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Abstract A distributional solution framework is developed for systems con-
sisting of linear hyperbolic partial differential equations (PDEs) and switched
differential-algebraic equations (DAEs) which are coupled via boundary condi-
tions. The unique solvability is then characterize in terms of a switched delay
DAE. The theory is illustrated with an example of electric power lines mod-
eled by the telegraph equations which are coupled via a switching transformer
where simulations confirm the predicted impulsive solutions.

1 Introduction

In this paper we develop a rigorous solution theory for systems where a lin-
ear hyperbolic partial differential equation (PDE) is coupled with a switched
differential-algebraic equation (DAE) via boundary conditions (BC), see Fig-
ure 1.1 as an overview.

Such systems occur for example when modeling power grids using the tele-
graph equation [8] including switches (e.g. induced by disconnecting lines), wa-
ter flow networks with valves [13,14], supply chain models including processor
breakdown [1,7], district heating systems with rapid consumption changes [5]
and blood flow with simplified valve models in the heart [15]. Similar to [3,11]
the closed loop setting illustrated in Figure 1.1 can include general network
structures.
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Fig. 1.1: Coupling of a PDE with a switched DAE via boundary condition.

In this coupled system the output of the switched DAE provides the bound-
ary condition for the PDE and the boundary values of the PDE serve as input
to the DAE. Solutions of switched DAEs in general contain jumps and deriva-
tives thereof, e.g. derivatives of Dirac impulses [17,19], hence the solution con-
cept of the PDE has to be extended to allow for jumps, Dirac impulses and
their derivatives at the boundary. In particular this is a wider class compared
to the solutions of small bounded variation, e.g. used in [4] where a nonlinear
hyperbolic PDE is coupled to an ODE. Similarly in [2, 12], the investigations
of switched linear PDEs with source terms are restricted to solutions with
bounded variation. In [16] Dirac impulses are introduced at the position of an
interface of nonlinear PDEs. A more general appearance of Dirac impulses is
allowed in [6, 23] for a partially linear system. A detailed overview of existing
solution concepts for linear hyperbolic PDEs is given in [10].

Since arbitrary high derivatives of Dirac impulses can occur as solutions
of switched DAEs, the aforementioned approaches are not suitable to handle
the coupled systems studied here. Indeed our first main contribution is a suit-
able extension of the 1D piecewise-smooth distributional solution framework
(developed to handle switched DAEs in [17, 18]) to a 2D piecewise-smooth
distributional solution framework. This new class of solutions is large enough
to allow distributional solutions such as Dirac impulses and their derivatives.
At the same time its elements are regular enough to allow a trace evaluation
on the boundaries of the domain.

Towards our main existence and uniqueness result for solutions of the cou-
pled system we also establish a relationship between the solutions of the cou-
pled systems and the solution of a switched delay DAE. For the latter we
generalize a recent existence and uniqueness result for delay DAEs in [20].

This paper is structured as follows.
After a detailed description of the coupled system (including an example

of a simple power network), we review the classical solution theory of linear
hyperbolic PDEs in Section 3 and the solution theory of switched DAEs in
Section 4. The novel distributional solution framework for linear hyperbolic
PDEs is introduced in Section 5 which is then used in Section 6 to estab-
lish a link between the coupled system and the solutions of a switched delay
DAE (Theorem 23). Finally we establish an existence and uniqueness result
for general switched delay DAE (Theorem 24) and can conclude our main
result about the existence and uniqueness of solutions of the coupled system
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(Corollary 26). We illustrate the results by numerical simulations of the power
grid example.

2 Problem Setup

2.1 System class

We consider linear hyperbolic PDEs on a bounded interval of the form

∂tu(t , x) + A∂xu(t , x) � 0, x ∈ [a , b], t ≥ t0 , (2.1a)

yP(t) � CPuab(t), t ≥ t0 (2.1b)

where a , b , t0 ∈ R with a < b, u : [t0 ,∞) × [a , b] → Rn , n ∈ N, is the n-
dimensional vector of unknowns of the PDE, A ∈ Rn×n and yP : [t0 ,∞) →
Rν, ν ∈ N is the ν-dimensional output of the PDE depending on uab(t) :�
(u(t , a)> , u(t , b)>)> ∈ R2n and CP ∈ Rν×2n . The boundary conditions (BC) of
the PDE have the form

Puab(t) � yD(t), t > t0 , (2.1c)

where P ∈ Rn×2n and yD : [t0 ,∞) → Rn is the output of the switched DAE

Eσ Ûw(t) � Hσw(t) + BσyP(t) + fσ(t), t ≥ t0 , (2.1d)

yD(t) � CDσw(t), t ≥ t0 , (2.1e)

with the m-dimensional vector of unknowns w : [t0 ,∞) → Rm , m ∈ N, the
switching signal σ : R→ {1, 2, . . . ,N}, N ∈ N, and Eξ ,Hξ ∈ Rm×m , Bξ ∈
Rm×ν, fξ : [t0 ,∞) → Rm , CDξ ∈ Rn×m for each ξ ∈ {1, 2, . . . ,N}.

The coupled system (2.1) has to be equipped with initial conditions

u(t0 , x) � ut0(x), x ∈ [a , b], (2.2a)

w(t0) � wt0 , (2.2b)

where ut0 : [a , b] → Rn and wt0 ∈ Rm .

Remark 1 We would like to stress that the coupling structure in (2.1) is quite
general, in fact, arbitrary networks whose edges represent PDEs and whose
nodes represent (switched) DAEs which couple the different PDEs are covered.
Consider for example a network as illustrated in Figure 2.1a, where on each
edge E the quantity uE is governed by a linear PDE uEt + AuEx � 0.

At each node s, algebraic and/or differential conditions combine possible
internal states ws with certain boundary values qs of the connected uE ; i.e.,
Es
σ Ûws � Hs

σws + Bs
σqs + f s

σ. This setup can be rewritten in the form (2.1) by
first rescaling the spatial domain (which simply modifies the matrices AE by a
constant multiple) so that all PDEs are defined on the same interval and can
be viewed as a single PDE where the new unknown u consists of the unknowns
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uE of each edge stacked over each other (the A-matrix then is a block diagonal
matrix). In a similar way, the switched differential-algebraic equations for each
node can be stacked over each other (resulting in block diagonal coefficient
matrices) and can then be viewed as single switched DAE, see Figure 2.1b.
A similar reduction is used in [3] and [11]. This method is also used in the
specific example of a simple power grid discussed in Section 2.3.

N1 N2
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E1

E4
E2 E5

E3

(a) Illustration of a network.
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(b) Reduction of the network from Fig. 2.1a.

Fig. 2.1: An example of a network consisting of four nodes and five connecting edges and
how to reduce it to one node and one edge (loop) network which still has all the features of
the original network.

2.2 Ill-posed coupling

As mentioned in the introduction, coupling a PDE to a switched DAE is
challenging due the need to consider distributional boundary terms. However,
there is another challenge due to the additional algebraic constraints present
in a DAE. The following example illustrate that even if the PDE is well-posed
(i.e. it has a unique solutions for all initial and boundary conditions) and the
DAE is well-posed (i.e. it has unique solutions for all consistent initial values
and for all sufficiently smooth input signals), the coupled system is ill-posed.

Example 2 Consider the scalar advection equation given by

∂t v(t , x) + ∂x v(t , x) � 0, t ∈ [0,∞), x ∈ [0, 1], (2.3)

with initial condition v(0, x) � v0(x), boundary condition v(t , 0) � b(t), input
b(·) and output yP(t) :� v(t , 0). It is well known that there exists a unique
solution to (2.3) for any sufficiently smooth v0(·) and b(·). This PDE will be
coupled to the following (nonswitched) DAE given by[

1 0
0 0

] [ ÛwÛz ]
�

[
1 0
0 1

] [ w
z ] −

[
0
1

]
q , (2.4)

with input q(·) and output yD(t) :� [ 0 1 ] [ w
z ]. It is easily seen that for all q(·)

and all initial values for w(0) there exists a unique solution.
Now let (2.3) be coupled with (2.4) via b(t) � yD(t) and q(t) � yP(t). Since



A distributional solution framework for lin. hyp. PDEs coupled to swDAEs 5

by construction b(t) � yP(t), this coupling leads to q(t) � yD(t) � z(t), which
means that the DAE changes to[

1 0
0 0

] [ ÛwÛz ]
�

[
1 0
0 1

] [ w
z ] −

[
0
1

]
z �

[
1 0
0 0

] [ w
z ] .

However, in this new DAE the variable z is completely free, which also means
that the boundary of the PDE is completely free, i.e. the coupled system doesn’t
have a unique solution anymore.
For this simple example it is easy to see why well-posedness of the coupled
system is lost: The PDE has as an “output” the same value as the provided
boundary value, hence both values are not independent and cannot be coupled
via a DAE in an arbitrary way. In fact, just choosing a different output for
the DAE (e.g. yD � [ 1 0 ] [ w

z ] results in a well-posed coupled system.

In general, it will not be so apparent as in the above example which cou-
plings lead to a well-posed system and it is therefore necessary to better un-
derstand the underlying solution structure.

2.3 Power grid example

Consider the simple electrical power grid illustrated in Figure 2.2.

Generatorvoltage
switching

transformer

node

node

consumption

consumption

E1

E2

E3

E4

Fig. 2.2: Simple electrical power grid with one generator node, one switching transformer
node and two consumption nodes.

