

faculty of science and engineering bernoulli institute for mathematics, computer science and artificial intelligence

The one-step-map for switched singular systems in discrete-time

Stephan Trenn

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

Joint work with **Pham Ky Anh** and **Pham Thi Linh**, Vietnam National University and **Do Duc Thuan**, Hanoi University for Science and Technology.

Supported by NAFOSTED project 101.01-2017.302 and by NWO Vidi grant 639.032.733.

IEEE Conference on Decision and Control (CDC 2019), Nice, France Wednesday, 11 December 2019, 11:20

System class and motivation

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k)$$
(SSS)

- $\mapsto E_1, E_2, \dots, E_n, A_1, A_2, \dots, A_n \in \mathbb{R}^{n \times n}$ with *E*-matrix singular
-) $x:\mathbb{N}\to\mathbb{R}^n$ state

Motivation

- > Leontief economic model (Luenberger 1977)
- > discretization of continuous-time time-varying DAEs
- > sampled feedback loop for descriptor systems

Simple question

What can we say about existence and uniqueness of solutions?

Small excursion to continuous time

$$E_{\sigma}\dot{x} = A_{\sigma}x$$

Theorem (Existence and uniqueness in continuous time, Trenn 2012)

Assume (E_i, A_i) are regular, i.e. $det(sE_i - A_i)$ is not the zero polynomial. Then for any past trajectory $x^0(\cdot)$ and any $t_0 \in \mathbb{R}$ there exists unique $x(\cdot)$ such that

$$x_{(-\infty,t_0)} = x_{(-\infty,t_0)}^0$$

($E_{\sigma}\dot{x}$)_{[t_0,\infty)} = $(A_{\sigma}x)_{[t_0,\infty)}$

In particular, solution behavior is causal w.r.t. to the switching signal.

Distributional solution framework necessary

Above solution result only holds when solution space is enlarged to allow for jumps and Dirac impulses.

Index-1 for switched systems

A simple example

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k)$$
(SSS)

Example

Consider (SSS) with

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, A_1 = I \text{ and } E_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, A_2 = I$$

Nonswitched solution behavior

Stephan Trenn (Jan C. Willems Center, U Groningen)

The one-step-map for switched singular systems in discrete-time (3 / 13)

A simple example

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k)$$
(SSS)

Example

Consider (SSS) with

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ A_1 = I \quad \text{and} \quad E_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \ A_2 = I$$
Switched solution behavior $\sigma(k) = \begin{cases} 1, & k < k_s \\ 2, & k \ge k_s \end{cases}$
For $k < k_s$ we have $x(k) = \begin{pmatrix} c_1 \\ 0 \end{pmatrix}$ and for $k = k_s - 1$ also $x_1(k_s) = x_1(k_s - 1) = c_1$
BUT: For $k = k_s$ also $0 = x_1(k_s)$, hence $c_1 = 0$ necessary!
Furthermore $x_2(k_s)$ not constraint by mode $1 \rightsquigarrow x_2(k) = c_2$ for all $k \ge k_s$
 $\rightsquigarrow \quad x(k) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ for $k < k_s$ and $\quad x(k) = \begin{pmatrix} 0 \\ c_2 \end{pmatrix}$ for $k \ge k_s$

Index-1 for switched systems

Observations from example

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k) \tag{SSS}$$

No existence and uniqueness of solutions!

- > Not all solutions from the past can be extended to a global solution
- > Single initial value leads to multiple solutions in the future
- > Loss of causality w.r.t. to switching signal

Definition

(SSS) is called causal w.r.t. the switching signal : $\iff \forall \sigma, \widetilde{\sigma} \ \forall x(\cdot)$ sol. for $\sigma \ \forall \widetilde{k} \in \mathbb{N}$:

$$\sigma(k) = \widetilde{\sigma}(k) \; \forall k \leq \widetilde{k} \quad \Longrightarrow \quad \exists \, \widetilde{x}(\cdot) \text{ sol. for } \widetilde{\sigma}: \; \widetilde{x}(k) = x(k) \; \forall k \leq \widetilde{k}$$

Example not causal w.r.t. the switching signal: Let $\sigma \equiv 1$, $\tilde{\sigma}(k) = \begin{cases} 1, & k < k_s \\ 2, & k \ge k_s \end{cases}$ \Rightarrow no solution \tilde{x} with $\tilde{x}(k) = c_1 = x(k) \neq 0$ for $k < k_s$.

yuniversity of groningen Introduction

Singular system preliminaries

Index-1 for switched systems

Causality and One-Step-Map

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k)$$
(SSS)

Question

When is (SSS) causal w.r.t. the switching signal?

