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1. INTRODUCTION

Model order reduction (MOR) turned out to be a im-
portant tool in the context of the simulation of various
applications and problems over the last decades, see e.g.
Antoulas (2005). The main purpose of MOR is to find a
lower order approximation of a dynamical system which
can be used in simulation and optimization instead of the
original (large) system.

In the last decades, switched systems gained much interest
as a modelling framework with applications in mechanical
and aeronautical systems, power converters and auto-
motive industry, for details we refer to Liberzon (2003),
Sun and Ge (2005). Clearly, MOR of switched systems is
highly relevant for large scale applications in the systems
and control community.

So far, many works have been done on MOR of switched
systems, we refer to the following contributions: Mon-
shizadeh et al. (2012), Papadopoulus and Prandini (2016),
Schulze and Unger (2018), Gosea et al. (2018b), Pontes Duff
et al. (2020), Gosea et al. (2018a), Petreczky et al. (2013).
In contrast to these references, we view here the switched
system as a special time-varying system and aim for
a (time-varying) model-reduction depending on a given
(known) switching signal.

In this paper, we study linear switched system described
by the equations:

Sσ :

{
ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), x(0) = 0,

y(t) = Cσ(t)x(t),
(1)

where σ : R → M = {0, 1, 2, · · · , f} is a given piecewise
constant function with finitely many switching times 0 <
t1 < t2 < · · · < tf in the bounded interval [0, tf+1) of
interest. The system matrices are Ai ∈ Rn×n, Bi ∈ Rn×m,
Ci ∈ Rp×n, where i ∈ M and n is the number of state
variables, called the order of the subsystems. We can
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assume that the i-th mode is active in the interval [ti, ti+1),
for i = 0, 1, · · · , f (where t0 := 0) and so the duration of
i-th mode is τi = ti+1−ti. The input function u is assumed
to be piecewise continuous and bounded.

The notion of balanced realization of state space systems
was introduced extensively in Moore (1981) and connec-
tions to the Hankel-norm approximations were drawn in
Glover (1984) and Antoulas (2005). The concept was ex-
tended to time-varying systems in Shokoohi et al. (1983)
and Verriest and Kailath (1983) where input-output bal-
ancing was discussed for various Gramians. In particular,
model reduction is considered for exponentially stable and
uniformly completely controllable and observable systems.
Uniform and infinite-interval balanced realization are also
investigated in Shokoohi et al. (1983). Stability of the
reduced order model is studied in Shokoohi et al. (1984).
In Sandberg and Rantzer (2004), error bounds are given
in the finite interval case.

In this paper, we propose a balanced truncation method
for model reduction of linear switched system (1). To
the authors’ knowledge, this is the first attempt to solve
the model reduction for switched system by considering
it as a time-varying system. It is known, that the bal-
ancing procedure involves computing the controllability
and observability Gramians from the pair of differential
Lyapunov equations, for details we refer Shokoohi et al.
(1983); Lang et al. (2016).

The paper is organized as follows. The problem formu-
lation and some preliminaries are discussed in Section 2.
Section 3 reviews the steps of the computation of the bal-
anced realization by constructing balancing coordinates.
In Section 4, we study the notion of time-varying balanced
truncation for switched systems, so that a reduced order
model can be constructed. Finally, some numerical results
are presented in Section 5.



2. PROBLEM STATEMENT AND PRELIMINARIES

In this section, we present examples for motivation and
some preliminaries are given.

The basic idea of model reduction is to represent a complex
dynamical system by a much simpler one. This may refer
to many different techniques. In this paper, we focus only
on projection-based method, in particular on balanced
truncation (BT) which is the most prominent projection-
based model reduction methods.

It can be shown that the states of a realization that are
either uncontrollable or unobservable do not appear in
the corresponding transfer function matrix. Furthermore,
states that are almost uncontrollable or unobservable can
be omitted from the realization with little effect on the
input-output behavior of the system.

In projection-based technique, the original state variables

x is approximated by T̂ x̂ for some T̂ ∈ Rn×r and where
x̂ : R→ Rr is the solution of the reduced order model

Ŝσ :

{
˙̂x(t) = Âσx̂(t) + B̂σu(t), x̂(0) = 0,

ŷ(t) = Ĉσx̂(t),
(2)

with reduced system matrices Âi ∈ Rr×r, B̂i ∈ Rr×m,
Ĉi ∈ Rp×r, for i ∈M and r � n.