Each line is modelled by the telegraph-equation of the form

∂t I(t , x) + 1
L ∂xV(t , x) � 0

∂tV(t , x) + 1
C ∂x I(t , x) � 0,

(2.5)

where t ≥ 0, x ∈ [0, `], I(t , x) stands for the current, V(t , x) is the voltage
and the constants L and C are inductance and capacitance, respectively. In
particular, each line k has a position-dependent current Ik and voltage Vk . By
appropriate scaling of the coefficients in the telegraph-equation, we can assume
that all PDEs are defined on the common domain T × X � [0,∞) × [a , b]. At
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the nodes there is a coupling between corresponding boundary values, where
the “outputs” of the telegraph-equations are the boundary currents Ik for each
line k. A generator is located at the first node, where we assume an externally
given voltage. This algebraic constraint is modelled by the algebraic relations

0 � z1 − vG , (2.6a)

yG
D � z1 , (2.6b)

where vG(·) is the externally given (time-varying) voltage of the generator to-
gether with the boundary condition V1(·, a+) � yG

D . On the consumption nodes,
all voltages are assumed to be equal and we assume that the consumption is
modelled as a simple Ohm’s resistance, i.e. the sum of the (directed) currents
at the boundary of the lines is proportional to the voltage at the node, this is
modelled by the DAEs

0 � z24 − R24(I4(·, a+) − I2(·, b−)), y24
D � z24 ,

0 � z34 − R34(I3(·, b−) + I4(·, b−)), y34
D � z34 ,

(2.7)

where R24 , R34 > 0 are the resistive loads. Further we impose the boundary
conditions

V2(·, b−) � y24
D , V3(·, b−) � y34

D ,

V4(·, a+) � y24
D , V4(·, b−) � y34

D .

Finally, the switching transformer node is governed by the electric circuit
given in Figure 2.3.

P1

P2

κ12

κ13

i13

i12

I3, V3

I2, V2

I1, V1

I4, V4

P3

P4

L12

L13

v12

v13

Fig. 2.3: A node connecting three power lines with switching transformers.

The switch independent equations governing this switching transformer
node are as follows

L12
d
dt i12 � v12 , L13

d
dt i13 � v13 , (2.8)
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with output

y2
D � κ12v12 , y3

D � κ13v13 ,

where κ12 , κ13 > 0 are the voltage amplification constants. Note that, in this
example, we use amplifiers only for the voltage values, so the power grid ex-
ample is a simplified model.

If the switch connects line 1 and 2, then the following two algebraic con-
straints hold

0 � i12 − I1(·, b−), 0 � i13

together with the output y1
D � v12 and, otherwise,

0 � i12 , 0 � i13 − I1(·, b−)
with output y1

D � v13. Let w̃ � (i12 , i13 , v12 , v13)>, then the rules governing
the switching transformer node can be compactly written as a switched DAE

Ẽσ Û̃w � H̃σw̃ + B̃σq̃

ỹD � C̃Dσ w̃,

where

Ẽ1 � Ẽ2 �

[ L12 0 0 0
0 L13 0 0
0 0 0 0
0 0 0 0

]
, H̃1 � H̃2 �

[
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
,

B̃1 �

[
0 0 0
0 0 0−1 0 0
0 0 0

]
�: [B̃1

1 , 0, 0], B̃2 �

[
0 0 0
0 0 0
0 0 0−1 0 0

]
�: [B̃1

2 , 0, 0],

C̃D1 �

[
0 0 1 0
0 0 κ12 0
0 0 0 κ13

]
, C̃D2 �

[
0 0 0 1
0 0 κ12 0
0 0 0 κ13

]
,

with

q̃ � (I1(·, b−), I2(·, a+), I3(·, a+))> , ỹD � (y1
D , y2

D , y3
D)>.

The coupling via the boundaries of the lines 1,2 and 3 are as follows

V1(·, b−) � y1
D , V2(·, a+) � y2

D , V3(·, a+) � y3
D .

Thus the overall coupled system has the form (2.1) with

A �

[ A1 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A4

]
where A j �

[
0 1

` j L j
1

` j C j
0

]
for each j � 1, 2, 3, 4, (2.9)

u �
(
u>1 , u

>
2 , u

>
3 , u

>
4

)>
with u j � (I j ,Vj)>, the output of the PDE (used as an

input to the switched DAE) are all currents at the boundaries of the lines, i.e.

CP �


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

 ,



8 R. Borsche, D. Kocoglu, S.Trenn

the switched DAE has the state vector w � (z1 , i12 , i13 , v12 , v13 , z24 , z34)>,
coefficient matrices

Ek �

[ 0 0 0 0
0 Ẽk 0 0
0 0 0 0
0 0 0 0

]
, Hk �

[ 1 0 0 0
0 H̃k 0 0
0 0 1 0
0 0 0 1

]
, Bk �

[
0 0 0 0 0 0 0 0
0 0 0 0 B̃1

k 0 0 0

0 0 0 −R24 0 R24 0 0
0 0 0 0 0 0 −R34 −R34

]
,

CD k �


1 0 0 0
0 [0,1,0] 0 0
0 [0,0,1] 0 0
0 0 1 0
0 [1,0,0] 0 0
0 0 1 0
0 0 0 1
0 0 0 1

 ·
[
1 0 0 0
0 C̃Dk 0 0

0 0 1 0
0 0 0 1

]
, fk �


−vG
0
0
0
0
0
0

 ,
(2.10)

where k � 1, 2 and the coupling matrix P �
[

Pa 0
0 Pb

]
is given by

Pa � Pb �

[
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

]
.

3 Linear hyperbolic PDEs

In this section we recall the solution properties of a system of linear PDEs on
a bounded spatial domain

∂tu(t , x) + A∂xu(t , x) � 0, x ∈ [a , b], t ≥ t0 , (3.1)

where t0 is the initial time for the system, u : [t0 ,∞) × [a , b] → Rn is the
n-dimensional unknown vector and A ∈ Rn×n with the prescribed initial con-
dition

u(t0 , x) � ut0(x), x ∈ [a , b]. (3.2)

Assumption 1 The system (3.1) is assumed to be hyperbolic; i.e. A is as-
sumed to be nonsingular and diagonalizable by a real coordinate transforma-
tion.

Under Assumption 1 there exists a nonsingular matrix R ∈ Rn×n such that

R−1AR � diag(λ1 , λ2 , . . . , λn),
where λi , i � 1, . . . , n , are the (real) eigenvalues of A. The matrix R is
composed of the eigenvectors ri corresponding to the eigenvalues λi of A.
Without restricting generality (and under the nonsingularity assumption of A)
we can assume that λ1 ≤ λ2 ≤ . . . ≤ λn−r < 0 < λn−r+1 ≤ . . . ≤ λn−1 ≤ λn ,
where r ∈ {0, 1, . . . , n} is the number of positive eigenvalues of A. Finally,
we let Λ :� diag(λ1 , λ2 , . . . , λn) and R � [R− ,R+], where the columns of the
matrices R− and R+ consist of the eigenvectors that correspond to negative
and positive eigenvalues of A, respectively.

By applying the coordinate transformation v � R−1u, we see that (3.1) is
equivalent to a decoupled system of scalar PDEs, i � 1, 2, . . . , n,

∂t vi(t , x) + λi∂x vi(t , x) � 0 (3.3a)
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vi(t0 , x) �: vt0
i (x), (3.3b)

where vt0
i � riu

t0 , where ri is the i−th row vector of R−1.
On a bounded spatial domain, say x ∈ [a , b] , it is necessary to prescribe

some boundary conditions at the boundaries x � a and x � b. The system (3.1)
needs as many boundary conditions at x � a as the number of positive eigen-
values and as many boundary conditions at x � b as the number of negative
eigenvalues. The boundary conditions are defined as

Pau(t , a) � ba(t),
Pbu(t , b) � bb(t), t > t0 , (3.4)

where Pa ∈ Rr×n , Pb ∈ R(n−r)×n , ba : R → Rr and bb : R → Rn−r . For
the well-posedness of the boundary condition (2.1c) for the hyperbolic PDE
(3.1) satisfying Assumption 1 we will impose the following assumption on the
coupling matrix P.

Assumption 2 The coupling matrix in (2.1c) has the block structure P �[
Pa 0
0 Pb

]
where Pa ∈ Rr×n and Pb ∈ R(n−r)×n satisfy

ker Pa ⊕ im R+
� Rn and ker Pb ⊕ im R− � Rn .

For the boundary conditions (3.4) in the characteristic variables we define
M �

[
M1 M2

] ∈ Rr×n and N �
[
N1 N2

] ∈ R(n−r)×n by[
PaR− PaR+

PbR− PbR+

]
�

[
M1 M2

N1 N2

]
.

From Assumption 2 it is easily seen that M2 and N1 are invertible, and we
therefore can transform (3.4) as follows

va
+(t) :� v+(t , a) � −M−12 M1v−(t , a) + M−12 ba(t),

vb−(t) :� v−(t , b) � −N−11 N2v+(t , b) + N−11 bb(t), t > t0. (3.5)

Remark 3 In the case that the wave speed λi � 0, the equation (3.3) is simply
∂t vi � 0, meaning that the change in the solution with respect to time is zero,
with the initial condition given as in (3.3b). Hence, the solution is given by
the initial condition vi(t , x) � vt0

i (x).

3.1 Explicit solution formula in terms of characteristic variables

In order to give a solution formula in a compact form, we define two shift
operators as follows.