More specifically: When is x(k+1) uniquely defined for all x(k), $\sigma(k)$ and $\sigma(k+1)$?

In other words: Is there a one-step-map $\Phi_{i,j} \in \mathbb{R}^{n \times n}$, $i, j \in \{1, 2, ..., n\}$ such that

$$\forall$$
 sol. $x(\cdot)$ of (SSS): $x(k+1) = \Phi_{\sigma(k+1),\sigma(k)}x(k)$

Stephan Trenn (Jan C. Willems Center, U Groningen)

The one-step-map for switched singular systems in discrete-time (5 / 13)

Regularity and index

Theorem (Quasi-Weierstrass Form)

(E,A) is regular $\iff \exists S,T$ invertible with

$$(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & N \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right)$$
 (QWF)

where \boldsymbol{N} is nilpotent

Definition

(E, A) has index-1 : $\iff N = 0$ in (QWF)

Index-1 (together with regularity) is also called:

- causal
- > admissable
- > impulse-free

Index-1 characterization

Theorem (see e.g. Griepentrog & März 1986)

(E, A) is regular and index-1 $\iff S \oplus \ker E = \mathbb{R}^n$, where $S := A^{-1}(\operatorname{im} E) := \{\xi \in \mathbb{R}^n \mid A\xi \in \operatorname{im} E\}$ $\iff S \cap \ker E = \{0\}$ Furthermore, $T = [T_1, T_2]$ and $S = [ET_1, AT_2]^{-1}$ with $\operatorname{im} T_1 = S$ and $\operatorname{im} T_2 = \ker E$:

$$(SET, SAT) = \left(\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} J & 0 \\ 0 & I \end{bmatrix} \right)$$
(QWF)

Corollary

$$\begin{split} & Ex(k+1) = Ax(k) \text{ being regular} + \text{ index-1 has unique solution with } x(0) = x_0 \in \mathbb{R} \\ & \Longleftrightarrow \ x_0 \in \mathcal{S} \\ & \text{ In fact, } \ x(k+1) = \Phi_{(E,A)}x(k) \quad \text{ with } \Phi_{(E,A)} := T \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix} T^{-1} \end{split}$$

Is this the sought one-step map already?

Attention

 $\Phi_{(E,A)}$ is one-step-map for Ex(k+1)=Ax(k) BUT: Only true when system is active for at least two time-steps:

$$Ex(1) = Ax(0) \implies x(1) \in E^{-1}(Ax(0)) = \left\{ \Phi_{(E,A)}x(0) \right\} + \ker E$$
$$Ex(2) = Ax(1) \implies x(1) \in A^{-1}(Ex(2)) \subseteq \mathcal{S}$$

Hence, invoking $S \cap \ker E = \{0\}$,

 $Ex(1) = Ax(0) \quad \land \quad Ex(2) = Ax(1) \quad \Longrightarrow \quad x(1) = \Phi_{(E,A)}x(0)$

--- Not suitable for switched systems!

Both modes in Example were regular+index-1, but no one-step-map exists!

Problem seems to be overlooked in the literature so far!

A key definition

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k)$$
(SSS)

Definition

(SSS) or $\{(E_1, A_1), (E_2, A_2), \dots, (E_n, A_n)\}$ is called (jointly) index-1 : \iff

 $\mathcal{S}_i \cap \ker E_j = \{0\}$ $\forall i, j \in \{1, 2, \dots, n\}, \mathcal{S}_i := A_i^{-1}(\operatorname{im} E_i)$

- > Clearly (i = j) each pair (E_i, A_i) must be index-1
- > In general, (E_j, A_i) is not index-1 (not even regular)

Example

$$E_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, A_{1} = I \quad \nleftrightarrow \quad \ker E_{1} = \operatorname{span}\left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \mathcal{S}_{1} = A_{1}^{-1}(\operatorname{im} E_{1}) = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$$
$$E_{2} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, A_{2} = I \quad \nleftrightarrow \quad \ker E_{2} = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}, \mathcal{S}_{1} = A_{2}^{-1}(\operatorname{im} E_{2}) = \operatorname{span}\left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$
Clearly, $\mathcal{S}_{i} \cap \ker E_{i} \neq \{0\}$ for $i \neq j$.