A question arises: Is the balanced truncation approach
applicable to switched systems by reducing each individual
subsystems independently?

The following simple example shows that this naive idea
doesn’t work in general.

Example 1. Consider the switched system (1) with A0 =
A1 =

[−0.5 0.01
0.01 −0.5

]
, B0 = C>0 = [ 0.0011 ] and B1 = C>1 =

[ 1
0.001 ]. The switching signal is given by σ(t) = 0 on
t ∈ [0, 1) and σ(t) = 1 on [1, 2). The input for this example
is u(t) = (sin(5t) + 0.05)e−.5t.

Applying balanced truncation on the two intervals [0, 1)
and [1, 2) separately, we get the same one-dimensional
reduced order model for each mode:

˙̂x(t) = −0.5 x̂(t) + u(t),

ŷ(t) = x̂(t).

Figure 1 shows the output of the original and reduced
system. Clearly, the output of the reduced model does not
match the original output after the switch, although each
individual mode is approximated sufficiently well with a
small (known) error bound. �

The above example shows, that a piecewise balanced
truncation method will not result in good approximations
of a switched system in general. The underlying problem
is the time-varying nature of the switched system, so we
propose to use a time-varying balanced truncation method
for the switched system.

2.1 Approximate time-varying system

The available balanced truncation methods for time-
varying system (as discussed in the Introduction) assume
that the coefficient matrices are at least continuous. How-
ever, the switched system (1) seen as a time-varying sys-
tem has discontinuous coefficient matrices. In order to

Fig. 1. Outputs of Example 1 of original system and 1st
order reduced system.

still be able to use the existing methods we propose the
following approximation of the switched system (1) by the
following (continuously) time-varying systems:

Sε :

{
ẋ(t) = Aε(t)x(t) +Bε(t)u(t), x(0) = 0,

y(t) = Cε(t)x(t),
(3)

where Aε(·), Bε(·) and Cε(·) are defined as follows:

(Aε(t), Bε(t), Cε(t)) := (A0, B0, C0), : t ∈ [0, t1),

Aε(t) =

{
Ai−1 +

t− ti
ε

(Ai −Ai−1) : t ∈ [ti, ti + ε),

Ai : t ∈ [ti + ε, ti+1)

Bε(t) =

{
Bi−1 +

t− ti
ε

(Bi −Bi−1) : t ∈ [ti, ti + ε),

Bi : t ∈ [ti + ε, ti+1)

Cε(t) =

{
Ci−1 +

t− ti
ε

(Ci − Ci−1) : t ∈ [ti, ti + ε),

Ci : t ∈ [ti + ε, ti+1)

where i = 1, · · · , f .

Remark 2. It is clear that the coefficient matrices in time-
varying system (3) are bounded and continuous even for
small ε, since the term t−ti

ε ∈ (0, 1), ∀ t ∈ (ti, ti + ε). Fur-
thermore, the coefficient matrices are differentiable almost
everywhere, however, the derivatives grow proportional to
1/ε.

Remark 3. Consider (1) and (3) with the same input u
and denote with xσ and xε the corresponding solutions.
Using an inductive argument, it is easy to see that there
exist ε > 0 and a constant c > 0 such that for all ε ∈ (0, ε)

‖xε(t)− xσ(t)‖ < c ε ∀t ∈ [0, tf+1). (4)

The constant c depends on the input u, on the length of the
interval [0, tf+1) and on the (magnitude of the) matrices
Ai and Bi. A similar bound for the output does not hold
for all t ∈ [0, tf+1) in general because the output of (1) is
discontinuous (because the C-matrix switches) while the
output of (3) is continuous. Nevertheless, away from the
switching times (where Cε(t) = Cσ(t)) the error bound (4)
trivially carries over to a corresponding error bound for
the outputs.