10 R. Borsche, D. Kocoglu, S.Trenn

Definition 4 (Shift operator for functions) Denote with F (A → B) the
set of all functions from some set A to some set B. Let T ⊆ R and X ⊆ R, then
the time shift operator Sλ,x0time with speed λ ∈ R and initial position x0 ∈ X is

Sλ,x0time : F (T → R) 7→ F (T × X → R), f 7→ [(t , x) 7→ f
(
t − x−x0

λ

) ]
,

with the convention that f (s) � 0 if s < T. The space shift operator Sλ,t0space

with speed λ ∈ R and initial time t0 ∈ T is

Sλ,t0space : F (X → R) 7→ F (T × X → R), g 7→ [(t , x) 7→ g
(
x − λ(t − t0)

) ]
,

with the convention that f (y) � 0 if y < X.

Consider the system (3.3a) with the initial condition (3.3b) and the bound-
ary conditions (3.5). To ease the notation, let K− :� {1, . . . , n − r} and
K+ :� {n − r + 1, . . . , n}. The solution to each scalar PDE (3.3a) can be found
individually in terms of the initial condition vt0

i (x), (3.3b) and boundary con-

dition vi(t , b) �: vb
i (t) in (3.5). The solution v(t , x) is expressed in terms of

v−(t , x) and v+(t , x) separately below.
For left-going waves, the solution is of the form

vi(t , x) �

(
Sλi ,t0
spacevt0

i

)
(t , x), if x − b ≤ λi(t − t0),(

Sλi ,b
timevb

i

)
(t , x), if x − b > λi(t − t0),

(3.6)

where i ∈ K− and x ∈ [a , b]. In a similar fashion, the solution to right-going
waves is of the form

v j(t , x) �
{
Sλ j ,t0
spacevt0

j , if x − a ≥ λ j(t − t0),
Sλ j ,a
timeva

j , if x − a < λ j(t − t0),
(3.7)

where j ∈ K+ and x ∈ [a , b].
The solutions v−(t , x) and v+(t , x) together form the solution v(t , x) to

the system (3.3a) with the initial condition (3.3b) and the boundary condi-
tions (3.5). Hence, v(t , x) can be written as

v(t , x) �
∑
i∈K−

[
diag(ei )

0r,n−r

] [
1{x−b≤λi (t−t0)}Sλi ,t0

spacev
t0− + 1{x−b>λi (t−t0)}Sλi ,b

timev
b−
]
(t , x)

+

∑
j∈K+

[
0n−r,r

diag(e j−(n−r))
] [
1{x−a≥λ j (t−t0)}S

λ j ,t0
spacev

t0
+ + 1{x−a<λ j (t−t0)}S

λ j ,a
timev

a
+

]
(t , x),

(3.8)
where ei ∈ R(n−r)×(n−r) and e j ∈ Rr×r are the i-th and j-th directional unit
vectors. The solutions at x � a and x � b then are of the form

v(t , a) �
[

0n−r,r

M−12

]
ba(t) +

[
In−r,n−r 0n−r,r

−M−12 M1 0r,r

] ∑
i∈K−

[
diag(ei )

0r,n−r

] (
Sλi ,b
timev

b−
)
(t , a),

v(t , b) �
[

N−11
0r,n−r

]
bb(t) +

[
0n−r,n−r −N−11 N2

0r,n−r Ir,r

] ∑
j∈K+

[
0n−r,r

diag(e j−n+r )
] (
Sλ j ,a
timev

a
+

)
(t , b).

(3.9)
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3.2 Solution framework for the linear hyperbolic system

In this section, the solution u(t , x) to the system (3.1) with the initial and
boundary conditions (3.2) and (3.4) will be formulated by using the results
from the previous Section 3.1 and passing to the representation in the original
variables, i.e. u � Rv.

Lemma 5 Consider the PDE (3.1) satisfying Assumption 1 and 2 with some
given initial trajectory ut0 as in (3.2) and boundary conditions ba, bb as
in (3.4). Let

ua(t) :�


∑

i∈K− Πi

(
Sλi ,t0
spaceu

t0
)
(t , a), t ≤ t0 + b−a

λi

Faba(t) +∑n
k�1 Dab

k

(
Sλk ,b
timeu

b
)
(t , a), t > t0 + b−a

λk

ub(t) :�


∑

j∈K+ Π j

(
Sλ j ,t0
spaceu

t0
)
(t , b), t ≤ t0 + b−a

−λ j

Fbbb(t) +∑n
k�1 Dba

k

(
Sλk ,a
timeu

a
)
(t , b), t > t0 + b−a

λk

(3.10)

where Πp :�
[
R− R+

]
diag(ep)

[
R− R+

]−1
, with ep ∈ Rn is the p-th directional

unit vector, p � 1, 2, . . . , n , K− � {1, 2, . . . , n − r}, K+ � {n − r + 1, n − r +

2, . . . , n},

Fa � R

[
0n−r,r
M−12

]
and Fb � R

[
N−11

0r,n−r

]
, (3.11a)

Dab
p � R

[
In−r,n−r 0n−r,r

−M−12 M1 0r,r

]
R−1 Πp and Dba

p � R
[

0n−r,n−r −N−11 N2

0r,n−r Ir,r

]
R−1Πp ,

(3.11b)

and where it is assumed that ut0(x) � 0 for x < [a , b]. Then every classical
solution is given by

u(t , x) �
∑
i∈K−

Πi

(
Sλi ,b
timeu

b
)
(t , x) +

∑
j∈K+

Π j

(
Sλ j ,a
timeu

a
)
(t , x).

The proof is a direct consequence of the method of characteristics. Details
can be found e.g. in [3].

Remark 6 In addition to the 2D shift operator defined as in Definition 4, we
analogously define the 1D time shift operator Sτtime with τ ∈ R for functions
f : T ⊆ R→ R as follows

Sτtime : F (T → R) 7→ F (T → R), f 7→ [t 7→ f (t − τ)]. (3.12)

where F is as in Definition 4 and with the convention that f (s) � 0 if s < T.
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Remark 7 Let uab(t) :�
(
ua(t)> , ub(t)>)> ∈ R2n, where ua(t) and ub(t) given

as in (3.10). Below we express uab in a compressed form in terms of the 1D
time shift operator Sτtime

uab(t) �
[

Fa 0n ,n−r
0n ,r Fb

] [
ba (t)
bb (t)

]
+

n∑
k�1

[
0n ,n Dab

k
Dba

k 0n ,n

] (Sτk
timeuab(t)

)
, (3.13)

where τk �
b−a

sgn(λk )λk
, the matrices Fa ,Fb ,Dab

k ,D
ba
k , k � 1, 2, . . . , n, are given as

in (3.11) and the extensions of initial conditions as boundary conditions for the
negative times are adapted as in the proof of Lemma 5. Then the equality (3.13)
follows from the equations (3.10).

4 Switched differential-algebraic equations

In this section, we consider switched differential-algebraic equations (swDAEs)
of the form

Eσ Ûw(t) � Hσw(t) + Bσq(t) + fσ(t), (4.1)

with the output yD(t) :� CDσw(t), where w : [t0 ,∞) → Rm , m ∈ N, is the
state variable of the system, σ : R→ {1, 2, . . . ,N}, N ∈ N, is a piecewise
constant switching signal with a locally finite set of jump points and is right-
continuous, Eξ ,Hξ ∈ Rm×m for each ξ ∈ {1, 2, . . . ,N} and fξ : [t0 ,∞) → Rm

is some inhomogeneity, Bξ ∈ Rm×ν, q : [t0 ,∞) → Rν is the input, yD ∈ Rm1 ,
m1 ∈ N, CDξ ∈ Rm1×m . Note that the matrix Eξ is not assumed to be non-
singular.

For the existence and uniqueness of solutions to (4.1), the following defini-
tion of regularity of matrix pairs will be employed.

Definition 8 (Regularity of a matrix pair) The matrix pencil sEξ−Hξ ∈
Rm×n[s], ξ ∈ {1, 2, . . . ,N}, N ∈ N is called regular if and only if n � m and
det(sEξ − Hξ) is not the zero polynomial. The matrix pair (Eξ ,Hξ) and the
corresponding mode ξ for the swDAE (4.1) are called regular if sEξ − Hξ is
regular.

Due to the nonsingularity of Eξ solutions of (4.1) need to satisfy certain
algebraic constraints which in general differ from each mode. Hence at a switch-
ing time ts ∈ R the value w(t−s ) may be inconsistent with the mode after the
switch, resulting in a jump in w at ts . In fact, derivatives of jumps, i.e. Dirac
impulses, may also occur in response to switches [19]. Therefore, the solution
space must be enlarged to distributions so that also jumps and Dirac impulses
are allowed in the solutions. To this end, piecewise-smooth distributions are
considered as the solution space. Below, we first recall the definition of scalar
piecewise-smooth functions and distributions as in [17].
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Definition 9 (Piecewise-smooth function/distribution) Let T ⊆ R be
an open interval. A function α : T → R is called piecewise-smooth if and only
if

α �

∑
i∈Z
(αi)[ti ,ti+1) (4.2)

where the functions αi : T → R, i ∈ Z, are (globally) smooth and the set
{ti ∈ T | i ∈ Z} is an ordered discrete set, i.e. ti < ti+1 for all i ∈ Z and the
intersection with any compact subset of T only contains finitely many points.
The set of all piecewise-smooth functions is denoted by C∞pw(T). A distribution
D ∈ D(T) is called piecewise-smooth if

D � αD +

∑
τ∈∆

Dτ

where α ∈ C∞pw, ∆ ⊆ T is a discrete set and supp Dτ ⊆ {τ} for all τ ∈ ∆. The
space of all piecewise-smooth distributions is denoted by DpwC∞(T).

