

faculty of science and engineering bernoulli institute for mathematics, computer science and artificial intelligence

Synchronization via funnel coupling with application for decentralized optimization

Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Joint work with **Jin Gyu Lee** (U Cambridge, UK), **Thomas Berger** (U Paderborn, Germany) and **Hyungbo Shim** (SNU, Korea)

Research Seminar, KTH Stockholm, Schweden, 23 October 2020, 14:00 - 14:30

Decentralized optimization

Problem statement

Given

> N agents with individual n-dimensional dynamics:

 $\dot{x}_i = f_i(t, x_i) + u_i$

- > undirected connected coupling-graph G = (V, E)
- > local feedback $u_i = \gamma_i(x_i, x_{\mathcal{N}_i})$

Desired

Control design for practical synchronization

$$x_1 \approx x_2 \approx \ldots \approx x_n$$

 $u_{1} = \gamma_{1}(x_{1}, x_{2}, x_{3})$ $u_{2} = \gamma_{2}(x_{2}, x_{1}, x_{3})$ $u_{3} = \gamma_{3}(x_{3}, x_{1}, x_{2})$ $u_{4} = \gamma_{4}(x_{4}, x_{3})$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (1 / 31)

A "high-gain" result

Let $\mathcal{N}_i := \{j \in V \mid (j,i) \in E\}$ and $d_i := |\mathcal{N}_i|$ and \mathcal{L} be the Laplacian of G.

Diffusive coupling

$$u_i = -k \sum_{j \in \mathcal{N}_i} (x_i - x_j)$$
 or, equivalently, $u = -k \mathrel{\mathcal{L}} x$

Theorem (Practical synchronization¹)

Assumptions: G undirected, connected, all solutions of average dynamics

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t))$$

remain bounded. Then $\forall \varepsilon > 0 \ \exists K_{\varepsilon} > 0 \ \forall k \geq K_{\varepsilon}$: Diffusive coupling results in

$$\limsup_{t \to \infty} |x_i(t) - x_j(t)| < \varepsilon \quad \forall i, j \in V$$

¹ J. Kim, J. Yang, H. Shim, J.-S. Kim, and J.H. Seo. IEEE Transactions on Automatic Control 2016.

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (2 / 31)

Remarks on high-gain result

Common trajectory

It even holds that

$$\limsup_{t\to\infty}|x_i(t)-s(t)|<\varepsilon,$$

where
$$s(\cdot)$$
 solves $\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t)), \quad s(0) = \frac{1}{N} \sum_{i=1}^{N} x_i.$

Independent of coupling structure and amplification k.

Error feedback

With $e_i := x_i - \overline{x}_i$ and $\overline{x}_i := \frac{1}{d_i} \sum_{j \in \mathcal{N}_i} x_j$ diffusive coupling has the form

$$u_i(t) = -k \, d_i \, e_i(t)$$

Attention: $e_i \neq x_i - s$, in particular, agents do not know "limit trajectory" $s(\cdot)$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (3 / 31)

Decentralized optimization

Example²

Simulations in the following for ${\cal N}=5$ agents with dynamics

 $f_i(t, x_i) = (-1 + \delta_i) x_i + 10 \sin t + 10 m_i^1 \sin(0.1t + \theta_i^1) + 10 m_i^2 \sin(10t + \theta_i^2),$

with randomly chosen parameters $\delta_i, m_i^1, m_i^1 \in \mathbb{R}$ and $\theta_i^1, \theta_i^2 \in [0, 2\pi]$.

Parameters identical in all following simulations, in particular $\delta_2 > 1$, hence agent 2 has unstable dynamics (without coupling).

² Shim, H. and Trenn, S. Proc. 54th IEEE Conf. Decision Control (CDC) 2015.

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (4 / 31)

Decentralized optimization

² Shim, H. and Trenn, S. Proc. 54th IEEE Conf. Decision Control (CDC) 2015.

1

1.5

2

2.5

3

0.5

-20

0

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (4 / 31)

4

4.5

3.5

Remaining problems

Problems

- > necessary gain depends on global network structure
- > all agents must use the same gain
- > no direct control over convergence rate
- > only practical synchronization, no asymptotic convergence

High gain adaptive control

Problems very similar to high gain control problems!

