� ) =
⎡

⎢

⎢

⎣

y2

l�22 sin �1−
l4�22 cos �1 sin �1(cos �1−sin �1)

c(�1)

−l3�22 sin �1(cos �1−sin �1)

c(�1)

⎤

⎥

⎥

⎦

, G1(� ) =
⎡

⎢

⎢

⎣

0 0
(J+l)
mc(�1)

−l2 cos �1 sin �1
c(�1)

l(cos �1−sin �1)
mc(�1)

l sin �1
c(�1)

⎤

⎥

⎥

⎦

,

F2(� ) =
[ 0
x̄2

]

, F4(� ) = x̄1, G2(� ) =
[

0 1
0 0

]

,
Note that, for the new coordinated system (SNF),M∗ =

{

� | �3 = 0
}

. The variables �1 = (y1, y2, �2) and �3 = (z̄2, z̄1) perform
as the states of differential equations (there are differential equations for �̇1 and �̇3), but �3 are constrained and equal to 0. The
variable �2 = �1 is a free algebraic variable and u21 is a constrained control input.

Example 5.2. Consider a rolling disk on an inclined plane as shown in the following figure. We denote the position of the
disk by (x, y), the angles � and ' describe the attitude of the disk with respect to the inclined plane, � is the angle between the
horizontal surface and the inclined plane.

�

x

y �

mg

'
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If there are no external forces acting on the system, the Lagrangian of the system is given by

 = −mgx sin � + 1
2
m(ẋ2 + ẏ2) + 1

2
J'̇2,

where m is the mass, J is the moment of inertia and throughout we assume m = 1 and J = 1, for simplicity. The following
nonholonomic constraints represent the kinematic equations of the system

{

0= − sin'dx + cos'dy
0= cos'dx + sin'dy − d�

(21)

and we can derive the dynamic equations of the system as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẍ = −g sin � − �1 sin' + �2 cos'
ÿ = �1 cos' + �2 sin'
�̈ = −�2
'̈= 0.

(22)

We have X = ℝ8 × T 2 and choose control inputs as (�1, �2, �2), where �1 = sin �, and �2 and �3 are external torques in the
directions of �̇ and '̇, respectively. We study the problem whether we can find an input force such that the trajectories of the
system respect the following constraint:

�
2
= ' + �. (23)

The constraint (23) is equivalent to 0 = sin � − cos'. Now consider (21), (22) and (23) together with the controls (�1, �2, �3),
we get a DACS Ξu10,11,3 = (E, F ,G), given by

Ξu ∶

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

− sin'1 0 cos'1 0 0 0 0 0 0 0
cos'1 0 sin'1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ẋ1
ẋ2
ẏ1
ẏ2
�̇1
�̇2
'̇1
'̇2
�̇1
�̇2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x2
−�1 sin'1+�2 cos'1

y2
�1 cos'1+�2 sin'1

�2
−�2
'2
0
0
0

− cos'1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
g 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0
1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[ �1
�2
�3

]

,

where x1 = x, x2 = ẋ, y1 = y, y2 = ẏ, �1 = �, �2 = �̇, '1 = ', '2 = '̇. The generalized state is � = (x, ẋ, y, ẏ, ', '̇, �, �̇, �1, �2).
We consider Ξu around a point �p = (x1p, x2p, y1p, y2p, �1p, �2p, '1p, '2p, �1p, �2p), where

x1p = x2p = y1p = y2p = �1p = �2p = '1p = '2p = �1p = �2p = 0.

Consider ' ∈ (−�∕2, �∕2) and � ∈ (�∕2, �∕2). Applying Algorithm 1 to Ξu, we get
M c

0 = ℝ8 × (�∕2, �∕2) × (�∕2, �∕2), M c
1 =

{

� ∈M c
0 | x2 sin'1 − y2 cos'1 = 0,−x2 cos'1 − y2 sin'1 + �2 = 0

}

,
M c

2 =
{

� ∈M c
1 |'2�1 − �1 −

g
2
sin 2'1 = 0

}

, M∗ =M c
3 =M

c
2 .

It follows that �p ∈M∗ and that locally around xp
rank E(�) = r = 8, rank

[

E(�) G(�)
]

= r + m2 = 9.

