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Abstract— This paper addressed impulse controllability of
switched DAEs on a finite interval. We first present a forward
approach where we define certain subspaces forward in time,
which then are used to provide a sufficient condition for impulse
controllability. In order to obtain a full characterization we
present afterwards a backward approach, where a sequence of
subspaces is defined backwards in time. With the help of the
last element of this backward sequence, we are able to fully
characterize impulse controllability. All results are geometric
results and thus independent of a coordinate system.

I. INTRODUCTION

We consider the switched differential algebraic equations
(switched DAEs) of the following form:

Eσẋ = Aσx+Bσu, (1)

where σ : R → N is the switching signal and Ep, Ap ∈
Rn×n, Bp ∈ Rn×m, for p, n,m ∈ N. In general trajectories
of switched DAEs exhibit jumps (or even impulses), which
may exclude classical solutions from existence. Therefore,
we adopt the piecewise-smooth distributional solution frame-
work introduced in [1]. We study impulse controllability of
(1) where impulse controllability means that for every initial
value there exist an input such that the resulting trajectory
is impulse free (see Definition 9 for details).

Differential algebraic equations (DAEs) arise naturally
when modeling physical systems with certain algebraic con-
straints on the state variables. These constraints are often
eliminated such that the system is described by ordinary
differential equations (ODEs). Examples of applications of
DAEs in electrical circuits (with distributional solutions) can
be found in [2]. However, in the case of switched systems, the
elimination process of the constraints is in general different
for each individual mode and therefore there does not exist a
description as a switched ODE with a common state variable
for every mode in general. This problem can be overcome
by studying switched DAEs directly.

Ever since control systems have been considered, the
question whether the control objective can be achieved with
minimal (quadratic) cost has been of great interest. In the non
switched case, optimal control of DAEs has been studies in
e.g. [3]–[5]. It is proven in both [3] and [4] that impulse
controllability is a necessary condition for the existence of
finite (quadratic) regardless of the initial condition. This
follows from the fact that the integral over the square of
a Dirac impulse is not well defined and therefore such an
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integral is assigned an infinite value. Trajectories resulting in
finite cost must thus be free of impulsive behavior. Systems
with this property are called impulse controllable [6]. This
argument is independent of the underlying system model and
hence trajectories of switched DAEs need to be impulse free
as well in order to achieve finite quadratic cost. Therefore,
there is a need for a characterization of all switched DAEs
that are impulse controllable.

Several other structural properties of (switched) DAEs
have been studied recently. Among those are controllability
[7], stability [8] and observability [9]. However, impulse
controllability has thus far only been studied in the non-
switched case [10]–[12] and, to the best of the authors
knowledge, there are no results yet for the switched case.
An obvious sufficient condition is to demand each mode
of the switched system to be impulse controllable. This
is however not a necessary condition. If the first mode is
impulse controllable and any initial condition can be steered
to a point at the switching time where it doesn’t produce
Dirac impulses the system would be impulse controllable as
well. A more detailed example of such a system will be given
in Section III.

In this paper we give a characterization of globally impulse
controllable systems. We will consider two points of view
with respect to impulse controllability: a forward and a
backward approach. In the forward approach we consider
the first mode and consider the space where the state can
be steered to at the switching times. It follows that in order
to ensure a globally impulse free solution, all future modes
need to be taken into account. Therefore it is necessary
for finding necessary and sufficient conditions for impulse
controllability to consider a compact interval. The second
method is concerned with the backward approach. In this
approach the space from which the last mode can be reached
in an impulse free way is considered. This space needs
to contain all allowed initial conditions in order for the
system to be impulse controllable. Our results are geometric
characterizations, i.e. they do not depend on a specific choice
of a coordinate system. Furthermore, we do not make an a-
priori assumption on the index of the individual DAEs.

The outline of the paper is as follows: notations and results
for non-switched DAEs are presented in Section II. The main
results on impulse controllability are presented in Section
III, followed by a brief discussion on the interpretation of
the results. Conclusions and discussions on future work are
given in Section IV.