 $\hookrightarrow \mathsf{Funnel} \ \mathsf{Control}$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (5 / 31)

Contents

Practical synchronization of heterogeneous agents

Funnel coupling

Motivation funnel coupling Results for node-wise funnel coupling Recovering average dynamics via edge-wise funnel coupling Asymptotic tracking with funnel control

Application: Decentralized optimization via edge-wise funnel coupling

groningen Practical synchronization

Funnel coupling

Decentralized optimization

Reminder Funnel Controller

Theorem (Practical tracking³)

Funnel Control

$$k(t) = \frac{1}{\psi(t) - |e(t)|}$$

works, in particular, errors remains within funnel for all times.

Basic idea for funnel coupling

$$u = -k \mathcal{L} x \longrightarrow u = -k(t) \mathcal{L} x$$

³ A. Ilchmann, E.P. Ryan and C.J. Sangwin. ESAIM: Control, Opt. Calc. Variations, 2002

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (7 / 31)

Funnel coupling rule

Problem

 $u = -k(t)\mathcal{L}x$ is not decentralized and no obvious error signal

$\hookrightarrow \mathsf{node}\mathsf{-wise}\ \mathsf{viewpoint}$

Reminder diffusive coupling

$$u_i = -k_i e_i$$
 with $e_i = x_i - \overline{x}_i$

Combine diffusive coupling with Funnel Controller

$$u_i(t) = -k_i(t) \, e_i(t)$$
 with $k_i(t) = rac{1}{\psi(t) - |e_i(t)|}$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (8 / 31)

Decentralized optimization

Example revisited

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (9 / 31)

Observations from simulations

Funnel synchronization seems to work

- > errors remain within funnel
- > practical synchronizations is achieved
- $\,\,$ $\,$ limit trajectory does not coincide with solution $s(\cdot)$ of

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t)), \qquad s(0) = \frac{1}{N} \sum_{i=1}^{N} x_i(0).$$

What determines the new limiting trajectory?

- Coupling graph?
- > Funnel shape?
- > Gain function?

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (10 / 31)

Weakly centralized funnel synchronization

Weakly centralized Funnel synchronization

Analogously as for diffusive coupling, all agents use the same gain:

 $u_i(t) = -k_{\max}(t) d_i e_i(t)$ with $k_{\max}(t) := \max_{i \in V} \frac{1}{\psi(t) - |e_i(t)|}$

Theorem (SHIM & T. 2015 (CDC))

Assumption:

- > No "finite escape time" of x_i
- > The graph is connected, undirected and d-regular with $d > rac{N}{2} 1$
- > Funnel boundary $\psi:[0,\infty)\to [\psi,\overline{\psi}]$ is differentiable, non-increasing and

 $|e_i(0)| < \psi(0), \quad \forall i = 1, 2, \dots, N.$

Then weakly centralized funnel synchronization works.

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (11 / 31)

Node wise funnel synchronization: general case

Theorem (LEE, T. & SHIM 2020, submitted)

Multiagent system with symmetric, connected coupling graph under funnel coupling:

$$\dot{x}_i = f_i(t, x_i) - \mu\left(\frac{e_i(t)}{\psi(t)}\right) \qquad e_i(t) := x_i - \frac{1}{d_i} \sum_{j \in \mathcal{N}_i} x_j, \quad \mu(\eta) := \frac{\eta}{1 - |\eta|}$$

Assume that $\dot{\overline{\chi}}(t) = \max_{i \in \mathcal{N}} f_i(t, \overline{\chi}(t))$ and $\underline{\dot{\chi}}(t) = \min_{i \in \mathcal{N}} f_i(t, \underline{\chi}(t))$ do not exhibit finite escape time, then

 $|e_i(t)| < \psi(t) \quad \forall t \in [0,\infty).$

Furthermore, the emergent behavior is given by

$$\dot{\xi} = h_{\mu}(f_1(t,\xi), f_2(t,\xi), \dots, f_N(t,\xi)),$$

where h_{μ} is unique function implicitely given by $\sum_{i=1}^{N} \mu^{-1} (h_{\mu}(f_1, \dots, f_N) - f_i) = 0.$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (12 / 31)

Decentralized optimization

Why not average dynamics?

