The one-step-map for switched singular systems in discrete-time

Stephan Trenn
Jan C. Willems Center for Systems and Control
University of Groningen, Netherlands

Joint work with Pham Ky Anh and Pham Thi Linh, Vietnam National University and Do Duc Thuan, Hanoi University for Science and Technology.

Supported by NAFOSTED project 101.01-2017.302 and by NWO Vidi grant 639.032.733.

Siegmundsburg Workshop, Elgersburg, Thursday, 20 Feburary 2020, 17:00

System class and motivation

$$
\begin{equation*}
E_{\sigma(k)} x(k+1)=A_{\sigma(k)} x(k) \tag{SSS}
\end{equation*}
$$

, $\sigma: \mathbb{N} \rightarrow\{1,2, \ldots, \mathrm{n}\}$ switching signal
, $E_{1}, E_{2}, \ldots, E_{\mathrm{n}}, A_{1}, A_{2}, \ldots, A_{\mathrm{n}} \in \mathbb{R}^{n \times n}$ with E-matrix singular
, $x: \mathbb{N} \rightarrow \mathbb{R}^{n}$ state

Motivation

, Leontief economic model (Luenberger 1977)
, discretization of continuous-time time-varying DAEs
, sampled feedback loop for descriptor systems

Simple question

What can we say about existence and uniqueness of solutions?

Small excursion to continuous time

$$
E_{\sigma} \dot{x}=A_{\sigma} x
$$

Theorem (Existence and uniqueness in continuous time, Trenn 2012)
Assume $\left(E_{i}, A_{i}\right)$ are regular, i.e. $\operatorname{det}\left(s E_{i}-A_{i}\right)$ is not the zero polynomial. Then for any past trajectory $x^{0}(\cdot)$ and any $t_{0} \in \mathbb{R}$ there exists unique $x(\cdot)$ such that

$$
\begin{aligned}
x_{\left(-\infty, t_{0}\right)} & =x_{\left(-\infty, t_{0}\right)}^{0} \\
\left(E_{\sigma} \dot{x}\right)_{\left[t_{0}, \infty\right)} & =\left(A_{\sigma} x\right)_{\left[t_{0}, \infty\right)}
\end{aligned}
$$

In particular, solution behavior is causal w.r.t. to the switching signal.

Distributional solution framework necessary

Above solution result only holds when solution space is enlarged to allow for jumps and Dirac impulses.

A simple example

$$
\begin{equation*}
E_{\sigma(k)} x(k+1)=A_{\sigma(k)} x(k) \tag{SSS}
\end{equation*}
$$

Example

Consider (SSS) with

$$
E_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], A_{1}=I \quad \text { and } \quad E_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], A_{2}=I
$$

Nonswitched solution behavior

$$
\left.\begin{array}{rlrl}
\sigma \equiv 1: & & x_{1}(k+1) & =x_{1}(k) \\
0 & =x_{2}(k)
\end{array}\right\} \quad \leadsto \quad x(k)=\binom{c_{1}}{0} \forall k \in \mathbb{N}
$$

A simple example

$$
\begin{equation*}
E_{\sigma(k)} x(k+1)=A_{\sigma(k)} x(k) \tag{SSS}
\end{equation*}
$$

Example

Consider (SSS) with

$$
E_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], A_{1}=I \quad \text { and } \quad E_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], A_{2}=I
$$

Switched solution behavior $\sigma(k)= \begin{cases}1, & k<k_{s} \\ 2, & k \geq k_{s}\end{cases}$
For $k<k_{s}$ we have $x(k)=\binom{c_{1}}{0}$ and for $k=k_{s}-1$ also $x_{1}\left(k_{s}\right)=x_{1}\left(k_{s}-1\right)=c_{1}$
BUT: For $k=k_{s}$ also $0=x_{1}\left(k_{s}\right)$, hence $c_{1}=0$ necessary!
Furthermore $x_{2}\left(k_{s}\right)$ not constraint by mode $1 \leadsto x_{2}(k)=c_{2}$ for all $k \geq k_{s}$
$m \quad x(k)=\binom{0}{0}$ for $k<k_{s} \quad$ and $\quad x(k)=\binom{0}{c_{2}}$ for $k \geq k_{s}$

Observations from example

$$
\begin{equation*}
E_{\sigma(k)} x(k+1)=A_{\sigma(k)} x(k) \tag{SSS}
\end{equation*}
$$

No existence and uniqueness of solutions!