Example 4. We consider again the switched system from
Example 1 and approximate it by (3) with ε = 0.1 and
ε = 10−3. Figure 2 shows the output of the approximation
compared to the output of the original switched system



Fig. 2. Comparison for Example 1 between the output of
the original system and proposed approximation.

and it is clearly visible that indeed (3) is a good approxi-
mation of (1) for sufficiently small ε. �

Our goal is now to derive a reduced model for the approx-
imated system (3) of the form

Ŝε :

{
˙̂x(t) = Âε(t)x̂(t) + B̂ε(t)u(t), x̂(0) = 0,

ŷ(t) = Ĉε(t)x̂(t),
(5)

We conclude this section by recalling that the solution of
the time-varying state equations in system (3) is

x(t) = Φε(t, 0)x(0) +

∫ t

0

Φε(t, τ)Bε(τ)u(τ)dτ

where Φε(t, τ), known as state transition matrix, is the
unique solution of

∂

∂t
Φε(t, 0) = Aε(t)Φε(t, 0)

with the initial condition Φε(0, 0) = I.

3. BALANCED REALIZATIONS

In this section, we discuss the balanced realization of time-
varying system (3) and establish the conditions for the
existence of a balancing transformation. Further, we show
how the system can be reduced to obtain a lower order
model in the input-output description.

It is well known that controllability and observability are
essential concepts for balancing theory. Here, we define the
controllability and observability Gramians which charac-
terize the controllability and observability subspaces. In
particular, we are interested in the input-output balancing
of the system over finite time interval [0, tf+1] with respect
to the controllability and observability Gramians.

3.1 Controllability and observability Gramians

Inspired by the Shokoohi et al. (1983); Verriest and
Kailath (1983); Sandberg and Rantzer (2004) we define the
time-varying controllability and observability Gramians as
follows.

Definition 5. The time-varying controllability and observ-
ability Gramians at t ∈ [0, tf+1] are defined as

Pε(t) := P0 +

∫ t

0

Φε(t, τ)Bε(τ)B>ε (τ)Φ>ε (t, τ)dτ, (6)

Qε(t) := Qf +

∫ tf+1

t

Φ>ε (τ, t)C>ε (τ)Cε(τ)Φε(τ, t)dτ, (7)

where P0, Qf ∈ Rn×n are some symmetric positive definite
matrices.

Remark 6. If the dynamical system is considered on the
whole time axis (as is usually the case for the time-
invariant case, then P0 and Qf are chosen such that
Pε(−∞) = 0 and Qε(∞) = 0. This however makes it nec-
essary to assume that the linear system is asymptotically
stable. In our situation, where we are only interested in the
behavior on the finite interval [0, tf+1), we can basically
arbitrarily assign the values for P0 and Qf ; in other words,
we can choose arbitrarily how the system behaves outside
the interval of interest as long as it is exponentially stable.

Now we define certain controllable and observable notions
for a time-varying system.

Definition 7. (i) The pair (Aε(·), Bε(·)) is called bound-
edly completely controllable on [0, tf+1] if there exist two
constants 0 < α < ᾱ <∞ and Pε(t) = P>ε (t) given by (6)
such that

0 < αI ≤ Pε(t) ≤ ᾱI <∞, ∀ t ∈ [0, tf+1].

(ii) The pair (Aε(·), Cε(·)) is called boundedly completely
observable on [0, tf+1] if there exist 0 < β < β̄ < ∞ and
Qε(t) = Q>ε (t) given by (7) such that

0 < βI ≤ Qε(t) ≤ β̄I <∞, ∀ t ∈ [0, tf+1].

It can be shown that these Gramians are the solution of
the following differential Lyapunov equations:

Ṗε(t) = Aε(t)Pε(t) + Pε(t)A
>
ε (t) +Bε(t)B

>
ε (t) (8)

Q̇ε(t) = −(A>ε (t)Qε(t) +Qε(t)Aε(t) + C>ε (t)Cε(t)) (9)

with initial conditions Pε(0) = P0, Qε(tf+1) = Qf .

3.2 Computational aspects of Gramians

The Gramians can be computed either by solving the
differential Lyapunov equations (8), (9) (see Behr et al.
(2019)), or by explicitly computing the transition matrix
and integration. For the latter approach the following
property of the Gramians can be exploited.

Lemma 8. Assume the time steps s0 < s1 < · · · < sk,
k ∈ N then the Gramians defined in (6) and (7) at si can
be calculated recursively as follows

Pε(si) = Φε(si, si−1)Pε(si−1)Φ>ε (si, si−1)

+

∫ si

si−1

Φε(si, τ)Bε(τ)B>ε (τ)Φ>ε (si, τ)dτ

Qε(si) = Φ>ε (si+1, si)Qε(si+1)Φε(si+1, si)

+

∫ si+1

si

Φ>ε (τ, si)C
>
ε (τ)Cε(τ)Φε(τ, si)dτ

for i = 1, 2, · · · , k.