Laplacian feedback

Diffusive coupling

$$u = -k \mathcal{L} x$$

has Laplacian feedback matrix $k\mathcal{L}$

Non-Laplacian feedback Funnel synchronization $u = -K(t) \mathcal{L} x = - \begin{bmatrix} k_1(t) & & \\ & k_2(t) & \\ & & \ddots & \\ & & & k_N(t) \end{bmatrix} \mathcal{L} x$

has non-Laplacian feedback matrix $K(t)\mathcal{L}$, in particular $[1, 1, \dots, 1]^{\top}$ is not a left-eigenvector of $K(t)\mathcal{L}$.

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (13 / 31)

Contents

Practical synchronization of heterogeneous agents

Funnel coupling Motivation funnel coupling Results for node-wise funnel coupling Recovering average dynamics via edge-wise funnel coupling Asymptotic tracking with funnel control

Application: Decentralized optimization via edge-wise funnel coupling

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (14 / 31)

Diffusive coupling revisited

Diffusive coupling with edgewise gain

$$u_i = -\mathbf{k_i} \sum_{i}^{N} (x_i - x_j) \longrightarrow u_i = -\sum_{i}^{N} \mathbf{k_{ij}} \cdot (x_i - x_j)$$

 \rightsquigarrow $u = -\mathcal{L}_K x$ with symmetric $\mathcal{L}_K!$

Conjecture

If $k_{ij} = k_{ji}$ are all sufficiently large, then practical synchronization occurs with desired limit trajectory s of average dynamics.

Proof technique from $\rm K{\scriptstyle IM}$ et al. 2016 should still work in this setup.

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (15 / 31)

Edgewise funnel coupling

Edgewise funnel gains \rightarrow edgewise funnel coupling

$$u_i = -\sum_{j \in \mathcal{N}_i} \mathbf{k}_{ij} \cdot (x_i - x_j) \longrightarrow u_i = -\sum_{j \in \mathcal{N}_i} \mathbf{k}_{ij}(t) \cdot (x_i - x_j)$$

Edgewise funnel gain

$$k_{ij}(t) = \frac{1}{\psi(t) - |e_{ij}|}, \quad \text{with} \quad e_{ij} := x_i - x_j$$

Properties:

- > Decentralized, i.e. u_i only depends on state of neighbors
- > Symmetry, $k_{ij}(t) = k_{ji}(t)$
-) Laplacian feedback, $u = -\mathcal{L}_K(t, x)x$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (16 / 31)

Decentralized optimization

Simulation

Properties

- + Synchronization occurs
- + Predictable limit trajectory (given by average dynamics)
- + Local feedback law
- No asymptotic convergence towards limit trajectory because $\psi(t) \geq \psi > 0$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (17 / 31)

Decentralized optimization

Edgwise-wise funnel control

Theorem (LEE, BERGER, SHIM, T. 2020, in preparation)

Multiagent system with symmetric, connected coupling graph under funnel coupling:

$$\dot{x}_i = f_i(t, x_i) - \sum_{j \in \mathcal{N}_i} \frac{x_i - x_j}{\psi(t) - |x_i - x_j|}$$

If f_i is globally Lischitz in x_i then

 $|x_i(t) - x_j(t)| < \psi(t) \quad \forall t \in [0, \infty)$

Furthermore, the emergent behaviour is given by $s(\cdot)$ where

$$\dot{s} = \frac{1}{N} \sum_{i=1}^{N} f_i(t,s), \quad s(0) = \frac{1}{N} \sum_{i=1}^{N} x_i(0).$$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (18 / 31)

Contents

Practical synchronization of heterogeneous agents

Funnel coupling Motivation funnel coupling Results for node-wise funnel coupling Recovering average dynamics via edge v

Asymptotic tracking with funnel control

Application: Decentralized optimization via edge-wise funnel coupling

Decentralized optimization

Funnel control and asymptotic tracking

Asymptotic tracking only with unbounded gain

 $\begin{array}{lllllllllllllllllllllllllll} \mbox{Asymptotic tracking} & \Leftrightarrow & \psi(t) \xrightarrow[t \to \infty]{} 0 & \Rightarrow & \psi(t) - \|e(t)\| \xrightarrow[t \to \infty]{} 0 \\ \Leftrightarrow & k(t) = \frac{1}{\psi(t) - \|e(t)\|} \xrightarrow[t \to \infty]{} \infty \end{array}$

Conclusion: Funnel control and asymptotic tracking not compatible ?