, Not all solutions from the past can be extended to a global solution
, Single initial value leads to multiple solutions in the future
, Loss of causality w.r.t. to switching signal

Definition

(SSS) is called causal w.r.t. the switching signal : $\Longleftrightarrow \forall \sigma, \widetilde{\sigma} \forall x(\cdot)$ sol. for $\sigma \forall \widetilde{k} \in \mathbb{N}$:

$$
\sigma(k)=\widetilde{\sigma}(k) \forall k \leq \widetilde{k} \quad \Longrightarrow \quad \exists \widetilde{x}(\cdot) \text { sol. for } \widetilde{\sigma}: \widetilde{x}(k)=x(k) \forall k \leq \widetilde{k}
$$

Example not causal w.r.t. the switching signal: Let $\sigma \equiv 1, \widetilde{\sigma}(k)= \begin{cases}1, & k<k_{s} \\ 2, & k \geq k_{s}\end{cases}$
$m \rightarrow$ no solution \widetilde{x} with $\widetilde{x}(k)=c_{1}=x(k) \neq 0$ for $k<k_{s}$.

Causality and One-Step-Map

$$
\begin{equation*}
E_{\sigma(k)} x(k+1)=A_{\sigma(k)} x(k) \tag{SSS}
\end{equation*}
$$

Question

When is (SSS) causal w.r.t. the switching signal?
More specifically: When is $x(k+1)$ uniquely defined for all $x(k), \sigma(k)$ and $\sigma(k+1)$? In other words: Is there a one-step-map $\Phi_{i, j} \in \mathbb{R}^{n \times n}, i, j \in\{1,2, \ldots, \mathrm{n}\}$ such that

$$
\forall \text { sol. } x(\cdot) \text { of }(\mathrm{SSS}): \quad x(k+1)=\Phi_{\sigma(k+1), \sigma(k)} x(k)
$$

Regularity and index

Theorem (Quasi-Weierstrass Form)

(E, A) is regular $\Longleftrightarrow \exists S, T$ invertible with

$$
(S E T, S A T)=\left(\left[\begin{array}{cc}
I & 0 \tag{QWF}\\
0 & N
\end{array}\right],\left[\begin{array}{cc}
J & 0 \\
0 & I
\end{array}\right]\right)
$$

where N is nilpotent

Definition

(E, A) has index-1 $: \Longleftrightarrow N=0$ in (QWF)
Index-1 (together with regularity) is also called:
, causal
, admissable
, impulse-free

Index-1 characterization

Theorem (see e.g. Griepentrog \& März 1986)

(E, A) is regular and index-1
$\Longleftrightarrow \mathcal{S} \oplus \operatorname{ker} E=\mathbb{R}^{n}$, where $\mathcal{S}:=A^{-1}(\mathrm{im} E):=\left\{\xi \in \mathbb{R}^{n} \mid A \xi \in \operatorname{im} E\right\}$
$\Longleftrightarrow \mathcal{S} \cap \operatorname{ker} E=\{0\}$
Furthermore, $T=\left[T_{1}, T_{2}\right]$ and $S=\left[E T_{1}, A T_{2}\right]^{-1}$ with $\operatorname{im} T_{1}=\mathcal{S}$ and $\operatorname{im} T_{2}=\operatorname{ker} E$:

$$
(S E T, S A T)=\left(\left[\begin{array}{ll}
I & 0 \tag{QWF}\\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
J & 0 \\
0 & I
\end{array}\right]\right)
$$

Corollary

$E x(k+1)=A x(k)$ being regular + index- 1 has unique solution with $x(0)=x_{0} \in \mathbb{R}$ $\Longleftrightarrow x_{0} \in \mathcal{S}$
In fact, $\quad x(k+1)=\Phi_{(E, A)} x(k) \quad$ with $\Phi_{(E, A)}:=T\left[\begin{array}{ll}J & 0 \\ 0 & 0\end{array}\right] T^{-1}$

Is this the sought one-step map already?

