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Introduction Singular system preliminaries Index-1 for switched systems

System class and motivation

Eσ(k)x(k + 1) = Aσ(k)x(k) (SSS)

› σ : N→ {1, 2, . . . , n} switching signal
› E1, E2, . . . , En, A1, A2, . . . , An ∈ Rn×n with E-matrix singular
› x : N→ Rn state

Motivation
› Leontief economic model (Luenberger 1977)
› discretization of continuous-time time-varying DAEs
› sampled feedback loop for descriptor systems

Simple question
What can we say about existence and uniqueness of solutions?
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Small excursion to continuous time
Eσẋ = Aσx

Theorem (Existence and uniqueness in continuous time, Trenn 2012)
Assume (Ei, Ai) are regular, i.e. det(sEi −Ai) is not the zero polynomial.
Then for any past trajectory x0(·) and any t0 ∈ R there exists unique x(·) such that

x(−∞,t0) = x0
(−∞,t0)

(Eσẋ)[t0,∞) = (Aσx)[t0,∞)

In particular, solution behavior is causal w.r.t. to the switching signal.

Distributional solution framework necessary
Above solution result only holds when solution space is enlarged to allow for jumps
and Dirac impulses.
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A simple example

Eσ(k)x(k + 1) = Aσ(k)x(k) (SSS)

Example
Consider (SSS) with

E1 =
[
1 0
0 0

]
, A1 = I and E2 =

[
0 0
0 1

]
, A2 = I

Nonswitched solution behavior

σ ≡ 1 :
x1(k + 1) = x1(k)

0 = x2(k)

}
  x(k) =

(
c1
0

)
∀k ∈ N

σ ≡ 2 :
0 = x1(k)

x2(k + 1) = x2(k)

}
  x(k) =

(
0
c2

)
∀k ∈ N

Stephan Trenn (Jan C. Willems Center, U Groningen) The one-step-map for switched singular systems in discrete-time (3 / 13)



Introduction Singular system preliminaries Index-1 for switched systems

A simple example

Eσ(k)x(k + 1) = Aσ(k)x(k) (SSS)

Example
Consider (SSS) with

E1 =
[
1 0
0 0

]
, A1 = I and E2 =

[
0 0
0 1

]
, A2 = I

Switched solution behavior σ(k) =
{

1, k < ks

2, k ≥ ks
For k < ks we have x(k) = ( c1

0 ) and for k = ks − 1 also x1(ks) = x1(ks − 1) = c1
BUT: For k = ks also 0 = x1(ks), hence c1 = 0 necessary!
Furthermore x2(ks) not constraint by mode 1   x2(k) = c2 for all k ≥ ks
  x(k) =

(
0
0

)
for k < ks and x(k) =

(
0
c2

)
for k ≥ ks
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Observations from example
Eσ(k)x(k + 1) = Aσ(k)x(k) (SSS)

No existence and uniqueness of solutions!
› Not all solutions from the past can be extended to a global solution
› Single initial value leads to multiple solutions in the future
› Loss of causality w.r.t. to switching signal

Definition
(SSS) is called causal w.r.t. the switching signal :⇐⇒ ∀σ, σ̃ ∀x(·) sol. for σ ∀k̃ ∈ N:

σ(k) = σ̃(k) ∀k ≤ k̃ =⇒ ∃ x̃(·) sol. for σ̃ : x̃(k) = x(k) ∀k ≤ k̃

Example not causal w.r.t. the switching signal: Let σ ≡ 1, σ̃(k) =
{

1, k < ks

2, k ≥ ks
  no solution x̃ with x̃(k) = c1 = x(k) 6= 0 for k < ks.
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Causality and One-Step-Map

Eσ(k)x(k + 1) = Aσ(k)x(k) (SSS)

Question
When is (SSS) causal w.r.t. the switching signal?

More specifically: When is x(k + 1) uniquely defined for all x(k), σ(k) and σ(k + 1)?

In other words: Is there a one-step-map Φi,j ∈ Rn×n, i, j ∈ {1, 2, . . . , n} such that

∀ sol. x(·) of (SSS) : x(k + 1) = Φσ(k+1),σ(k)x(k)
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Regularity and index
Theorem (Quasi-Weierstrass Form)
(E,A) is regular ⇐⇒ ∃S, T invertible with

(SET, SAT ) =
([
I 0
0 N

]
,

[
J 0
0 I

])
(QWF)

where N is nilpotent

Definition
(E,A) has index-1 :⇐⇒ N = 0 in (QWF)

Index-1 (together with regularity) is also called:
› causal
› admissable
› impulse-free
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Index-1 characterization
Theorem (see e.g. Griepentrog & März 1986)
(E,A) is regular and index-1
⇐⇒ S ⊕ kerE = Rn, where S := A−1(imE) := {ξ ∈ Rn |Aξ ∈ imE}
⇐⇒ S ∩ kerE = {0}
Furthermore, T = [T1, T2] and S = [ET1, AT2]−1 with imT1 = S and imT2 = kerE:

(SET, SAT ) =
([
I 0
0 0

]
,

[
J 0
0 I

])
(QWF)

Corollary
Ex(k + 1) = Ax(k) being regular + index-1 has unique solution with x(0) = x0 ∈ R
⇐⇒ x0 ∈ S
In fact, x(k + 1) = Φ(E,A)x(k) with Φ(E,A) := T

[
J 0
0 0

]
T−1
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Is this the sought one-step map already?