Note that a distribution Dτ has point support {τ} if and only if there exist
dτ ∈ N, c0 , . . . , cdτ ∈ R such that

Dτ �

dτ∑
i�0

ciδ
(i)
τ ,

where δ(k)τ is the k-th derivative of the Dirac impulse δτ at τ ∈ T. It is easily
seen that the space of piecewise-smooth distributions is closed with respect
to differentation and contains the space of piecewise-smooth functions as a
subspace. In fact, a distribution is piecewise-smooth if, and only if, locally it
is equal to a finite derivative of a piecewise-smooth function; in other words,
for all D ∈ DpwC∞ and all compact subsets K ⊆ T there exists k ∈ N and
α ∈ C∞pw(T;R) such that

D(ϕ) � (αD)(k)(ϕ) ∀ϕ ∈ C∞0 (T;R) with suppϕ ⊆ K.

Having defined a suitable solution space DpwC∞ that allows distributions
as solutions to the swDAE (4.1), the state variable w, the input q and the
inhomogeneity f in the swDAE (4.1) are considered in this solution space
DpwC∞ and they are vectors of distributions in DpwC∞ ; i.e., w, f ∈ (

DpwC∞
)m

and q ∈ (
DpwC∞

)ν
.

Theorem 10 (Existence and uniqueness of solutions of swDAEs, [17])
Consider the swDAE as given in (4.1) with regular matrix pairs (Eξ ,Hξ)
with ξ ∈ {1, 2, . . . ,N}, and assume that the switching signal σ only has lo-
cally finitely many switches. Then for every initial trajectory wt0 ∈ (

DpwC∞
)m

with the initial time t0 ∈ R, any input q ∈ (
DpwC∞

)ν
and any inhomogeneity
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fσ ∈
(
DpwC∞

)m
, there exists a unique globally defined solution w ∈ (

DpwC∞
)m

of the initial trajectory problem

w(−∞,t0) � wt0
(−∞,t0) ,

(Eσ Ûw)[t0 ,∞) � (Hσw + Bσq + fσ)[t0 ,∞) .
(4.3)

Furthermore, the solution on [t0 ,∞) is uniquely determined by w(t−0 ).

5 Distributional solution of the PDE

In section 3, we have reviewed the classical solution to linear hyperbolic PDEs.
But considering a coupling with switched DAEs the boundary data for the
PDE is given by piecewise smooth distributions. Thus we need to extend the
solutions in the distributional sense, including Dirac impulses and its deriva-
tives. Unfortunately we can not simply consider distributions on R2, since we
still need to evaluate the traces at initial time and the boundaries. Therefore
we construct an appropriate solution space by piecewise-smooth distributions
in time and space.

5.1 Distribution theory in time and space

Definition 11 (Piecewise-smooth functions in time and space)
Denote by T ⊆ R (time) and X ⊆ R (space) open intervals. We say a family of
subsets (Pi)i∈I of T×X for some index set I is a polyhedral partition of T×X
if and only if Pi are polyhedral sets (i.e., the intersection of finitely many open
or closed half-spaces in T × X), are pairwise disjoint and

⋃
i∈I Pi � T × X.

A function β : T × X → R is called (polyhedral) piecewise-smooth if and
only if there exists a locally finite polyhedral partition

⋃
i∈I Pi of T × X and a

family of smooth functions βi : T × X → R, i ∈ I such that

β �

∑
i∈I

χPi βi , (5.1)

where χPi is the characteristic function of the set Pi ⊆ T × X.

In the definition of a polyhedral partition (Pi)i∈I it is not excluded that
some Pi have empty interior (i.e. have measure zero), this has the advantage
that then the corresponding space of piecewise-smooth functions is closed un-
der addition and restriction to polyhedral sets. For a piecewise smooth function
β : T×X → R it is easily seen, that for any t ∈ T and x ∈ X the functions β(t , ·)
and β(·, x) are scalar piecewise-smooth functions as in Definition 9 (where we
treat two functions as equal when they are equal almost everywhere).

Definition 12 (Dirac segment, cf. [23]) Let L ⊆ T ×X be a line segment,
i.e. there exists t0 , t1 ∈ T, x0 , x1 ∈ X such that

L � {(t0 + ξ(t1 − t0), x0 + ξ(x1 − x0)) | ξ ∈ [0, 1]} . (5.2)
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Then the Dirac segment on L is

δL : C∞0 (T × X → R) → R : ϕ 7→
∫

L
ϕ,

where
∫

L ϕ is the usual line integral given by∫
L
ϕ �

∫ 1

0

ϕ(t0 + α(t1 − t0), x0 + α(x1 − x0))
√
∆t2 + ∆x2 dα,

where ∆t � t1−t0 and ∆x � x1−x0. For unbounded line segments (i.e. ξ ranges
over an unbounded interval in (5.2)) the integral boundaries in the definition
of

∫
L ϕ are replaced by ±∞ appropriately.

Note that if ∆t , 0 then∫
L
ϕ �

∫ t1

t0
ϕ(t , x0 +

∆x
∆t (t − t0))

√
1 +

∆x2

∆t2 dt

and if ∆x , 0 then∫
L
ϕ �

∫ x1

x0
ϕ(t0 + ∆t

∆x (x − x0), x)
√

1 +
∆t2
∆x2 dx.

Lemma 13 Assume T � R, X � R and consider the unbounded line L �

{(t0 + λ∆t , x0 + λ∆x) | λ ∈ R} for some t0 ∈ T, x0 ∈ X and ∆t > 0,∆x > 0.
For the step function along L given by

HL(t , x) �
{

1, t − t0 ≥ ∆t
∆x (x − x0),

0, otherwise
�

{
1, x − x0 ≤ ∆x

∆t (t − t0),
0, otherwise

we have

∂t HLD �
1√

1 + ( ∆t
∆x )2

δL , ∂xHLD � − 1√
1 + (∆x

∆t )2
δL

in particular,
∂t HLD � −∆x

∆t ∂xHLD

Proof Recall the general definition of the partial derivative of a distribution
D on T × X:

(∂t D) (ϕ) :� −D
(
∂tϕ

)
and (∂xD) (ϕ) :� −D

(
∂xϕ

)
.

Hence we have

(∂t HLD) (ϕ) � −
∫

X

∫
T

HL(t , x)∂tϕ(t , x)dt dx

� −
∫ ∞

−∞

∫ ∞

t0+
∆t
∆x (x−x0)

∂tϕ(t , x) dt dx
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�

∫ ∞

−∞
ϕ(t0 + ∆t

∆x (x − x0), x)dx �
1√

1 +
(
∆t
∆x

)2 ∫
L
ϕ,

(∂xHLD) (ϕ) � −
∫

T

∫
X

HL(t , x)∂xϕ(t , x) dx dt

� −
∫ ∞

−∞

∫ x0+
∆x
∆t (t−t0)

−∞
∂tϕ(t , x) dx dt

� −
∫ ∞

−∞
ϕ(t , x0 +

∆x
∆t (t − t0)) dt � − 1√

1 +
(
∆x
∆t

)2 ∫
L
ϕ.

From this, the claims follow. ut
Corollary 14 Let P ⊆ T × X be a polyhedral set with the line segments
L1 , L2 , . . . , Lp as boundaries. Then the partial derivative of χPD is a linear
combination of δL1 , δL2 , . . . , δLp .

Definition 15 (Piecewise-smooth distributions in space and time) A
distribution D : C∞0 (T ×X) → R is called piecewise smooth if and only if there
exists a piecewise smooth function β : T × X → R and a locally finite family

of line segments (L j) j∈J in T × X and coefficients αk ,`
j ∈ R, k � 0, 1, . . . , nt

j ,

` � 0, 1, . . . , nx
j such that

D � βD +

∑
j∈J

∑
k ,`

αk ,`
j ∂(k)t ∂(`)x δL j . (5.3)

The space of piecewise-smooth distributions on T×X is denoted by DpwC∞(T×
X)
Lemma 16 Let D ∈ DpwC∞(T × X) given by (5.3) and (5.1), then

1. ∂t D ∈ DpwC∞(T × X) and ∂xD ∈ DpwC∞(T × X);
2. The restriction of D to any polyhedral set P ⊆ T × X given by DP :�

(∑i∈I χPi∩Pβi)D+∑
j∈J

∑
k ,` α

k ,`
j (∂t)k(∂x)`δL j∩P is well defined and is again

a piecewise-smooth distribution.

Proof 1. It suffices to show that the (partial) derivative of (the induced dis-
tribution by) a piecewise-smooth function (in the sense of Definition 11) is
a piecewise-smooth distribution. Since the sum in (5.1) is locally finite, it
furthermore suffices to consider only a single summand and since the mul-
tiplication with a smooth function is well defined for general distributions
it suffices to show that the partial derivatives of the indicator function χP
for any polyhedral set P ⊆ T ×X is a piecewise-smooth distribution, which
was already established in Corollary 14.
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2. First note that the intersection of two polyhedral sets is again a polyhedral
set, hence

∑
i∈I χPi∩Pβi is a piecewise-smooth function. Furthermore, the

intersection of a line-segment with a polyhedral set is again a line-segment
(or empty), hence DP is again a piecewise-smooth distribution (taking into
account the local finiteness property, which implies that evaluated at any
test-function reduces to finite sums for which no convergence issues occur
due to the restriction). ut

For any (t , x) ∈ T ×X, we want to define in the following the partial evalu-
ations D(t+ , ·), D(t− , ·), D(·, x−), D(·, x+) such that they are piecewise-smooth
distributions on X or T, respectively, and such that (partial) differentiation
commutes with the partial evaluation, i.e.