II. MATHEMATICAL PRELIMINARIES

A. Properties and definitions for regular matrix pairs

In the following, we consider regular matrix pairs (E,A),
i.e. for which the polynomial det(sE − A) is not the
zero polynomial. Recall the following result on the quasi-
Weierstrass form [13].

Proposition 1: A matrix pair (E,A) ∈ Rn×n × Rn×n is
regular if, and only if, there exists invertible matrices S, T ∈
Rn×n such that

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
, (2)

where j ∈ Rn1×n1 , 0 6 n1 6 n, is some matrix and N ∈
Rn2×n2 , n1 := n− n1, is a nilpotent matrix.
The matrices S and T can be calculated by using the so-
called Wong sequences [13], [14]:

V0 := Rn, Vi+1 := A−1(EVi), i = 0, 1, ...
W0 := {0}, Wi+1 := E−1(AWi), i = 0, 1, ...

(3)

The Wong sequences are nested and get stationary after
finitely many iterations. The limiting subspaces are defined
as follows:

V∗ :=
⋂
i

Vi, W∗ :=
⋃
Wi. (4)

For any full rank matrices V,W with imV = V∗ and
imW = W∗, the matrices T := [V,W ] and S :=
[EV,AW ]−1 are invertible and (2) holds.

Based on the Wong sequences we define the following
”projectors”.

Definition 2: Consider the regular matrix pair (E,A) with
corresponding quasi-Weierstrass form (2). The consistency
projector of (E,A) is given by

Π(E,A) := T

[
I 0
0 0

]
T−1,

the differential selector is given by

Πdiff
(E,A) := T

[
I 0
0 0

]
S,

and the impulse selector is given by

Πimp
(E,A) := T

[
0 0
0 I

]
S.

In all three cases the block structure corresponds to the
block structure of the quasi-Weierstrass form. Furthermore
we define

Adiff := Πdiff
(E,A)A, Eimp := Πimp

(E,A)E,

Bdiff := Πdiff
(E,A)B, Bimp := Πimp

(E,A)B.

Note that all the above defined matrices do not depend on
the specifically chosen transformation matrices S and T ;
they are uniquely determined by the original regular matrix
pair (E,A). An important feature for DAEs is the so called
consistency space, defined as follows:

Definition 3: Consider the DAE Eẋ(t) = Ax(t) +Bu(t),
then the consistency space is defined as

V(E,A) :=

{
x0 ∈ Rn

∣∣∣∣ ∃ smooth solution x of
Eẋ = Ax, with x(0) = x0

}
,

and the augmented consistency space is defined as

V(E,A,B) :=

{
x0 ∈ Rn

∣∣∣∣ ∃ smooth solutions (x, u) of
Eẋ = Ax+Bu and x(0) = x0

}
.

In order express (augmented) consistency spaces in terms
of the Wong limits we need the following notation for
matrices A,B of suitable sizes:

〈A | B〉 := im[B,AB, . . . , An−1B].

Proposition 4 ( [15]): Consider the regular DAE Eẋ =
Ax+Bu, then V(E,A) = V∗ = im Π(E,A) = im Πdiff

(E,A) and
V(E,A,B) = V∗ ⊕ 〈Eimp | Bimp〉.

For studying impulse solutions, we consider the space of
piecewise-smooth distributions DpwC∞ from [1] as the solu-
tion space, that is, we seek a solution (x, u) ∈ (DpwC∞)n+m

to the following initial-trajectory problem (ITP):

x(−∞,0) = x0(−∞,0), (5a)

(Eẋ)[0,∞) = (Ax)[0,∞) + (Bu)[0,∞), (5b)

where x0 ∈ (DpwC∞)n is some initial trajectory, and fI
denotes the restriction of a piecewise-smooth distribution f
to an interval I. In [1] it is shown that the ITP (5) has a
unique solution for any initial trajectory if, and only if, the
matrix pair (E,A) is regular. As a direct consequence, the
switched DAE (1) with regular matrix pairs is also uniquely
solvable (with piecewise-smooth distributional solutions) for
any switching signal with locally finitely many switches.

B. Properties of DAE’s

For the rest of this section we are considering the DAE

Eẋ = Ax+Bu. (6)

Recall the following definitions and characterization of (im-
pulse) controllability [15].