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (20 / 31)

Decentralized optimization

Rewrite rule for funnel control

Important observation: $\psi(t) \to 0 \implies ||e(t)|| \to 0$ Hence $u(t) = -k(t)e(t) \to \infty \cdot 0$ not necessarily unbounded!

$$u(t) = -\frac{1}{\psi(t) - \|e(t)\|} e(t) = -\frac{1}{1 - \left\|\frac{e(t)}{\psi(t)}\right\|} \frac{e(t)}{\psi(t)} =: -\alpha(\eta(t)) \cdot \eta(t) \text{ where } \eta(t) := \frac{e(t)}{\psi(t)}$$

Asymptotic funnel control possible⁴ Rewriting classical funnel control rule $\hookrightarrow \psi(t) \to 0$ allowed!

 4 Lee, J.G. and Trenn, S.: Asymptotic tracking via funnel control. Proc. 58th IEEE Conf. Decision Control $_{-\psi(t)}$ (CDC) 2019, pp. 4228–4233, Nice, France, 2019.

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (21 / 31)

Contents

Practical synchronization of heterogeneous agents

Funnel coupling

Motivation funnel coupling Results for node-wise funnel coupling Recovering average dynamics via edge-wise funnel coupling Asymptotic tracking with funnel control

Application: Decentralized optimization via edge-wise funnel coupling

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (22 / 31)

The problem

Minimization problem

For some differentiable and convex $F : \mathbb{R}^n \to \mathbb{R}$ find x^* which solves

 $\min_{x\in \mathbb{R}^n} F(x)$

Challenge

$$F(x) = \sum_{i=1}^{N} F_i(x)$$

Find x^* in a decentralized way with N agents who only know their $F_i : \mathbb{R}^n \to \mathbb{R}$, which are also not assumed to be convex.

Some approaches available already, new approach: Utilize ideas from funnel control

Stephan Trenn (Jan C. Willems Center, U Groningen)

Local gradient descent and coupling

Lemma (Global gradient descent)

$$\dot{x}(t) = -\eta \nabla F(x(t)), \quad x(0) = x_0 \in \mathbb{R}^n$$

Then $x(t) \rightarrow x^*$ for all x_0 and all $\eta > 0$,

Local gradient descent + coupling

$$\dot{x}_i = -\nabla F_i(x_i) + \frac{u_i}{x_i} \qquad x_i(0) = x_{0,i} \in \mathbb{R}^n$$

Find suitable control law

$$x_i(t) \xrightarrow{u_i} x^*$$
 in particular, synchronization / consensus

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (24 / 31)

Funnel coupling and decentralized optimization

Limit trajectory under edgewise funnel coupling

$$\lim_{t \to \infty} |x_i(t) - s(t)| = 0 \quad \forall i \in V$$

$$\dot{s}(t) = \frac{1}{N} \sum_{i=1}^{N} f_i(t, s(t))$$

Average dynamics for local gradient descent

For $f_i(t,s) = -\nabla F_i(s)$ we have

$$\dot{s}(t) = -\frac{1}{N} \sum_{i=1}^{N} \nabla F_i(s(t)) = -\frac{1}{N} \nabla F(s(t))$$

 \hookrightarrow Average dynamics = global gradient descent

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (25 / 31)

Decentralized optimization via funnel coupling

$$\underbrace{\min_{x \in \mathbb{R}^n} F(x)}_{ki \in \mathbb{R}^n} F(x) = \sum_{i=1}^N F_i(x) \quad \text{convex with unique minimizer } x^* \in \mathbb{R}^n$$

$$\dot{x}_i = -\nabla F_i(x) - \sum_{j \in \mathcal{N}_i} \left(\frac{e_{ij}^1}{\psi - |e_{ij}^1|}, \frac{e_{ij}^2}{\psi - |e_{ij}^2|}, \dots, \frac{e_{ij}^n}{\psi - |e_{ij}^n|} \right)^\top, \quad x_i(0) = x_{i,0} \in \mathbb{R}^n, \ i \in \mathcal{V}$$

Theorem (Decentralized optimization via funnel coupling⁵)

Assume ∇F_i is globally Lipschitz and coupling graph is undirected and connected, funnel boundary $\psi \in W^{1,\infty}(\mathbb{R}_{\geq 0} \to \mathbb{R}_{>0})$ with $\psi(t) \to 0$ as $t \to \infty$ and $||x_{i,0} - x_{j,0}|| < \psi(0) \ \forall (i,j) \in \mathcal{E}$. Then edge-wise funnel coupling yields

 $\lim x_i(t) = x^*$

⁵ J.G. Lee, T. Berger, S. Trenn and H. Shim. Proc. European Control Conference (ECC) 2020.