(∂xD)(t± , ·) � D(t± , ·)′ and (∂t D)(·, x±) � D(·, x±)′,

here (·)′ denotes the (scalar) differentiation in DpwC∞(T) or DpwC∞(X), re-
spectively. Clearly, for piecewise-smooth functions such an evaluation is triv-
ially defined. Due to commutativity requirement concerning differentiation
and evaluation, it is also clear that it suffices to define the evaluation of Dirac
segments. Due to Lemma 13, there is however only one possible choice:

δL(t+ , ·) :�


√

1 +
∆x2

∆t2 δx0+
∆x
∆t (t−t0) , t ∈ [t0 , t1),

0, otherwise,

δL(t− , ·) :�


√

1 +
∆x2

∆t2 δx0+
∆x
∆t (t−t0) , t ∈ (t0 , t1],

0, otherwise,

δL(·, x+) :�


√

1 +
∆t2
∆x2 δt0+

∆t
∆x (x−x0) , x ∈ [x0 , x1),

0, otherwise,

δL(·, x−) :�


√

1 +
∆t2
∆x2 δt0+

∆t
∆x (x−x0) , x ∈ (x0 , x1],

0, otherwise.

Definition 17 Let D ∈ DpwC∞(T ×X) given by (5.3) and (5.1). Then for any
(t , x) ∈ T × X

D(t± , ·) :� β(t± , ·)D +

∑
j∈J

∑
k ,`

αk ,`
j ∂(k)t ∂(`)x

(
δL j (t± , ·)

)
,

D(·, x±) :� β(·, x±)D +

∑
j∈J

∑
k ,`

αk ,`
j ∂(k)t ∂(`)x

(
δL j (·, x±)

)
.
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5.2 Distributional solutions for linear hyperbolic PDE

Before addressing linear systems, we consider the scalar advection equation

∂t v + λ∂x v � 0, (5.5)

where λ ∈ R is the wave speed and the initial condition is prescribed as

I.C. v(t+0 , ·) � vt0 , (5.6)

where vt0 ∈ DpwC∞((a , b)) and the boundary condition given as

B.C.

{
v(·, a+) � va , if λ > 0,

v(·, b−) � vb , if λ < 0,
(5.7)

where va , vb ∈ DpwC∞((t0 ,∞)).
We now expand the definition of the shift operator for continuous functions

in Definition 4 to distributions.

Definition 18 (Shift operator for Dirac impulses) Let T,X ⊆ R be open
intervals. The distributional time shift operator of a Dirac impulse at t∗ ∈ T
δt∗ ∈ DpwC∞(T) with speed λ and initial position x0 is given by

Sλ,x0timeδt∗ :�
1√

1 +
1
λ2

δ
Lλ,(t

∗ ,x0)
time

,

where Lλ,(t
∗ ,x0)

time :� {(t , x) | t ∈ T, x � x0 + λ(t − t∗) ∈ X}; the distributional space
shift operator of a Dirac impulse δx∗ ∈ DpwC∞(X) at x∗ ∈ X with speed λ and
initial time t0 is given by

Sλ,t0spaceδx∗ :�
1√

1 + λ2
δ

Lλ,(t0 ,x
∗)

space
,

where Lλ,(t0 ,x
∗)

space :� {(t , x) | x ∈ X, t � t0 + (x − x∗)/λ ∈ T} .

Note that in the definition of the shift operator for Dirac impulses the fac-

tors 1/
√

1 + 1/λ2 and 1/√1 + λ2 are necessary to obtain the following equali-
ties (

Sλ,x0timeδt∗
)
(·, x±) � δt∗+(x−x0)/λ and

(
Sλ,t0spaceδx∗

)
(t± , ·) � δx∗+λ(t−t0).

In particular,(
Sλ,x0timeδt∗

)
(·, x±0 ) � δt∗ and

(
Sλ,t0spaceδx∗

)
(t±0 , ·) � δx∗ .

An illustration of the time- and space shift of Dirac impulses can also be
found in Figure 5.1.
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x=a
x*1 x*2x

*
3 x*4 x*5 x*6 x*7

x=b

t*1

t*2

t*3

t*4

Fig. 5.1: PDE domain (t0 ,∞) × (a , b), λ > 0. An example of Dirac impulses prescribed in
initial and boundary conditions at certain locations in space, x∗m , m � {1, 2, . . . , 7}, and time
domains, t∗i , i � {1, 2, 3, 4}, respectively. The green and pink lines correspond to the Dirac
segments on these lines and show how Dirac impulses are shifted within the domain.

Definition 19 (Shift operator for piecewise-smooth distributions) Let
DT ∈ DpwC∞(T) and DX ∈ DpwC∞(X) be given by DT � dT

D +
∑

t∗∈T∗ DT
t∗ and

DX � dX
D +

∑
x∗∈X∗ DX

x∗ , where dT ∈ C∞pw(T), dX ∈ C∞pw(X), T∗ ⊂ T and X∗ ⊂ X
are locally finite sets, and for each t∗ ∈ T∗ and x∗ ∈ X∗ we have nt∗ ∈ N and
nx∗ ∈ N, ct∗

i ∈ R, i � 0, 1, . . . , nt∗ and cx∗
j ∈ R, j � 0, 1, . . . , nx∗ such that

DT
t∗ �

nt∗∑
i�0

ct∗
i ∂
(i)
t δt∗ and DX

x∗ �

nx∗∑
j�0

cx∗
i ∂
( j)
x δx∗ .

Then the distributional time shift of DT with speed λ and initial position x0

is given by

Sλ,x0timeDT :� (Sλ,x0timedT)D +

∑
t∗∈T∗

nt∗∑
i�0

ct∗
i ∂
(i)
t Sλ,x0timeδt∗ ,

and the distributional space shift of DX with speed λ and initial time t0 is
given by

Sλ,t0spaceDX :� (Sλ,t0spacedX)D +

∑
x∗∈X∗

nx∗∑
j�0

cx∗
j ∂
( j)
x Sλ,t0spaceδx∗ .

Assume λ > 0 and let vt0 and va be given as in (5.6) and (5.7), respectively.
Below, we will formulate the solution to the equation (5.5) in terms of the dis-

tributional space/time shift operators Sλ,t0space, Sλ,atime. As seen in Section 3, since
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the solution is constant along the characteristics, exploiting the distributional
space/time shift operator given in Definition 19, it can be written as

v(t± , ·) �
( (
1{x−a≥λ(t−t0)}

)
D Sλ,t0spacevt0 +

(
1{x−a<λ(t−t0)}

)
D Sλ,atimeva

)
(t± , ·),

(5.8a)

v(·, x±) �
( (
1{x−a≥λ(t−t0)}

)
D Sλ,t0spacevt0 +

(
1{x−a<λ(t−t0)}

)
D Sλ,atimeva

)
(·, x±).

(5.8b)

Then, the solution to the differential equation (5.5) at the right boundary
with λ > 0 takes the form

v(·, b−) �
((
1(

t0 ,t0+
b−a
λ

) )
D

Sλ,t0spacevt0 +

(
1(

t0+
b−a
λ ,∞

) )
D

Sλ,atimeva
)
(·, b−),

which can be put in the form

v(·, b−) �
(
Sλ,atimeva

)
(·, b−), (5.9)

where
(
Sλ,atimeva

)
(·, b−) :�

(
Sλ,t0spacevt0

)
(·, b−) on (t0 , t0 + b−a

λ ) with the conven-

tion that vt0 � 0 outside (a , b).
Now assume λ < 0 and let vt0 and vb be given as in (5.6) and (5.7), re-

spectively, and let vt0 ∈ DpwC∞(X) and vb ∈ DpwC∞(T). The solution formulae
to the equation (5.5) with λ < 0 are now of the form

v(t± , ·) �
( (
1{x−b≤λ(t−t0)}

)
D Sλ,t0spacevt0 +

(
1{x−b>λ(t−t0)}

)
D Sλ,btimevb

)
(t± , ·),

v(·, x±) �
( (
1{x−b≤λ(t−t0)}

)
D Sλ,t0spacevt0 +

(
1{x−b>λ(t−t0)}

)
D Sλ,btimevb

)
(·, x±).