Proposition 5: The reachable space of the regular
DAE (6) defined as

R :=

{
xT ∈ Rn

∣∣∣∣ ∃T > 0 ∃ smooth solution (x, u) of (6)
with x(0) = 0 and x(T ) = xT

}
satisfies R = 〈Adiff | Bdiff〉 ⊕ 〈Eimp | Bimp〉.

It is easily seen that the reachable space for (6) coincides
with the controllable space, i.e.

R =

{
x0 ∈ Rn

∣∣∣∣ ∃T > 0 ∃ smooth solution (x, u) of (6)
with x(0) = x0 and x(T ) = 0

}
.

Corollary 6: The augmented consistency space of (6)
satisfies V(E,A,B) = V(E,A) +R = V(E,A) ⊕ 〈Eimp, Bimp〉.

Definition 7: The DAE (6) is impulse controllable if for
all initial conditions x0 ∈ Rn there exists a solution (x, u)
of the ITP (5) such that x(0−) = x0 and (x, u)[0] = 0, i.e.



the state and the input are impulse free at t = 0. The space
of impulse controllable states of the DAE (6) is given by

C imp
(E,A,B) :=

{
x0 ∈ Rn

∣∣∣∣ ∃ solution (x, u) ∈ DpwC∞ of (5)
s.t. x(0−) = x0 and (x, u)[0] = 0.

}
.

In particular, the DAE (6) is impulse controllable if and only
if C imp

(E,A,B) = Rn.
The impulse controllable space can be characterized as

follows [16].
Proposition 8: Consider the DAE (6) then

C imp
(E,A,B) = V(E,A,B) + kerE

= V(E,A) +R+ kerE

= V(E,A) + 〈Eimp | Bimp〉+ kerE.
According to [17] if the input u(·) is sufficiently smooth,

trajectories of (6) are continuous and given by

x(t) = xu(t, t0;x0) = eA
diff(t−t0)Π(E,A)x0

+

∫ t

t0

eA
diff(t−s)Bdiffu(s) ds−

n−1∑
i=0

(Eimp)iBimpu(i)(t). (7)

In particular, all trajectories can be written as the sum of
an autonomous part xaut(t, t0;x0) = eA

difftΠ(E,A)x0 and a
controllable part xu(t, t0) as follows

xu(t, t0;x0) = xaut(t, t0;x0) + xu(t, t0).

In fact, this solution formula remains valid also for the
switched case (by evaluating the initial value at t−0 ).

III. IMPLUSE CONTROLLABILITY OF SWITCHED DAE’S

The concepts introduced in the previous section are now
utilized to obtain necessary and sufficient conditions for
impulse controllability of switched DAEs. We will consider
impulse-controllability on some finite interval (t0, tf ) and
assume that the switching signal only has finitely many
switches in that interval; without restricting generality we
can then assume that the switching signal has the following
form:

σ(t) = p if t ∈ [tp, tp+1), (8)

where t1 < t2 < . . . tn are the n ∈ N switches in (t1, tf )
(with tn+1 := tf ). We will now first introduce the definition
of impulse controllability for switched DAEs and then the
necessity of considering a finite interval.

A. Impulse controllability: definition

Definition 9: The switched DAE (1) with some fixed
switching signal σ is called impulse controllable on the
interval (t0, tf ), if for all x0 ∈ V(E0,A0,B0) there exists a
solution (x, u) ∈ Dn+mpwC∞ of (1) with x(t+0 ) = x0 which is
impulse free.

If the interval (t0, tf ) does not contain a switch, then the
corresponding switched DAE is always impulse controllable
on that interval due the definition of the augmented consis-
tency space in terms of smooth (in particular, impulse free)
solutions. This seems counter intuitive, because the active
mode on that interval is not necessarily impulse controllable;

however, recall that impulse controllability for a single mode
(see Definition 7) is formulated in terms of the ITP (5), which
can be interpreted as a switched system with one switch at
t1 = 0. In fact, letting t0 = −ε, tf = ε, (E0, A0, B0) =
(I, 0, 0) and (E1, A1, B1) = (E,A,B), the DAE (6) is
impulse controllable if, and only if, the corresponding ITP
(reinterpreted as a switched DAE) is impulse controllable on
(−ε, ε).