The distribution (�) = span
{

g1, g2, g3, g4
}

+ span
{

)
)x1
, )
)y1
, )
)�1
, )
)�2

}

, where

g1 = cos'1
)
)x2
+ sin'1

)
)y2
+ )

)�2
, g2 = −y2'2

)
)x2
+ x2'2

)
)y2
+ g cos 2'1

)
)�1
,

g3 = −�1
)
)�1
+ '2

)
)'2
, g4 = '2

)
)�1
+ )

)�1
,

satisfies (�) = T�M∗ locally for all � ∈M∗ and that

dimE(�)(�) = r1 = 6, dim(E(�)(�) + ImG(�)) = r1 + m1 + m2 = 8.
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Thus the assumptions (A1) and (A3) of Theorem 3.2 are satisfied. Now set

Q(�) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 −g 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1

sin'1 0 − cos'1 0 0 0 0 0 1 0 0
− cos'1 0 − sin'1 0 1 0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

z1 =
⎡

⎢

⎢

⎣

x1
x2
y1
�1
'1
'2

⎤

⎥

⎥

⎦

, z2 = �2, z3 =
[

ỹ2
�̃2

]

=
[

x2 sin'1−y2 cos'1
−x2 cos'1−y2 sin'1+�2

]

, z4 = �̃1 = �2'2 − �1 −
g
2
sin 2',

�(�) =
[ cos'1
'2ỹ2−2�2

0

]

, �(�) =
[ 0 0 1
0 1 0
1 0 0

]

.

Then, via Q(�),
⎡

⎢

⎢

⎣

�1
�2
�3

⎤

⎥

⎥

⎦

= �(�) + �(�)
⎡

⎢

⎢

⎣

u11
u21
u2

⎤

⎥

⎥

⎦

and z = (z1, z2, z3, z4), Ξu is locally (around �p) ex-fb-equivalent to

(SNF) ∶

⎡

⎢

⎢

⎢

⎢

⎣

I6 0 0 0
0 0 I2 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

ż1
ż2
ż3
ż4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

F1 (z)
F2 (z)
0

F4 (z)

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

G11(z) 0 0
0 G22(z) 0
0 0 1
0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

u11
u21
u2

⎤

⎥

⎥

⎦

,

where

F1(z) =

⎡

⎢

⎢

⎢

⎢

⎣

x2
(�̃1+

g
2
sin 2'1−�2'2) sin'1+(�2−g) cos'1

x2 tan'1−
ỹ2

cos'1
�̃2−ỹ2 tan'1+

x2
cos'1

'2
0

⎤

⎥

⎥

⎥

⎥

⎦

, F2(z) =
[

�̃1
0

]

, F4(z) =
[

ỹ2
�̃2

]

, G11(z) =
⎡

⎢

⎢

⎣

0
0
0
0
0
1

⎤

⎥

⎥

⎦

, G22(z) =
[

0
1
]

.

Therefore, by item (iv) of Remark 3, the algebraic variables are z2 = �2 and z4 = �̃1. The variables z2 and u11 are free to choose.
The generalized states z3 = (ỹ2, �̃2), z4 = �̃1 and the controls (u21, u2) are constrained and required to be 0 by the algebraic
constraints. Moreover, by item (iv) of Remark 3, we have

Ξu|M∗ ∶

⎡

⎢

⎢

⎢

⎣

ẋ1
ẋ2
ẏ1
�̇1
'̇1
'̇2

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

x2
( g
2
sin 2'1−�2'2) sin'1+(�2−g) cos'1

x2 tan'1
x2

cos'1
'2
0

⎤

⎥

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

0
0
0
0
0
1

⎤

⎥

⎥

⎦

u11,

which is an ODE control system with one free variable �2 and one control u11 = �3. We can see from item (i) of Theorem 4.3
that Ξu|M∗ has isomorphic trajectories with that of Ξu. Moreover, since dim(E(�)T�M∗ + ImG(�)) = 8 > dimM∗ = 7, by item
(ii) of Theorem 4.3, the system Ξu is internally regularizable, e.g., a feedback which internally regularizes the system is given
by u2 = �2 ⇒ �1 = cos'1 + �2, u12 = 0 ⇒ �2 = 0 and �3 = u11 = (x) for any smooth function (x). Note that (x) could be a
designed function as a feedback to control the system Ξu|M∗ (note that by substituting �2 = u2 = 0, the system Ξu|M∗ becomes
a single-input ODE control system).