Similarly, the solution to the differential equation (5.5) with λ < 0 at the
left boundary can be written as

v(·, a+) �
((
1(

t0 ,t0+
b−a
−λ

) )
D

Sλ,t0spacevt0 +

(
1(

t0+
b−a
−λ ,∞

) )
D

Sλ,btimevb
)
(·, a+),

which is written as
v(·, a+) � Sλ,btimevb(·, a+), (5.10)

where
(
Sλ,btimevb

)
(·, a+) :�

(
Sλ,t0spacevt0

)
(·, a+) on (t0 , t0 + b−a

−λ ) with the conven-

tion that vt0 � 0 outside (a , b).
As a system of PDEs with boundary conditions we consider

∂tu + A∂xu � 0, (5.11a)

I.C. u(t+0 , ·) � ut0 , (5.11b)

B.C. Pau(·, a+) � ba , and Pbu(·, b−) � bb , (5.11c)
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with the unknown u ∈ (
DpwC∞ ((t0 ,∞) × (a , b))

)n
, the initial condition ut0 ∈(

DpwC∞ (a , b)
)n

and ba ∈ (
DpwC∞ ((t0 ,∞))

) r
, bb ∈ (

DpwC∞ ((t0 ,∞))
)n−r

are left

and right boundary conditions with Pa ∈ Rr×n , and Pb ∈ R(n−r)×n .
As in Section 3 and with Assumption 1, the system is decomposed into its

distributional characteristic variables v ∈ (
DpwC∞ ((t0 ,∞) × (a , b))

)n
with the

initial condition

v
(
t+0 , ·

)
�

(
v−(t+0 , ·)
v+(t+0 , ·)

)
�:

(
vt0−
vt0
+

)
, (5.12)

where vt0− ∈
(
DpwC∞ (a , b)

)n−r
, vt0

+ ∈
(
DpwC∞ (a , b)

) r
and the boundary condi-

tions take the form

Mv(·, a+) � ba , and Nv(·, b−) � bb ,

where the boundary conditions for the right- and left-going waves can be
expressed as

v+(·, a+) � b̃a , (5.13a)

v−(·, b−) � b̃b , (5.13b)

with b̃a �
(
DpwC∞(T)

) r
, b̃b �

(
DpwC∞(T)

)n−r
, v � (v− , v+)> and vt0 �

(vt0− , v
t0
+ )> where v− ∈

(
DpwC∞ ((t0 ,∞) × (a , b))

)n−r
stands for the left-going

waves, whilst v+ ∈
(
DpwC∞ ((t0 ,∞) × (a , b))

) r
for the right-going waves.

The distributional solution v to the decomposed system of (5.11a), as was
done similarly to (3.3a), with the initial condition (5.12) and boundary condi-
tions (5.13a)-(5.13b) can be written in terms of the solutions of the left- and
right-going waves

v �

∑
i∈K−

[
diag(ei )

0r,n−r

] ( (
1{x−b≤λi (t−t0)}

)
D Sλi ,t0

spacev
t0− +

(
1{x−b>λi (t−t0)}

)
D Sλi ,b

timeb̃
b
)

+

∑
j∈K+

[
0n−r,r

diag(e j−(n−r))
] ((

1{x−a≥λ j (t−t0)}
)
D
Sλ j ,t0
spacev

t0
+ +

(
1{x−a<λ j (t−t0)}

)
D
Sλ j ,a
timeb̃

a
)
.

(5.14)

The distributional solution u to the IBVP system (5.11a)-(5.11b)-(5.11c)
is now formulated via inversion of the distributional characteristic variables
u � Rv. Let Πp :� R diag(ep) R−1 with diag(ep) ∈ Rn is the p-th directional
unit vector. The solution is

u �

∑
i∈K−

Πi

( (
1{x−b≤λi (t−t0)}

)
D Sλi ,t0

spaceu
t0 +

(
1{x−b>λi (t−t0)}

)
D Sλi ,b

timeu
b
)

+

∑
j∈K+

Π j

( (
1{x−a≥λi (t−t0)}

)
D S

λ j ,t0
spaceu

t0 +
(
1{x−a<λi (t−t0)}

)
D S

λ j ,a
timeu

a
)
,

or, in the compact form

u �

∑
i∈K−

Πi

(
Sλi ,b
timeu

b
)
+

∑
j∈K+

Π j

(
Sλ j ,a
timeu

a
)
, (5.15)
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where 
(
SΛ− ,btimeub

)
:�

∑
i∈K− Πi

(
Sλi ,t0
spaceu

t0
)
, on (t0 , t0 + b−x

−λi
),(

SΛ+ ,a
timeua

)
:�

∑
j∈K+ Π j

(
Sλ j ,t0
spaceu

t0
)
, on (t0 , t0 + x−a

λ j
),

(5.16)

with the convention that ut0 � 0 outside (a , b).
At the left- and right-end of the spatial domain, the distributional solution

u is as follows

u(·, a+) � R
[

0n−r,r
M−1

2

]
ba(·) + R

[
In−r,n−r 0n−r,r

−M−12 M1 0r,r

]
R−1

∑
i∈K−

Πi

(
Sλi ,b
timeu

b
)
(·, a+),

u(·, b−) � R
[

N−1
1

0r,n−r

]
bb(·) + R

[
0n−r,n−r −N−11 N2

0r,n−r Ir,r

]
R−1

∑
j∈K+

Π j

(
Sλ j ,a
timeu

a
)
(·, b−),

(5.17)
where ua :� u(·, a+), ub :� u(·, b−) and

(
SΛ− ,btimeub

)
(·, a+) :�

∑
i∈K− Πi

(
Sλi ,t0
spaceu

t0
)
(·, a+), on (t0 , t0 + b−a

−λi
),(

SΛ+ ,a
timeua

)
(·, b−) :�

∑
j∈K+ Π j

(
Sλ j ,t0
spaceu

t0
)
(·, b−), on (t0 , t0 + b−a

λ j
),

(5.18)

with the convention that ut0 � 0 outside (a , b).
Remark 20 Similar to the 1D time shift defined in Remark 6, we define the
1D distributional time shift Sτtime for D ∈ DpwC∞(T). Let D ∈ DpwC∞(T) be
given by D � dD +

∑
t∗∈T∗ Dt∗ , where d ∈ C∞pw(T), T∗ ⊂ T is a locally finite set,

and for each t∗ ∈ T∗ we have nt∗ ∈ N, ct∗
i ∈ R, i � 0, 1, . . . , nt∗ such that

Dt∗ �

nt∗∑
i�0

ct∗
i ∂
(i)
t δt∗ .

Then the 1D distributional time shift of D is given by

SτtimeD :� (Sτtimed)D +

∑
t∗∈T∗

nt∗∑
i�0

ct∗
i ∂
(i)
t Sτtimeδt∗ .

Remark 21 The equation (5.17) can now be written in compressed form in

terms of uab ∈
(
DpwC∞(T)

)2n
and the 1D distributional time shift Sτtime as

uab � F
[

ba

bb

]
+

n∑
k�1

DkSτk
timeuab , (5.19)

where τk �
b−a

sgn(λk )λk
, F �

[
Fa 0n ,n−r

0n ,r Fb

]
, Dk �

[
0n ,n Dab

k
Dba

k 0n ,n

]
, k � 1, 2, . . . , n, where

the matrices Fa ,Fb ,Dab
k ,D

ba
k are given as in (3.11). The extension of the ini-

tial conditions as the boundary conditions for the negative times are described
in (5.18). Hence, the equality (5.19) follows from the equations in (5.17).
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So far we have constructed a piecewise-smooth distributional solution to
the hyperbolic PDE (5.11a). This solution is unique due to the following the-
orem.

Theorem 22 (Uniqueness of the distributional solution) The solutions
to (5.11a) are unique in the space of piecewise-smooth distributions.

Proof As the PDE is linear it is sufficient to show that u ≡ 0 is the only
solution to the problem with zero initial and boundary conditions. First we
verify that δL can only be a solution to the i-th characteristic component of
the PDE, if the segment has slope λi and crosses the boundary or initial time
line

(∂tδL)
(
ϕ
)
�

∫ t1

t0
∂1ϕ(t , x0 +

∆x
∆t (t − t0))

√
1 +

∆x2

∆t2 dt

(∂xδL)
(
ϕ
)
�

∫ t1

t0
∂2ϕ(t , x0 +

∆x
∆t (t − t0))

√
1 +

∆x2

∆t2 dt

(∂tδL + λi∂xδL) (ϕ) �
√

1 +
∆x2

∆t2

∫ t1

t0

d
dtϕ(t , x0 +

∆x
∆t (t − t0))

+
(
λi − ∆x

∆t

)
∂2ϕ(t , x0 +

∆x
∆t (t − t0)) dt

�

√
1 +

∆x2

∆t2

(
ϕ(t1 , x1) − ϕ(t0 , x0)

+
(
λi − ∆x

∆t

) ∫ t1

t0
∂2ϕ(t , x0 +

∆x
∆t (t − t0)) dt

)
This expression is only zero for all ϕ, if λi �

∆x
∆t and (t0 , x0) as well as (t1 , x1)

are outside of the support of the ϕ. Thus the line has to have the slope accord-
ing to the characteristic speed and the line has to fully cross the considered
domain. But at the points where the line hits the initial time or the boundaries
of the domain it has to satisfy the imposed conditions. Therefore the strength
of the impulse is equal to zero, i.e. the factor c for δL is zero. Due to linearity
the above computation can be extended directly to any combination of spatial
and temporal derivatives of δL, which concludes the proof. ut

6 The coupled system

6.1 Existence and uniqueness of the coupled system

In this section, we consider the switched DAE (2.1d) with output yD given by
(2.1e) together with the boundary behavior uab :� (u(·, a)> , u(·, b)>)> of the
PDE (2.1a). Based on the results from the previous section, we can now relate
the solution w and uab of the coupled system one-to-one with the solution of
a switched delay DAE as follows.
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Theorem 23 Consider the coupled system (2.1) satisfying Assumptions 1 and
2. Then z :� (w> , u>ab)> is a solution of the coupled system if and only if z solves
the switched delay DAE (swDDAE)[

Eσ 0
0 0

]
Ûz �

[
Hσ BσCP

FCDσ −I

]
z +

d∑
k�1

( [
0 0
0 Dk

]
Sτk
timez

)
+

[
fσ
0

]
, (6.1)

where τk , uab and the matrices F and Dk are given as in Remark 21 and its
components as in (3.11).