Clearly, impulse controllability of each mode is a sufficient
condition for impulse controllability of the overall switched
DAE, however, the following example shows that this is in
fact not necessary.

Example 10: Consider the switched DAE

Σσ :


[
1 0 0
0 0 1
0 0 0

]
ẋ(t) = x(t) +

[
1
0
1

]
u(t), 0 6 t < t1,[

0 1 0
0 0 0
0 0 1

]
ẋ(t) = x(t) +

[
0
0
1

]
u(t), t1 6 t.

The first mode in the example is impulse controllable, but
the second mode is not. However, since the first mode is
completely controllable, any initial condition can be steered
to the impulse controllable space of the second mode in an
impulse free manner. Hence for any initial condition there
exists an input such that the resulting trajectory is impulse
free and thus the system is impulse controllable on any
interval containing the switch.

B. Impulse controllability: forward approach

We consider the following sequence of subspaces.

Kf0 = V(E0,A0) +R0,

Kfi = eA
diff
i (ti+1−ti)Πi(Kfi−1 ∩ C

imp
i ) +Ri, i > 0,

where C imp
i := C imp

(Ei,Ai,Bi)
, Πi := Π(Ei,Ai) and Adiff

i is the
Adiff-matrix corresponding to (Ei, Ai). The intuition behind
the definition is as follows: Kf0 are all values for x(t−i ) which
can be reached before the first switch in an impulse free (in
fact, smooth) way. Now, inductively, we calculate the set Kfi
of points which can be reached just before the switching time
ti+1 by first consider the points Kfi−1 which can be reached
in an impulse free way just before ti, then pick those which
can be continued in mode i impulse-freely by intersecting
them with C imp

i , propagate this set forward according to the
evolution operator and finally add the reachable space. This
intuition is verified by the following two lemmas.

Lemma 11: Consider the switched system (1) on some
interval (t0, tf ) with the switching signal given by (8). If
(x, u) ∈ Dn+mpwC∞ is a solution of (1) which is impulse free on
(t0, tf ) then for all i ∈ {1, ..., n} it holds that

x(t−i ) ∈ Kfi−1 ∩ C
imp
i .

Proof: Let (x, u) ∈ Dn+mpwC∞ be an impulse-free solution
of (1). Then by definition of DpwC∞ there exists ε > 0
such that (x, u) is a smooth solution of E0ẋ = A0x+ B0u
on (t1 − ε, t1). Hence x(t−1 ) ∈ V(E0,A0,B0). Furthermore,
(x, u) is an impulse-free solution of E1ẋ = A1x + B1u on
[t1, t2), hence x(t−1 ) ∈ Cimp

1 . This shows the claim for i = 1
and we conclude the proof inductively by assuming that the



statement holds for i and proving that it holds for i+1. Since
u is impulse-free on [ti, ti+1) we have

x(t−i+1) = eA
diff
i (ti+1−ti)Πix(t−i ) + xu(ti+1, ti),

which by assumption does not exhibit impulses at the switch,
therefore we have x(t−i+1) ∈ Cimp

i+1. By assumption we have
x(t−i ) ∈ Kfi−1 ∩ C

imp
i and xu(ti+1, ti) ∈ Ri, thus x(ti+1) ∈

Ki, which completes the proof.
Lemma 1 showed that the sets Kfi ∩C

imp
i+1 are large enough

to contain all impulse-free solutions, the next lemma shows
that they are in fact minimal in the sense that each point in
Kfi ∩ C

imp
i+1 can be reached impulse freely on (0, ti).

Lemma 12: Consider the switched system (1) on the
interval (t0, tf ) with switching signal (8). Then for any
i ∈ {1, . . . , n} and all ξ ∈ Kfi−1∩C

imp
i there exists a solution

(x, u) of (1) with x(t−i ) = ξ which is impulse-free on (t0, ti).
Proof: The proof is again by induction. For i = 1 we

have for all ξ ∈ Cimp
1 ∩ Kf0 that ξ ∈ Kf0 = V(E0,A0) +R0 =

V(E0,A0,B0). By definition of the augmented consistency
space (and taking into account the time-invariance of the
definition), we have that there exists a smooth solution (x, u)
of E0ẋ = A0x+B0u on (t0, t1) with x(t−1 ) = ξ.