Attention

$\Phi_{(E, A)}$ is one-step-map for $E x(k+1)=A x(k)$
BUT: Only true when system is active for at least two time-steps:

$$
\begin{aligned}
& E x(1)=A x(0) \Longrightarrow x(1) \in E^{-1}(A x(0))=\left\{\Phi_{(E, A)} x(0)\right\}+\text { ker } E \\
& E x(2)=A x(1) \Longrightarrow x(1) \in A^{-1}(E x(2)) \subseteq \mathcal{S}
\end{aligned}
$$

Hence, invoking $\mathcal{S} \cap \operatorname{ker} E=\{0\}$,

$$
E x(1)=A x(0) \quad \wedge \quad E x(2)=A x(1) \quad \Longrightarrow \quad x(1)=\Phi_{(E, A)} x(0)
$$

\leadsto Not suitable for switched systems!
Both modes in Example were regular+index-1, but no one-step-map exists!
Problem seems to be overlooked in the literature so far!

A key definition

$$
\begin{equation*}
E_{\sigma(k)} x(k+1)=A_{\sigma(k)} x(k) \tag{SSS}
\end{equation*}
$$

Definition

(SSS) or $\left\{\left(E_{1}, A_{1}\right),\left(E_{2}, A_{2}\right), \ldots,\left(E_{\mathrm{n}}, A_{\mathrm{n}}\right)\right\}$ is called (jointly) index-1 $: \Longleftrightarrow$

$$
\mathcal{S}_{i} \cap \operatorname{ker} E_{j}=\{0\} \quad \forall i, j \in\{1,2, \ldots, \mathrm{n}\}, \mathcal{S}_{i}:=A_{i}^{-1}\left(\operatorname{im} E_{i}\right)
$$

, Clearly $(i=j)$ each pair (E_{i}, A_{i}) must be index-1
, In general, $\left(E_{j}, A_{i}\right)$ is not index-1 (not even regular)

Example

$E_{1}=\left[\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right], A_{1}=I \quad \leadsto \quad \operatorname{ker} E_{1}=\operatorname{span}\left\{\binom{0}{1}\right\}, \mathcal{S}_{1}=A_{1}^{-1}\left(\operatorname{im} E_{1}\right)=\operatorname{span}\left\{\binom{1}{0}\right\}$
$E_{2}=\left[\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right], A_{2}=I \quad \leadsto \quad \operatorname{ker} E_{2}=\operatorname{span}\left\{\binom{1}{0}\right\}, \mathcal{S}_{1}=A_{2}^{-1}\left(\mathrm{im} E_{2}\right)=\operatorname{span}\left\{\binom{0}{1}\right\}$
Clearly, $\quad \mathcal{S}_{i} \cap \operatorname{ker} E_{j} \neq\{0\} \quad$ for $i \neq j$.

The one-step-map

$$
\begin{equation*}
E_{\sigma(k)} x(k+1)=A_{\sigma(k)} x(k), \quad x(0)=x_{0} \tag{SSS}
\end{equation*}
$$

Theorem (Anh, Linh, Thuan, T; CDC 2019)
Assume (SSS) is (jointly) index-1. Then $\forall \sigma \forall x_{0} \in \mathbb{R}^{n}$:

$$
x(\cdot) \text { solves }(S S S) \quad \Longleftrightarrow \quad x_{0} \in \mathcal{S}_{\sigma(0)} \wedge x(k+1)=\Phi_{\sigma(k+1), \sigma(k)} x(k)
$$

where

$$
\Phi_{i, j}:=\Pi_{\mathcal{S}_{i}}^{\mathrm{ker} E_{j}} \cdot \Phi_{\left(E_{j}, A_{j}\right)}
$$

and $\Pi_{\mathcal{S}_{i}}^{\mathrm{ker} E_{j}}$ is the projector onto \mathcal{S}_{i} along ker E_{j}.