Proof. This is simple consequence from the definition and
the property of the transition matrix, in particular,

Φε(si, τ) = Φε(si, si−1)Φε(si−1, τ)

for any i = 1, 2, . . . , k and τ ∈ R. �



The Gramians will be used in the next subsection to obtain
a coordinate transformation which results in a balanced
system.

3.3 Balancing of time-varying system

The balancing of a system is accomplished by a transfor-
mation of the state vector. In time-varying systems, such
transformation is also time-varying and we need to restrict
the class of allowed coordinate transformations to so called
Lyapunov transformations.

Definition 9. The mapping T : [0, tf+1] → Rn×n is called
a Lyapunov transformation (or, short, Lyapunov) iff T (t),

T (t)−1 and Ṫ (t) are well defined and bounded on [0, tf+1].

We now highlight that bounded controllability/observability
ensures that the Gramians Pε(t) and Qε(t) are Lyapunov
transformations.

Lemma 10. Assume that the system (3) is boundedly
completely controllable and observable on [0, tf+1] then
Pε(t) and Qε(t) are Lyapunov.

Proof. Boundedness of Pε, Qε and its inverses on [0, tf+1]
is direct consequence from the definition of bounded com-
plete controllability/observability. Furthermore, Pε and
Qε are clearly countinously differentiable (as the integral

of a continuous function), hence Ṗε and Q̇ε are bounded,
because they are continuous on [0, tf+1]. �

The idea of balanced truncation is to find a coordinate
transformation such that the controllability and observ-
ability Gramians are the same and diagonal, so states can
be identified which are simultaneously difficult to control
and difficult to observe. We now proceed to study the
conditions under which controllability and observability
Gramians can be diagonalized by Lyapunov transforma-
tions.

Let T (t) be a Lyapunov transformations. Then the state
equations in system (3) can be transformed under the
transformation

x(t) = T (t)x̄(t)

resulting in

˙̄x(t) = Āε(t)x̄(t) + B̄ε(t)u(t), x̄(0) = 0,

y(t) = C̄ε(t)x̄(t)

with

Āε(t) := T (t)−1(Aε(t)T (t)− Ṫ (t)),

B̄ε(t) := T (t)−1Bε(t),

C̄ε(t) := Cε(t)T (t).

In general, when there is a Lyapunov transformation such
that one system can be transformed to another as above,
we call both systems equivalent. For two equivalent sys-
tems it is easily seen that the controllability and observ-
ability Gramians transform to

P̄ε(t) = T (t)−1Pε(t)T (t)−>,

Q̄ε(t) = T (t)>Qε(t)T (t).

In particular,

P̄ε(t)Q̄ε(t) = T (t)−1Pε(t)Qε(t)T (t)

which implies that the eigenvalues of the product of
Gramians are invariant under such transformation.

It is well known (Shokoohi et al., 1983) that the trans-
formation matrices in an eigenvalue decomposition of
Pε(t)Qε(t) may not be Lyapunov, although the Gramians
are Lyapunov. Therefore, we need an additional assump-
tion to ensure that the forthcoming coordinate transfor-
mations will be Lyapunov.

Assumption 1. Consider the time-varying system (3)
with corresponding controllability and observability Grami-
ans Pε and Qε. Assume that the eigenvalues of Pε(t)Qε(t)
only cross each other at isolated points, and they do not
have common derivatives at their crossing points. �
In the following, we compute balancing transformation for
the system (3) using the Gramians.

Lemma 11. (Lang et al. (2016)). Assume the time-varying
system (3) is boundedly completely controllable and ob-
servable on [0, tf+1] and the controllability/observability
Gramians Pε, Qε satisfy Assumption 1. Then there exists
a Lyapunov transformation Tε : [0, tf+1] → Rn×n such
that

Tε(t)
−1Pε(t)Tε(t)

−> = Tε(t)
>Qε(t)Tε(t) = Πε(t),

for all t ∈ [0, tf+1], for a diagonal matrix Πε(t). In fact,

Tε(t) = Rε(t)Uε(t)Πε(t)
−1/2,

Tε(t)
−1 = Πε(t)

−1/2Vε(t)
>Lε(t)

>,

where Uε(t)Πε(t)Vε(t)
> is the singular value decomposi-

tion of Rε(t)
>Lε(t) and where Rε(t)Rε(t)

> = Pε(t) and
Lε(t)Lε(t)

> = Qε(t) are the Cholesky decompositions of
Pε and Qε, respectively.