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (26 / 31)

Main steps of proof

➡ Skip Proof

Step 1: Show that solution of closed loop exists on $[0,\infty)$, in particular

$$\|x_i(t) - x_j(t)\|_{\infty} < \psi(t) \quad \forall t \ge 0$$

Step 2: Write $x_i = x_{avg} + (t_i^{\top} \otimes I_n)\tilde{x}$, where t_i^{\top} is the *i*-th row of $T(T^{\top}T)^{-1}$, T is the incidence matrix of a spanning tree and

$$x_{\mathsf{avg}} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 and $\widetilde{x} = (T^{\top} \otimes I_n) (x_1^{\top}, \dots, x_N^{\top})^{\top}$

Then $\|\tilde{x}(t)\|_{\infty} < \psi(t)$, in particular, $x_i(t) \to x_{avg}(t)$

Step 3: Use Lyapunov function $V(x_{avg}) := F(x_{avg}) - F(x^*)$ to show convergence of x_{avg} towards x^* .

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (27 / 31)

Convergence rate

Average dynamics = gradient descent

$$\dot{s} = -\frac{1}{N} \sum_{i=1}^{N} \nabla F_i(s)$$

Convergence towards \boldsymbol{x}^* not influenced by choice of coupling rule

Edge-wise funnel coupling

$$x_i(t) - s(t) o 0$$
 as $t o \infty$

Convergence rate (and transient behavior) directly influenceable by choice of ψ

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (28 / 31)

Example: Distributed Least-square solver

Problem

Find least-square solution of Ax = b, where $A \in \mathbb{R}^{M \times n}$ with $M = \sum_{i=1}^{N} m_i$. Then

$$\frac{1}{2} \|Ax - b\|_2^2 = \sum_{i=1}^N \frac{1}{2} \|A_i x - b_i\|_2^2$$

where $A_i \in \mathbb{R}^{m_i \times n}$, $b_i \in \mathbb{R}^{m_i}$ are the corresponding block rows of A and b.

Local gradient descent with funnel coupling

$$\dot{x}_{i} = -A_{i}^{\top}(A_{i}x_{i} - b_{i}) - \sum_{j \in \mathcal{N}_{i}} \left(\frac{e_{ij}^{1}}{\psi - |e_{ij}^{1}|}, \frac{e_{ij}^{2}}{\psi - |e_{ij}^{2}|}, \dots, \frac{e_{ij}^{n}}{\psi - |e_{ij}^{n}|}\right)^{\top}$$

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (29 / 31)

Decentralized optimization

Simulation

For
$$A = [1, 1, 2, 2, 1]^{\top}$$
 and $b = [1, 10, 20, 18, 100]^{\top}$,
 $x_1(0) = 0, x_2(0) = -x_3(0) = 0.1, x_4(0) = -x_5(0) = 0.2, \psi(t) = \exp(-0.8t)$ and a line coupling we obtain

Average dynamics = global gradient descent

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (30 / 31)

Decentralized optimization

Simulation

For
$$A = [1, 1, 2, 2, 1]^{\top}$$
 and $b = [1, 10, 20, 18, 100]^{\top}$,
 $x_1(0) = 0, x_2(0) = -x_3(0) = 0.1, x_4(0) = -x_5(0) = 0.2,$
 $\psi(t) = \exp(-0.8t)$ and a line coupling we obtain

Average dynamics = global gradient descent

Edgewise Funnel coupling

Stephan Trenn (Jan C. Willems Center, U Groningen)

Synchronization via funnel coupling with application for decentralized optimization (30 / 31)

Conclusion

From high gain coupling to node-wise funnel coupling

- > High gain coupling leads to practical synchronization
- > Replacing constant gain by funnel gain also leads to practical synchronization
- > Limit trajectory not simple average anymore
- > Choice of funnel gain function \leadsto design of limit trajectory

Edge-wise funnel coupling

- > Edge-wise funnel coupling --- Average limit trajectory
- > Many possible applications

Outlook

- > Decentralized observers
- > Formation control with obstacle avoidence