6 CONCLUSION

In this paper, we propose two normal forms for nonlinear DACSs under external feedback equivalence to simplify the structure
of systems and to clarify different roles of variables, which is our first main result. One normal form requires only the existence
of a maximal controlled invariant submanifold and some constant rank assumptions of system matrices while another requires
additionally the involutivity of some distribution. Moreover, we give a necessary and sufficient geometric condition for a nonlin-
ear DACS to be internally regularizable (second main result), we also formulate an algorithm to calculate the maximal invariant
submanifold and a feedback which internally regularizes the system. Two examples of mechanical systems are given to illustrate
the proposed normal forms and the internal regularization algorithm.
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7 APPENDIX

We give some remarks on Algorithm 1.
Remark 6.
(i) The Assumption 1 that rank Ẽk(zk−1) = const. and rank [Ẽk(zk−1), G̃(zk−1)] = const. is made to produce the full row rank
matrices Ẽ1

k and G̃
2
k and the zero-level setMk =

{

zk−1 ∈ Wk | F̃ 3k (zk−1) = 0
}

. TheAssumption 2 that rank DF̃ 3k (zk−1) = const.
makes it possible to use the components of F̃ 3k with linearly independent differentials as a part of new local coordinates. Those
two assumptions are somewhat related to but different from the two assumptions in [4], e.g., in order to produce a smooth
embedded submanifold, the author of [4] assumes thatHk(x, ẋ) = Ẽk(x)ẋ − F̃k(x) is a submersion.
(ii) The dimensions rk, nk, mk satisfy

{

r0 ≥ ... ≥ rk ≥ ... ≥ 0, n0 ≥ ... ≥ nk ≥ ... ≥ 0, m0 ≥ ... ≥ mk ≥ ... ≥ 0,
nk−1 ≥ rk, rk−1 − rk − (mk−1 − mk) ≥ nk−1 − nk.

The integers rk, nk, mk indicate the values of dimE(x)TxMk, dimMk, and that the vector vk is mk-dimensional, respectively,
and illustrate well the evolution of the reduction procedure.
(iii) Our Algorithm 1 is related to the geometric reduction method used in Section 3.4 of [4]. In both, one constructs a sequence
of submanifolds recursively and then reduces/restricts the DACS to the constructed submanifolds. The main difference is that
Algorithm 1 deals with DAEs with an extra control u, i.e., DACSs, while in [4] only DAEs are discussed and no feedback
transformations are involved. Moreover, we relate our Algorithm 1 with the recursive procedure given before Proposition 2.4.
Actually, Step k of Algorithm 1 provides an explicit construction of the manifoldsM c

k of the procedure.
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Algorithm 1 Internal regularization algorithm for nonlinear DACSs
Initiatlization: Consider Ξul,n.m = (E, F ,G), fix xp ∈ X and let U0 ⊆ X be an open connected subset containing xp. Below all

sets Uk are open in X andWk are open inM c
k−1.

Step 0: Set z0 = x, v0 = u, E0(z0) = E(x), F0(z0) = F (x), G0(z0) = G(x),M0 = X,M c
0 = U0, r0 = l, n0 = n, m0 = m.

Step k:
1: Suppose that we have defined at Step k − 1: an open neighborhood Uk−1 ⊆ X of xp, a smooth embedded connected

submanifoldM c
k−1 of Uk−1 and a DACS Ξ

v
k−1 = (Ek−1, Fk−1, Gk−1) given by smooth matrix-valued maps

Ek−1 ∶M c
k−1→ℝrk−1×nk−1 , Fk−1 ∶M c

k−1 → ℝrk−1 , Gk−1 ∶M c
k−1 → ℝrk−1×mk−1 ,

whose arguments are denoted zk−1 ∈M c
k−1.

2: Rename the maps as Ẽk = Ek−1, F̃k = Fk−1, G̃k = Gk−1 and define Ξ̃ṽk ∶= (Ẽk, F̃k, G̃k).
Assumption 1: There exists an open neighborhood Uk⊆ Uk−1 ⊆X of xp such that rank Ẽk(zk−1) = const. = rk ≤ nk−1 and

rank [Ẽk(zk−1), G̃k(zk−1)] = const. = rk + mk−1 − mk, ∀zk−1 ∈ Wk = Uk ∩M c
k−1.