Proof idea

$$
x(k+1)=\Phi_{\sigma(k+1), \sigma(k)} x(k) \quad \text { with } \quad \Phi_{i, j}:=\Pi_{\mathcal{S}_{i}}^{\mathrm{ker} E_{j}} \cdot \Phi_{\left(E_{j}, A_{j}\right)}
$$

Lemma

For any subspace $\mathcal{V}, \mathcal{W} \subseteq \mathbb{R}^{n}$ it holds that

$$
\mathcal{V} \oplus \mathcal{W}=\mathbb{R}^{n} \quad \Longrightarrow \quad \mathcal{V} \cap(\{z\}+\mathcal{W})=\left\{\Pi_{\mathcal{V}}^{\mathcal{V}} z\right\}
$$

, index-1 $\Longrightarrow \mathcal{S}_{i} \oplus \operatorname{ker} E_{j}=\mathbb{R}^{n} \rightsquigarrow \Pi_{\mathcal{S}_{i}}^{\mathrm{ker} E_{j}}$ well defined
, $E_{\sigma(0)} x(1)=A_{\sigma(0)} x(0) \Longrightarrow x(0) \in \mathcal{S}_{\sigma(0)}$
, Show by induction that $x(k) \in \mathcal{S}_{\sigma(k)} \Longrightarrow \exists!x(k+1) \in \mathcal{S}_{\sigma(k+1)}$

- $E_{\sigma(k)} x(k+1)=A_{\sigma(k)} x(k) \Longrightarrow x(k+1) \in\left\{\Phi_{\left(E_{\sigma(k),}, A_{\sigma(k)}\right)} x(k)\right\}+\operatorname{ker} E_{\sigma(k)}$
- $E_{\sigma(k+1)} x(k+2)=A_{\sigma(k+1)} x(k+1) \Longrightarrow x(k+1) \in A_{\sigma(k+1)}^{-1}\left(\mathrm{im} E_{\sigma(k+1)}\right)=\mathcal{S}_{\sigma(k+1)}$
- $\stackrel{\text { Lemma }}{\Longrightarrow} x(k+1)=\Pi_{\mathcal{S}_{\sigma(k+1)}}^{\mathrm{ker} E_{\sigma(k)}} \Phi_{\left(E_{\sigma(k)}, A_{\sigma(k)}\right)} x(k)$

Necessity of index-1 asssumption

$$
\begin{equation*}
E_{\sigma(k)} x(k+1)=A_{\sigma(k)} x(k), \quad x(0)=0 \tag{SSS}
\end{equation*}
$$

Theorem

$\forall \sigma x(1)=0$ is only solution of (SSS) for $k=0,1$
$\Longrightarrow \mathcal{S}_{i} \cap \operatorname{ker} E_{j}=\{0\}$ for $i, j \in\{1,2, \ldots, \mathrm{n}\}$
Proof sketch:
, $k=0: E_{j} x(1)=A_{j} x(0)=0 \Longleftrightarrow x(1) \in \operatorname{ker} E_{j}$
, $k=1: E_{i} x(2)=A_{i} x(1) \Longleftrightarrow x(1) \in \mathcal{S}_{i}$
, $x(1)=0$ is only solution $\Longrightarrow \operatorname{ker} E_{j} \cap \mathcal{S}_{i}=\{0\}$

Summary

$$
\begin{equation*}
E_{\sigma(k)} x(k+1)=A_{\sigma(k)} x(k) \tag{SSS}
\end{equation*}
$$

, Simple example shows that index-1 of each mode is not sufficient for existence and uniqueness of solutions
, (SSS) is index- $1: \Longleftrightarrow \quad A_{i}^{-1}\left(\mathrm{im} E_{i}\right) \cap \operatorname{ker} E_{j}=\{0\} \quad \forall i, j \in\{1,2, \ldots, \mathrm{n}\}$
, (SSS) index- $1 \Longrightarrow$ existence of one-step-map $\Phi_{i, j}$ such that

$$
x(k+1)=\Phi_{\sigma(k+1), \sigma(k)} x(k)
$$

, Unique solvability \Longrightarrow index-1 of (SSS)

Extensions

, Explicit calculation of $\Phi_{i, j}$ (without QWF)
, Extension to inhomogeneous case
, Stability analysis via joint spectral radius