Proof. First observe bounded complete controllability /
observability, ensures that Pε(t)Qε(t) is invertible, hence
Πε(t)

−1/2 is well defined. Furthermore, it can be shown
that Assumption 1 ensures that all involved matrices to
define Tε are Lyapunov (for details see Lang et al. (2016).
Now simple calculations show

P̄ε(t) := Tε(t)
−1Pε(t)Tε(t)

−> = Πε(t),

Q̄ε(t) := Tε(t)
>Qε(t)Tε(t) = Πε(t).

�

The diagonal entries of Πε(t) are called in the following
Hankel singular values.

4. MODEL REDUCTION

In this section, we show a way to find a reduced model
of a balanced realization over a finite interval [0, tf+1].
In balanced coordinates, for each coordinate direction the
degrees of controllability and observability Gramians are
equal.

The main idea for MOR is to eliminate that part corre-
sponding to relatively small singular values. Therefore, we
make to following assumption.

Assumption 2. Using the notation of Lemma 11, assume
that the Hankel singular values in Πε(·) can be divided
into two parts

R>ε (t)Lε(t) :=
[
Ûε(t) Ũε(t)

] [Π̂ε(t) 0

0 Π̃ε(t)

] [
V̂ε(t) Ṽε(t)

]>
,

such that all Hankel singular values in Π̂ε(t) are larger

than all Hankel singular values in Π̃ε(t). �



According to the partition from Assumption 2, the ap-
proximation (3) of the original switched system (1) is
equivalent to the balanced system[

˙̂x(t)
˙̃x(t)

]
=

[
Âε(t) Ā12(t)

Ā21(t) Ãε(t)

] [
x̂(t)
x̃(t)

]
+

[
B̂ε(t)

B̃ε(t)

]
u(t),

y(t) =
[
Ĉε(t) C̃ε(t)

] [x̂(t)
x̃(t)

]
,

(10)

where x̂(t) ∈ Rr, Âε(t) ∈ Rr×r, B̂ε ∈ Rr×m, Ĉε ∈ Rp×r

and where r < n is the dimension of Π̂ε.

In the balanced system (10) the states x̃ corresponding

to Π̃ε(·) are nearly uncontrollable and unobservable (since
the corresponding part in the controllability and observ-

ability Gramian given by Π̃ε is small), and therefore don’t
play an important role in the input-output behavior and
approximating them by zero results in a small error in the
output. This motivates to consider the following reduced
(and balanced) model

˙̂x(t) = Âε(t)x̂(t) + B̂ε(t)u(t), x̂(0) = 0,

ŷ(t) = Ĉε(t)x̂(t).
(11)

The ROM (11) can be calculated without first calculating
the full balanced transformation, by observing that

Âε(t) := T̂−1ε (t)(Aε(t)T̂ε(t)−
˙̂
T ε(t)),

B̂ε(t) := T̂−1ε (t)Bε(t),

Ĉε(t) := Cε(t)T̂ε(t),

where (using the notation from Lemma 11)

T̂ε(t) = Rε(t)Ûε(t)Π̂ε(t)
−1/2 ∈ Rn×r,

T̂−1ε (t) = Π̂ε(t)
−1/2V̂ε(t)

>Lε(t)
> ∈ Rr×n.

Remark 12. (Shokoohi et al. (1983)).

The triple (Âε(t), B̂ε(t), Ĉε(t)) in (11) satisfies the differ-
ential Lyapunov equations

Âε(t)Π̂ε(t) + Π̂ε(t)Â
>
ε (t) + B̂ε(t)B̂

>
ε (t) =

˙̂
Πε(t), (12)

Â>ε (t)Π̂ε(t) + Π̂ε(t)Âε(t) + Ĉ>ε (t)Ĉε(t) = − ˙̂
Πε(t). (13)

We conclude this section by providing an error bound for
above proposed time-varying balanced truncation method.
For this we need some additional assumption on the time-
behavior of the Hankel singular values. Here we provide
the simplest, but most conservative assumption.