Assuming now that the statement holds for i, we now
consider the case for i + 1. Let ξ ∈ Kfi ∩ C

imp
i+1, then by

definition of Kfi we have ξ ∈ eAdiff
i (ti+1−ti)Πi(Kfi−1∩C

imp
i )+

Ri, i.e. there exists ξ̂ ∈ Kfi−1 ∩ C
imp
i and ξR ∈ Ri such that

ξ = eA
diff
i (ti+1−ti)Πiξ̂ + ξR.

By induction assumption, there exists a solution (x̂, û) of
(1) with x̂(t−i ) = ξ̂ which is impulse free on (t0, ti). Since
x̂(t−i ) ∈ C imp

i , this solution can be assumed to be impulse
free also on [ti, ti+1). We will now alter this solution on
[ti, ti+1) such that at t−i+1 the desired value ξ is reached
and no additional impulses occur. From the solution formula
(7) it follows that ξ̂R := x̂(t−i+1) − eAdiff

i (ti+1−ti)Πiξ̂ ∈ Ri
and hence ξR − ξ̂R ∈ Ri. By definition of the reachable
space of mode i there exists a (smooth) solution (x̃, ũ) of
Eiẋ = Aix + Biu such that x̃(t−i ) = 0 and x̃(t−i+1) =

ξR− ξ̂R. In fact, it can be assumed that (x̃, ũ) is identically
zero on (t0, ti), hence (x̃, ũ) is then also a solution of the
switched DAE (1). By linearity, (x, u) = (x̂ + x̃, û + ũ)
is a solution of (1) that is impulse free on (t0, ti+1) with
x(t−i+1) = x̂(t−i+1) + x̃(t−i+1) = (eA

diff
i (ti+1−ti)Πiξ̂ + ξ̂R) +

(ξR − ξ̂R) = ξ, which concludes the proof.
It is important to note that in general not from all ξ ∈

Kfi−1 ∩C
imp
i there is a solution (x, u) with x(t−i ) = ξ which

is also impulse free on [ti, tf ). To illustrate this, we present
the following example.

Example 13: Consider the following switched DAE,
where (A,B) is controllable.

Σσ :


ẋ(t) = Ax(t) +Bu(t) 0 6 t < t1,

ẋ(t) = 0 t1 6 t < t2,[
1 0 0
0 0 1
0 0 0

]
ẋ(t) = x(t) t2 6 t.

In order to have impulse free solutions, the state of the
system needs to be in span{e1, e2} at t = t2, where e1, e2 are
the standard base vectors in R3. However, Kf0 ∩ C

imp
1 = Rn

and therefore we can reach e3 impulse freely on (0, t1], but
this would lead to an impulse at t = t2.

It thus becomes clear from Example 13 that considering
the elements Kfi ∩C

imp
i+1 will not lead to necessary conditions

for impulse controllability. Indeed, the example shows that
in general, the impulse controllable spaces of future modes
need to be taken into account in order to ensure a globally
impulse free solution. Hence it is necessary to consider finite
intervals under the assumption that there are a finite amount
of switching instances in the intervals.

Nevertheless does the forward approach lead to some
useful results. Exploiting Lemma 11 and Lemma 12 we prove
the next theorem, which gives a sufficient condition.