Proof (⇐) Assume that z � (w> , u>ab)> solves the swDDAE (6.1). From the
swDDAE (6.1), we obtain

Eσ Ûw � Hσ + BσCPuab + fσ ,

for which w is the solution with the input q � CPuab as shown in Theorem 10.
And also, from the swDDAE (6.1), we obtain

u(·, a+) � Faba
+

n∑
i�1

Dab
k

(
Sτk
timeu

b
)

� Faba
+

n∑
i�1

Dab
k

(
Sλk ,b
timeu

b
)
(·, a+),

ub(·, b−) � Fbbb
+

n∑
i�1

Dba
k

(Sτk
timeu

a )
� Fbbb

+

n∑
i�1

Dba
k

(
Sλk ,a
timeu

a
)
(·, b−),

where
[

ba

bb

]
� CDσw, which together yield the solution u

u �

∑
i∈K−

Πi

(
Sλi ,b
timeu

b
)
+

∑
j∈K+

Π j

(
Sλ j ,a
timeu

a
)
,

where 
(
SΛ− ,btimeub

)
:�

∑
i∈K− Πi

(
Sλi ,t0
spaceu

t0
)
, on (t0 , t0 + b−x

−λi
),(

SΛ+ ,a
timeua

)
:�

∑
j∈K+ Π j

(
Sλ j ,t0
spaceu

t0
)
, on (t0 , t0 + x−a

λ j
),

(6.2)

with the convention that ut0 � 0 outside (a , b) and Πp :� R diag(ep) R−1 with
diag(ep) ∈ Rn is the p-th directional unit vector.
(⇒) Assume that w is the solution to the swDDAE (2.1d)

Eσ Ûw � Hσw + BσyP + fσ ,
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where yP � CPuab and that u is the solution to the PDE (2.1a) given as (5.15).
Then uab is of the form

uab(t) � FCDσw +

n∑
k�1

DkSτk
timeuab ,

where
[

ba

bb

]
� CDσw. Hence, z � (w> , u>ab)> solves the swDDAE (6.1). ut

Since the solution of the coupled system on the whole domain can be
recovered via (5.15), we have therefore shown that the solution properties of
the coupled system can be equivalently characterized by the swDDAE (6.1).
The following result establishes conditions for existence and uniqueness of
solutions for general swDDAE.

Theorem 24 (Existence and uniqueness of solutions for swDDAEs)
Consider the following switched delay differential-algebraic equations having
d ∈ N delays such that 0 < τ1 < τ2 < . . . < τd

Eσ Ûz � Hσz +

d∑
j�1

D jSτ j

timez + gσ , (6.3)

with σ : R → {1, 2, . . . ,N}, N ∈ N, Eξ ,Hξ ,D1 , . . . ,Dd ∈ Rm×m for each
ξ ∈ {1, 2, . . . ,N}. Assume that (Eξ ,Hξ) is regular for each ξ ∈ {1, 2, . . . ,N},
then for any initial trajectory zt0 ∈ (

DpwC∞
)m

and any inhomogeneity gξ ∈(
DpwC∞

)m
, the corresponding initial trajectory problem has a unique solution.

Proof The result is a simple consequence from the “method of steps” and the
details for DDAEs with a single delay d � 1 can be found in [20]. In the
following proof, we adapt the prime notation (′) to indicate the derivative of
distributions in addition to the dot notation (Û) since the derivative of a dis-
tribution restricted to an interval and restricting a derivative of a distribution
to an interval do not have the same meaning. In other words, the operations
restriction to an interval and differentiation of a distribution do not commute.

Let τ be the smallest delay within the set {τ1 , . . . , τd}. The solution to the
swDDAE system (6.3) is shown to be expressed as

z � zt0
(−∞,t0) +

∞∑
k�1

zk
[̃tk−1 ,̃tk ) , (6.4)

where t̃k :� t0 + kτ, k ∈ N, t̃0 :� t0, and zk ∈ (
DpwC∞

)m
is the unique solution

to the non-delay swDAE, (Theorem 10),

zk
(−∞,̃tk−1) � zk−1

(−∞,̃tk−1) (6.5a)(
Eσ Ûzk

)
[̃tk−1 ,∞)

�

(
Hσzk

+ g̃σ

)
[̃tk−1 ,∞)

(6.5b)
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where g̃σ :�
(∑d

j�1D jSτ j

timez
k−1 + gσ

)
. For each ϕ ∈ C∞pw , the formally infinite

sum defining z(ϕ) is actually a finite sum, because ϕ has a compact support.

Moreover, z ∈ (
DpwC∞

)m
since it is a linear combination of piecewise-smooth

distributions. For any k ≥ 1,

(Eσ Ûz)[̃tk−1 ,̃tk ) � Eσ
©«
(
zt0
(−∞,t0)

)′
+

∞∑
p�1

(
z

p
[̃tp−1 ,̃tp )

)′ª®¬[̃tk−1 ,̃tk )

� Eσ
(
Ûz0(−∞,t0) − zt0(t−0 )δt0

+

∞∑
p�1

(
Ûzp
[̃tp−1 ,̃tp ) + zp (̃t−p−1)δ t̃p−1 − zp (̃t−p )δ t̃p

)ª®¬[̃tk−1 ,̃tk )

�

(
Eσ Ûzk

)
[̃tk−1 ,̃tk )

�

(
Hσzk

+ g̃σ

)
[̃tk−1 ,̃tk )

� Hσz[̃tk−1 ,̃tk ) +D
(
Sτtimez

k−1
)
[̃tk−1 ,̃tk )

+ gσ[̃tk−1 ,̃tk )

�
(Hσz +DSτtimez + gσ

)
[̃tk−1 ,̃tk ) ,

where we exploit the relations from cf. [17], as (D[s ,t))′ � (D′)[s ,t) + D(s−)δs −
D(t−)δt and (D(s ,t))′ � (D′)(s ,t) + D(s+)δs − D(t−)δt , where δ∓∞ � 0, with
−∞ ≤ s ≤ t ≤ ∞ and D ∈ DpwC∞ . ut
Remark 25 The existence and uniqueness result of Theorem 24 can easily
be extended to the case that the delay coefficient matrices D j, j � 1, 2, . . . , d
in (6.3) are switch dependent; i.e., (6.3) becomes

Eσ Ûz � Hσz +

d∑
j�1

D j,σSτ j

timez + gσ .

We can conclude now our main result about existence and uniqueness of
solutions of the coupled system.

Corollary 26 Consider the coupled system (2.1) with a hyperbolic PDE (As-
sumption 1) and suitable boundary condition (Assumption 2). Furthermore,
assume that for all ξ ∈ {1, . . . ,N} the matrix pairs (Eξ ,Hξ+BξCPFCDξ) with
F as in Remark 21 are regular. Then for any initial values ut0 ∈ DpwC∞(X)n,
wt0 ∈ Rm and external inhomogeneities fξ ∈ DpwC∞(T)m there exists a unique
solution (u,w) ∈ DpwC∞(T × X)n ×DpwC∞(T)m of the coupled system.

Proof This is a consequence of Theorems 23 and 24 and the fact that det(sEξ−
Hξ) � det

(
sEξ − (Hξ + BξCPFCDξ)

)
. ut



A distributional solution framework for lin. hyp. PDEs coupled to swDAEs 27

Remark 27 For general delay differential equations it is common to distin-
guish the three types retarded, neutral and advanced, see e.g. [9, 22]. For our
existence and uniqueness result we do not need any assumption on these dif-
ferent types and in general all three types are allowed. However, when numeric
considerations are important than it is necessary to further analyse the prop-
erties of the coupled systems with respect to the index and type of the resulting
delay DAE; in particular, the question whether discontinuities in the initial
data get smoothed out over time or not is highly relevant. This question was
already investigated for nonswitched DDAEs [21] and it should be possible to
extend these results to the switched case, this is ongoing research.

Remark 28 As was illustrated already in Example 2, even if the PDE is well-
defined and the swDAE is regular, coupling these systems may yield an ill-posed
system. Indeed, using the notation of Corollary 26, we see that F �

[
1
0

]
(note

that Fb is a 1 × 0 matrix) and hence

(E,H+BCPFCD) �
( [

1 0
0 0

]
,
[
1 0
0 1

]
+

[
0−1

] · [ 1 0 ] · [ 10 ] · [ 0 1 ]) � ( [
1 0
0 0

]
,
[
1 0
0 0

] )
which is not a regular matrix pair anymore. Furthermore, the equivalent delay
DAE according to Theorem 23 does not contain a delay term, hence the closed
loop systems results in an DAE which is not regular.

6.2 Numerical results of the power grid example

In this section, we explain how we solve the coupled PDE system (2.5) with
the switched DAE (2.10) numerically and illustrate the results obtained. We
remark that, the matrix pairs (Eσ ,Hσ) in the power grid example are regular.