The one-step-map

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k), \quad x(0) = x_0$$
(SSS)

Theorem

Assume (SSS) is (jointly) index-1. Then $\forall \sigma \ \forall x_0 \in \mathbb{R}^n$:

$$x(\cdot)$$
 solves (SSS) $\iff x_0 \in \mathcal{S}_{\sigma(0)} \land x(k+1) = \Phi_{\sigma(k+1),\sigma(k)}x(k)$

where

$$\Phi_{i,j} := \Pi_{\mathcal{S}_i}^{\ker E_j} \cdot \Phi_{(E_j, A_j)}$$

and $\Pi_{S_i}^{\ker E_j}$ is the projector onto S_i along ker E_j .

Skip proof

Proof idea

$$x(k+1) = \Phi_{\sigma(k+1),\sigma(k)}x(k)$$
 with $\Phi_{i,j} := \prod_{\mathcal{S}_i}^{\ker E_j} \cdot \Phi_{(E_j,A_j)}$

Lemma

For any subspace $\mathcal{V}, \mathcal{W} \subseteq \mathbb{R}^n$ it holds that

$$\mathcal{V} \oplus \mathcal{W} = \mathbb{R}^n \quad \Longrightarrow \quad \mathcal{V} \cap (\{z\} + \mathcal{W}) = \{\Pi^{\mathcal{W}}_{\mathcal{V}} z\}$$

) index-1
$$\implies S_i \oplus \ker E_j = \mathbb{R}^n \rightsquigarrow \Pi_{S_i}^{\ker E_j}$$
 well defined

- $E_{\sigma(0)}x(1) = A_{\sigma(0)}x(0) \implies x(0) \in \mathcal{S}_{\sigma(0)}$
- $\text{ Show by induction that } x(k) \in \mathcal{S}_{\sigma(k)} \implies \exists ! \, x(k+1) \in \mathcal{S}_{\sigma(k+1)}$
 - $E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k) \implies x(k+1) \in \{\Phi_{(E_{\sigma(k)},A_{\sigma(k)})}x(k)\} + \ker E_{\sigma(k)}x(k)\}$
 - $E_{\sigma(k+1)}x(k+2) = A_{\sigma(k+1)}x(k+1) \implies x(k+1) \in A_{\sigma(k+1)}^{-1}(\operatorname{im} E_{\sigma(k+1)}) = \mathcal{S}_{\sigma(k+1)}$

$$\bullet \stackrel{\text{Lemma}}{\Longrightarrow} x(k+1) = \Pi_{\mathcal{S}_{\sigma(k+1)}}^{\ker E_{\sigma(k)}} \Phi_{\left(E_{\sigma(k)}, A_{\sigma(k)}\right)} x(k)$$

Necessity of index-1 assumption

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k), \quad x(0) = 0$$
 (SSS)

Theorem

 $\forall \sigma \ x(1) = 0 \text{ is only solution of (SSS) for } k = 0, 1$ $\implies S_i \cap \ker E_j = \{0\} \text{ for } i, j \in \{1, 2, \dots, n\}$

Proof sketch:

$$k = 0: E_j x(1) = A_j x(0) = 0 \iff x(1) \in \ker E_j$$

$$k = 1: E_i x(2) = A_i x(1) \iff x(1) \in \mathcal{S}_i$$

$$, x(1) = 0 \text{ is only solution } \implies \ker E_j \cap \mathcal{S}_i = \{0\}$$

Summary

$$E_{\sigma(k)}x(k+1) = A_{\sigma(k)}x(k)$$
(SSS)

- Simple example shows that index-1 of each mode is not sufficient for existence and uniqueness of solutions
- > (SSS) is index-1 : $\iff A_i^{-1}(\operatorname{im} E_i) \cap \ker E_j = \{0\} \quad \forall i, j \in \{1, 2, \dots, n\}$
-) (SSS) index-1 \implies existence of one-step-map $\Phi_{i,j}$ such that

$$x(k+1) = \Phi_{\sigma(k+1),\sigma(k)}x(k)$$

> Unique solvability \implies index-1 of (SSS)

Extensions

- > Explicit calculation of $\Phi_{i,j}$ (without QWF)
- > Extension to inhomogeneous case
- > Stability analysis via joint spectral radius