Assumption 3 Consider the partition from Assump-
tion 2. Assume that each Hankel singular value σi(·),
i = r + 1, · · · , n in Π̃ε(·) is either nonincreasing or nonde-
creasing over time. �
Theorem 13. (Sandberg and Rantzer (2004)). Consider the
approximation system (3) of the switched system (1) sat-
isfying Assumptions 1,2 and 3 and with corresponding re-
duced system (11). Then for every input u : [0, tf+1]→ Rm
the error between the output yε : [0, tf+1]→ Rp of (3) and
the output ŷ : [0, tf+1]→ Rp of (11) satisfies

‖yε − ŷ‖L2
≤ 2

n∑
i=r+1

sup
t∈[0,tf+1]

σi(t) ‖u‖L2

5. NUMERICAL RESULTS

In this section, we consider two examples to illustrate the
proposed method.

Example 14. Consider the switched systems of Example 1
with a single switch and the corresponding approximation
(3) with ε = 10−3. After applying the proposed reduction
technique, we can compute a first order reduce system.

Figure 3 shows that for the given input (see Example 1)
the output of the first order reduced system is a good
approximation of the output of the switched system.
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Fig. 3. Comparison for Example 1 between the output
of original system (in solid red), approximation (in
dashed blue) and 1st order reduced system (in dashed
magenta).

Example 15. Consider a randomly generated SISO switched
linear system with x0 := 0 :

A1 =

[ −0.74 0.3 0.2 −0.01 −0.06
0.965 −1.43 −0.5 0.8 −0.26
0.922 −0.0487 −0.44 0.03 0.054
−0.98 0.28 0.31 −0.764 0.07
−0.634 −1.26 0.534 0.662 −0.48

]
,

B1 = [ 2 1.4 1.1 −0.06 0.08 ]
T
, C1 = [ 2.5 2 1.6 0.02 −0.03 ]

A2 = A1 − 0.5 ∗ I5(I denotes identity matrix),

B2 = [ 2.5 1.8 .3 0.6 −1 ]
T
, C2 = [ 1.5 1.4 .7 0.1 0.2 ] , ε = 10−3.

We derive the system with u(t) = (sin(5t) + 0.05)e−0.5t

and switching signal

σ : [0, 6]→ {1, 2} : σ(t) =

{
1 : t ∈ [0, 1) ∪ [2, 4),

2 : t ∈ [1, 2) ∪ [4, 6]

In Figure 4, we show that the first singular value is
significantly larger than the others (by taking Pε(0) =
Qε(6) = 0.2I). So we can truncate the small four singular
values to obtain a 1st order reduced model. Figure 5
displays the output of original switched system (Sσ),
proposed time-varying approximate system (Sε) and 1st

order reduced system (Ŝε(t)) which shows that they are
nicely matching.

Note that from Figure 4 it is apparent that the truncated
Hankel singular values do not satisfy Assumption 3, hence
we are currently unable to make a general statement about
the error bounds for this example.



Fig. 4. Hankel singular values of pointwise Gramians.

Fig. 5. Comparison for Example 15 between the output
of original system, proposed approximation and 1st
order approximation.

6. CONCLUSION

In this paper, we have presented a time-varying approach
for proposing a reduced order approximation of switched
linear system. The key idea is to approximate the discon-
tinuous switched system by a continuously time-varying
system and use available balanced truncation methods
time-varying linear systems. We also propose some error
bounds. Two numerical examples illustrate the applicabil-
ity and good performance.

The overall error bound is composed of two error bounds:
One between the switched system and its (full order)
approximation and another error bound coming from the
time-varying balanced truncation. For the former we do
not have quantitative bounds yet and for the latter it is not
clear yet, how smaller values for ε effect the error bound;
these questions are ongoing research.

Furthermore, calculation the time-varying Gramians may
be computationally infeasible for higher-order systems and
it has to be invested whether efficient approximations
methods can be derived.

Finally, we want to stress that the reduced model is
not a simple switched system anymore. Hence the model
complexity significantly increases and we are currently

investigating alternative approaches which preserve the
simple piecewise-constant structure.
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