3: Find a smooth map Qk ∶ Wk → GL(rk−1,ℝ), such that Ẽ1
k and G̃

2
k of

QkẼk =
⎡

⎢

⎢

⎣

Ẽ1
k
0
0

⎤

⎥

⎥

⎦

, QkF̃k =
⎡

⎢

⎢

⎣

F̃ 1k
F̃ 2k
F̃ 3k

⎤

⎥

⎥

⎦

, QkG̃k =
⎡

⎢

⎢

⎣

G̃1k
G̃2k
0

⎤

⎥

⎥

⎦

are of full row rank, where Ẽ1
k ∶ Wk→ℝrk×nk−1 , G̃2k ∶ Wk→ℝ(mk−1−mk)×mk−1 , F̃ 3k ∶ Wk→ℝrk−1−rk−mk−1+mk (so all the matrices

depend on zk−1).
4: Following (5), defineMk =

{

zk−1 ∈ Wk | F̃ 3k (zk−1) = 0
}

.
Assumption 2: xp ∈Mk and rank DF̃ 3k (zk−1) = const. = nk−1 − nk for zk−1 ∈Mk ∩Uk, by taking a smaller Uk (if necessary).
5: By the above assumption, Mk ∩ Uk is a smooth embedded submanifold and by taking again a smaller Uk, we may

assume that M c
k = Mk ∩ Uk is connected and choose new coordinates (zk, z̄k) =  k(zk−1) on Wk, where z̄k =

('1k(zk−1), ..., '
nk−1−nk
k (zk−1)), with d'1k(zk−1), ..., d'

nk−1−nk
k (zk−1) being all independent rows of DF̃ 3k (zk−1), and zk are any

complementary coordinates such that  k is a local diffeomorphism.

6: Choose new control inputs
[

vk
v̄k

]

= ak(zk−1) + bk(zk−1)vk−1, where ak =
[

0
F̃ 2k

]

, bk =
[

b̃k
G̃2k

]

, and where b̃k ∶ Wk → ℝmk−1×mk

is chosen such that bk(zk−1) is invertible ∀zk−1 ∈ Wk (by taking again a smaller Uk, if necessary).
7: Set Êk = QkẼk

(

) k
)zk−1

)−1
, F̂k = Qk(F̃k + Gk�k), Ĝk = QkG̃k�k, �k = −b−1k ak and �k = b

−1
k .

8: By Definition 3.1, Ξ̃ṽk
ex−fb∼ Ξ̂v̂k = (Êk, F̂k, Ĝk) via Qk,  k, and (�k, �k), where

Ξ̂v̂k ∶
⎡

⎢

⎢

⎣

Ê1
k(zk, z̄k) Ē

1
k(zk, z̄k)

0 0
0 0

⎤

⎥

⎥

⎦

[

żk
̇̄zk

]

=
⎡

⎢

⎢

⎣

F̂ 1k (zk, z̄k)
0

F̃ 3k (zk, z̄k)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

Ĝ1k(zk, z̄k) Ḡ
1
k(zk, z̄k)

0 Imk−1−mk
0 0

⎤

⎥

⎥

⎦

[

vk
v̄k

]

, (24)

with Ê1
k ∶ Wk → ℝrk×nk , F̂ 1k ∶ Wk → ℝrk , Ĝ1k ∶ Wk → ℝrk×mk and

[

Ê1
k◦ k Ē

1
k ◦ k

]

= Ẽ1
k

(

) k
)zk−1

)−1
, F̂ 1k ◦ k = F̃

1
k �k and

[

Ĝ1k◦ k Ḡ
1
k◦ k

]

= G̃1k�k.
9: Set z̄k = 0 and v̄k = 0 to define the restricted DACS onM c

k =
{

zk−1 ∈ Wk | z̄k = 0
}

as

Ξ̂v̂k|M c
k
∶ Ê1

k(zk, 0)żk = F̂
1
k (zk, 0) + Ĝ

1
k(zk, 0)vk. (25)

10: OnM c
k , define a system

Ξvk ∶ Ek(zk)żk = Fk(zk) + Gk(zk)vk,
where Ek(zk) = Ê1

k(zk, 0), Fk(zk) = F̂
1
k (zk, 0), Gk(zk) = Ĝ

1
k(zk, 0) are matrix-valued maps and Ek ∶ M c

k→ℝrk×nk , Fk ∶
M c

k → ℝrk , Gk ∶M c
k → ℝrk×mk .

Repeat: Step k for k = 1, 2, 3,… , until nk = nk−1, set k∗ = k − 1 and perform Step k = k∗ + 1.
Result: Set n∗ = nk∗ = nk∗+1, r∗ = rk∗+1, m∗ = mk∗+1, M∗ = M c

k∗+1, U
∗ = Uk∗+1, z∗ = zk∗+1 = zk∗ , v∗ = vk∗+1 and

Ξv∗ = (E∗, F ∗, G∗) with E∗ = Ek∗+1, F ∗ = Fk∗+1, G∗ = Gk∗+1.
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