Denote by E :� {1, 2, 3, 4} the set of edges in the coupled network, over
which we discretize the PDE. For discretizing the spatial domain [a , b], we
consider xk � a + k∆x, k � 0, 1, . . . ,N, ∆x � (b − a)/N, where N is the
number of cells in the mesh. We then insert two ghost cells G−1 and GN+1 at
both ends of the computational domain which are treated as boundaries. The
discretization of the time variable is done in accordance with the CFL number,
which we choose to be 1, tn+1 � tn + ∆t. We denote by un

j � u(x j , tn) the

approximated solution at time tn and position x j . For the power grid example,

denote by (uk)nj � ((u1
k )

n
j , (u2

k )
n
j )> to have a suitable representation for the

unknowns for every edge k ∈ E. Before we start solving the coupled system at
each time, we first decompose the discretized PDE over each edge k ∈ E into its
characteristic variables (vk)nj as left-going, (v−k )nj , and right-going characteristic

waves, (v+

k )nj , where (u1
k )nj � (v−k )nj + (v+

k )nj and (u2
k )nj � −(v−k )nj + (v+

k )nj . To solve

the decomposed PDE and the swDAE numerically, we use the upwind scheme
and implicit Euler method, respectively. At each time iteration, we solve the
decomposed PDE numerically, then, we update (uk)n+1j via inverse coordinate

change (uk)n+1j � Rk(vk)n+1j , where (vk)nj � ((v−k )nj , (v+

k )nj )> and Ak � RkΛkR−1k
for k ∈ E, where Ak is the coefficient matrix given as in (2.9). The equations
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in (2.7) together result in coupling conditions in terms of the characteristic
variables as follows

(v−2 )nN+1 � 2(v−4 )n−1 − (v+

2 )nN+1 , (v−4 )nN+1 � −2
3 (v+

3 )nN+1 +
1
3 (v+

4 )nN+1 ,

(v+

4 )n−1 � 2(v+

2 )nN+1 − (v−4 )n−1 , (v−3 )nN+1 �
1
3 (v+

3 )nN+1 − 2
3 (v+

4 )nN+1 ,

which are four out of eight of boundary conditions for the decoupled PDE,
and hence, they build up the inputs to the swDAE as

(u1
4)n0 � (v−4 )n−1 + (v+

4 )n−1 , (u1
2)nN � (v−2 )nN+1 + (v+

2 )nN+1 ,

(u1
3)nN � (v−3 )nN+1 + (v+

3 )nN+1 , (u1
4)nN � (v−4 )nN+1 + (v+

4 )nN+1.

The remaining four inputs to the swDAE are given in terms of characteristic
variables (v−1 )n−1, (v+

1 )nN+1
, (v−2 )n−1 and (v−3 )n−1. Then, at each time step, we solve

the swDAE and obtain the boundary conditions (v+

1 )n−1, (v−1 )nN+1
, (v+

2 )n−1 and

(v+

3 )n−1. At P1 in Figure 2.3, the boundary condition is assigned as (u2
1)n0 �

vG, where vG is prescribed constant voltage source, and hence, the boundary
condition for the characteristics (v+

1 )n−1 � vG +(v−1 )n−1. At P2 over E1, the input

to the swDAE is (u1
1)nN � (v−1 )nN + (v+

1 )nN+1
and the boundary condition for the

characteristic variable is (u2
1)nN � −(v−1 )nN + (v+

1 )nN+1
. The swDAE assigns this

boundary condition according to (2.8)

in+1
1η � (u1

1)nN
vn+1
1η �

d
dt in+1

1η

(u2
1)nN � vn+1

1η

⇔


in+1
1η � 2(v+

1 )nN − vn+1
1η

d
dt

(
2(v+

1 )nN+1 − vn+1
1η

)
� vn+1

1η

(v−1 )nN+1 � (v+

1 )nN − vn+1
1η ,

where η � 2 or η � 3 depending on to which edge the switch connects E1
and in

12 , i
n
13 , v

n
12 , v

n
13 are discretized state variables for the swDAE at time tn .

If η � 2, vn+1
12 is computed as above, then the boundary condition (v−1 )nN+1

�

(v+

1 )nN − vn+1
12 is assigned, hence, in+1

12 � (v+

1 )nN + (v−1 )nN+1
. Furthermore, in+1

13 � 0
and

vn+1
13 �

d
dt in+1

13

�
in+1
13 −in

13

∆t .
(6.8)

If η � 3, then in+1
12 � 0 and vn+1

12 is found similarly as in (6.8). Then, the

boundary conditions (u2
2)n0 � κ12vn

12 and (u2
3)n0 � κ13vn

13 are assigned, thus,

the boundary conditions in characteristic variables (v+

2 )n−1 � (v−2 )n−1+(u2
2)n0 and

(v+

3 )n−1 � (v−3 )n−1+ (u2
3)n0 are assigned. Then, we update the solution for (uk)n+1j ,

for all k ∈ E by using the eigenvector matrix Rk and (v−k )n+1` , ` � 0, 1, . . . ,N
and (v+

k )n+1ψ , ψ � 1, 2, . . . ,N + 1. Until we reach the prescribed final time, we

update the time tn+1 � tn + ∆t and repeat the above steps.
If, instead of solving for (vk)nj , one attempts to solve for (uk)nj and assigns

inputs/outputs without considering them in characteristic variables, oscilla-
tions might occur at boundaries at each time step. The method described in
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this section covers the Dirac impulses and ensures that such oscillations do
not take place. Therefore, the numerical steps defined above should be carried
out in characteristic variables and then the original unknown variables (uk)nj
should be updated accordingly.

6.2.1 Discontinuous initial condition

We consider the computational domain [a , b] � [0, 0.5], initial time t0 � 0,
and final time tmax � 1.5, the number of cells N � 150, ∆x � 3.3 × 10−3. The
constant voltage at P1 is vG � 0.5. The constants are assumed to be L12 � 1,
L13 � 1, κ12 � 1, κ13 � 1, R24 � 1, R34 � 1, Lk � 1 and Ck � 1 for each k ∈ E.
The initial conditions for the PDE are I1(0, x) � 0, x ∈ [0, 0.5], V1(0, x) � 0
for x ∈ [0, 0.3) and V1(0, x) � 1 for x ∈ [0.3, 0.5], Ik(0, x) � 0 and Vk(0, x) � 0,
x ∈ [0, 0.5], for k � 2, 3, 4. The switch initially connects the edges 1 and 2
for t ∈ [0, 0.4) and then connects the edges 1 and 3 for t ∈ [0.4, 0.7). For
t ∈ [0.7, 1.5), it connects the edges 1 and 2 again. In Figure 6.1, the plots for
E1 and E2 are shown at t � 0.5. After the first switch at t � 0.4, a Dirac
impulse occurs on E2.

In Figure 6.2, the plots for all edges at t � 0.8 are shown. After the second
switch at t � 0.7, there happens another Dirac impulse on E3.

And in Figure 6.3, the solution over the whole domain (t , x) ∈ [0, 1.5] ×
[0, 0.5] is shown for all edges where the lines on E2 , E3 and E4 show how Dirac
impulses move in the domain.
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i
v
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−100

−50

0

t � 0.5, edge 2

i
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Fig. 6.1: t � 0.5. After the first switch at t � 0.4, the peak on the 2nd edge occurs when the
edge 1 and 2 are disconnected. On the 3rd and 4th edges, no changes have happened yet
(hence, plots are not included here).
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Fig. 6.2: t � 0.8. After the second switch at t � 0.7, switching transformer disconnects the
edges 1 and 3, therefore, peak on the 3rd edge occurs. On the 4th edge, there has not been
any changes yet.

7 Conclusion

We have presented an existence and uniqueness result for solutions of linear
hyperbolic PDE coupled to a linear switched DAE. Since switched DAEs can
have distributional solutions (including Dirac impulses and their derivatives of
arbitrary high order) it was necessary to first define a suitable distributional
solution space for the PDE such that evaluation at the boundary (the trace
operator) is well defined. Within this solution space (the space of piecewise-
smooth distributions) it is possible to relate the solutions of the coupled sys-
tems with solutions of a delay switched DAE and we obtain our main result
by extending recent results about the solvability of delay DAEs.

More research is still necessary to extend the results to PDEs with a source
term as well as to the mildly nonlinear case. Furthermore, the well-posedness
condition we present is still rather technical and there may be simpler sufficient
condition, e.g. in terms of the coupling and output matrices of the PDE alone
(which then rules out a situation as in Remark 28).
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Fig. 6.3: PDE solutions on edges for the domain (t , x) ∈ [0, 1.5]×[0, 0.5]. The switching times
at t � 0.4 and t � 0.7. The plots on the left show values for Ik whereas on the right for Vk
for the edges k � 1, 2, 3, 4, (Ik � (u2

k ), Vk � (u1
k ) in discretized variables).
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2009.

18. Stephan Trenn. Regularity of distributional differential algebraic equations. Math.
Control Signals Syst., 21(3):229–264, 2009.

19. Stephan Trenn. Switched differential algebraic equations. In Francesco Vasca and Luigi
Iannelli, editors, Dynamics and Control of Switched Electronic Systems - Advanced
Perspectives for Modeling, Simulation and Control of Power Converters, chapter 6,
pages 189–216. Springer, London, 2012.

20. Stephan Trenn and Benjamin Unger. Delay regularity of differential-algebraic equations.
In Proc. 58th IEEE Conf. Decision Control (CDC) 2019, Nice, France, 2019. to appear.



A distributional solution framework for lin. hyp. PDEs coupled to swDAEs 33

21. Benjamin Unger. Discontinuity propagation in delay differential-algebraic equations.
Electronic Journal of Linear Algebra, 34:582–601, 2018.

22. Joseph Wiener. Generalized solutions of functional differential equations. World Sci-
entific, 1993.

23. Hanchun Yang. Riemann problems for a class of coupled hyperbolic systems of conser-
vation laws. J. Differential Equations, 159(2):447–484, 1999.


	Introduction
	Problem Setup
	Linear hyperbolic PDEs
	Switched differential-algebraic equations
	Distributional solution of the PDE
	The coupled system
	Conclusion