Attention
Φ(E,A) is one-step-map for Ex(k + 1) = Ax(k)
BUT: Only true when system is active for at least two time-steps:

Ex(1) = Ax(0) =⇒ x(1) ∈ E−1(Ax(0)) =
{

Φ(E,A)x(0)
}

+ kerE
Ex(2) = Ax(1) =⇒ x(1) ∈ A−1(Ex(2)) ⊆ S

Hence, invoking S ∩ kerE = {0},

Ex(1) = Ax(0) ∧ Ex(2) = Ax(1) =⇒ x(1) = Φ(E,A)x(0)

  Not suitable for switched systems!

Both modes in Example were regular+index-1, but no one-step-map exists!

Problem seems to be overlooked in the literature so far!
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A key definition
Eσ(k)x(k + 1) = Aσ(k)x(k) (SSS)

Definition
(SSS) or {(E1, A1), (E2, A2), . . . , (En, An)} is called (jointly) index-1 :⇐⇒

Si ∩ kerEj = {0} ∀i, j ∈ {1, 2, . . . , n},Si := A−1
i (imEi)

› Clearly (i = j) each pair (Ei, Ai) must be index-1
› In general, (Ej , Ai) is not index-1 (not even regular)

Example

E1 =
[ 1 0

0 0
]
, A1 = I   kerE1 = span

{( 0
1
)}
,S1 = A−1

1 (imE1) = span
{( 1

0
)}

E2 =
[ 0 0

0 1
]
, A2 = I   kerE2 = span

{( 1
0
)}
,S1 = A−1

2 (imE2) = span
{( 0

1
)}

Clearly, Si ∩ kerEj 6= {0} for i 6= j.

Stephan Trenn (Jan C. Willems Center, U Groningen) The one-step-map for switched singular systems in discrete-time (9 / 13)



Introduction Singular system preliminaries Index-1 for switched systems

The one-step-map

Eσ(k)x(k + 1) = Aσ(k)x(k), x(0) = x0 (SSS)

Theorem
Assume (SSS) is (jointly) index-1. Then ∀σ ∀x0 ∈ Rn:

x(·) solves (SSS) ⇐⇒ x0 ∈ Sσ(0) ∧ x(k + 1) = Φσ(k+1),σ(k)x(k)

where
Φi,j := ΠkerEj

Si
· Φ(Ej ,Aj)

and ΠkerEj

Si
is the projector onto Si along kerEj .

Skip proof
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Proof idea
x(k + 1) = Φσ(k+1),σ(k)x(k) with Φi,j := ΠkerEj

Si
· Φ(Ej ,Aj)

Lemma
For any subspace V,W ⊆ Rn it holds that

V ⊕W = Rn =⇒ V ∩ ({z}+ W) = {ΠW
V z}

› index-1 =⇒ Si ⊕ kerEj = Rn   ΠkerEj

Si
well defined

› Eσ(0)x(1) = Aσ(0)x(0) =⇒ x(0) ∈ Sσ(0)

› Show by induction that x(k) ∈ Sσ(k) =⇒ ∃!x(k + 1) ∈ Sσ(k+1)
• Eσ(k)x(k + 1) = Aσ(k)x(k) =⇒ x(k + 1) ∈ {Φ(Eσ(k),Aσ(k))x(k)} + ker Eσ(k)

• Eσ(k+1)x(k+2) = Aσ(k+1)x(k+1) =⇒ x(k+1) ∈ A−1
σ(k+1)(im Eσ(k+1)) = Sσ(k+1)

•
Lemma=⇒ x(k + 1) = ΠkerEσ(k)

Sσ(k+1)
Φ(Eσ(k),Aσ(k))x(k)
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Necessity of index-1 asssumption

Eσ(k)x(k + 1) = Aσ(k)x(k), x(0) = 0 (SSS)

Theorem
∀σ x(1) = 0 is only solution of (SSS) for k = 0, 1
=⇒ Si ∩ kerEj = {0} for i, j ∈ {1, 2, . . . , n}

Proof sketch:
› k = 0: Ejx(1) = Ajx(0) = 0 ⇐⇒ x(1) ∈ kerEj
› k = 1: Eix(2) = Aix(1) ⇐⇒ x(1) ∈ Si
› x(1) = 0 is only solution =⇒ kerEj ∩ Si = {0}
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Summary
Eσ(k)x(k + 1) = Aσ(k)x(k) (SSS)

› Simple example shows that index-1 of each mode is not sufficient for existence and
uniqueness of solutions

› (SSS) is index-1 :⇐⇒ A−1
i (imEi) ∩ kerEj = {0} ∀i, j ∈ {1, 2, . . . , n}

› (SSS) index-1 =⇒ existence of one-step-map Φi,j such that

x(k + 1) = Φσ(k+1),σ(k)x(k)

› Unique solvability =⇒ index-1 of (SSS)

Extensions
› Explicit calculation of Φi,j (without QWF)
› Extension to inhomogeneous case
› Stability analysis via joint spectral radius
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