Theorem 14: Consider the switched system (1) with
switching signal (8). If for all i ∈ {1, ..., n} it holds that

Kfi−1 ⊆ C
imp
i +Ri−1,

then the system is impulse controllable.
Proof:

We prove the statement inductively by showing that for
any initial value x0 there exists a solution (x, u) with
x(t+0 ) = x0, x(t−i ) ∈ C imp

i and which is impulse free on
(t0, ti). For i = 1 we find for any x0 ∈ V(E0,A0,B0) by
definition a solution (x̂, û) with x̂(t+0 ) = x0 which is smooth
(and in particular impulse free) on (t0, t1). Furthermore,
x̂(t−1 ) ∈ V(E0,A0,B0) ⊆ C

imp
1 +R0, i.e. there exists ξ ∈ Cimp

1

and η ∈ R0 such that x̂(t−1 ) = ξ+η. Since η is reachable in
mode 0 we can find ũ such that the corresponding solution
of (1) satisfies x̃(t+0 ) = 0 and x̃(t−1 ) = −η. Now (x, u) :=
(x̂ + x̃, û + ũ) solves (1), is impulse-free on (t0, t1) and
satisfies x(t+0 ) = x0 and x(t−1 ) = ξ + η − η ∈ Cimp

1 .
Now assume that any initial condition can be steered to

C imp
i impulse-freely on (t0, ti). This solution can now be

extended to an impulse free solution (x̂, û) onto (t0, ti+1).
Similar as in Lemma 11 we can conclude that x̂(t−i ) ∈
Ki−1 ∩ Cimp

i , and hence x̂(t−i+1) ∈ Kfi ⊆ C
imp
i+1 +Ri. Hence

x̂(t−i ) = ξ + η for ξ ∈ Cimp
i+1 and η ∈ Ri. Similar as

above we find a solution (x̃, ũ) which is smooth on [t0, ti+1),
identically zero on (t0, ti) and satisfies x̃(t−i+1) = −η. Then
(x, u) = (x̂ + x̃, û + ũ) is a solution which is impulse
free on (t0, tf ), has the same initial value as x̂ satisfies
x(t−i+1) ∈ Cimp

i+1.
Finally, from the fact that for any initial value there is a

solution (x, u) with x(t−n ) ∈ Cimp
n it can be concluded that

this solution can be extended to (t0, tf ) in an impulse free
way, i.e. the switched system is impulse controllable.

Remark 15: Besides giving a sufficient conditions for
impulse controllability of a system for a given switching
signal, the result of Theorem 14 can also be used to design
a specific switching signal so that the switched system
becomes impulse-controllable.

To illustrate the result of Theorem 14 we will give an
example where the subspaces involved become apparent.



Example 16: Consider the following switched DAE, with
a switch at t = t1:

(E0, A0, B0) =
([

0 0 0
0 1 0
−1 0 1

]
,
[

0 1 −1
0 1 0
−1 0 1

]
,
[
1
0
0

])
,

(E1, A1, B1) =
([

1 0 0
0 0 1
0 0 0

]
,
[

1 0 0
0 1 0
−1 0 1

]
,
[
0
0
0

])
.

It follows from the computation of the consistency projector
and the reachable space that

V(E0,A0) = span
{[

1
0
0

]
,
[
0
1
1

]}
, R0 = span

{[
1
0
−1

]}
,

such that we obtain K0 = Rn. The impulse controllable
space is given by

C imp
1 = im

[
1 0
0 1
1 0

]
.

This means that C imp
1 + R0 = Rn and hence the condition

that Kf0 ⊆ C
imp
1 + R0 of Theorem 14 is satisfied and we

can conclude that the system is impulse controllable. Indeed
we see that for all elements of the consistency space there
exists a reachable point such that the sum of the two are in
the impulse controllable space.

In the case of a single switch, then there are no other
modes to consider than the first two modes. In that case, the
sufficient condition in Theorem 14 is also necessary.

Lemma 17: Consider the switched DAE (1) with a single
switch at t = ts. If the system is impulse controllable, then

V(E0,A0,B0) ⊆ C
imp
1 +R0.

Proof: Since we have that for all initial conditions
there exists an input u(t) such that the resulting trajectory is
impulse free, i.e. for all x0 ∈ V(E0,A0,B0) we have

xu(t−1 , x0) = eA
diff
0 t1Π0x0 + xu(t+1 , 0) ∈ Cimp

1 ,

which means that

eA
difft1Π0V(E0,A0,B0) = V(E0,A0

⊆ Cimp
1 +R0.

from which it follows that V(E0,A0,B0) = V(E0,A0) +R0 ⊆
C imp
1 +R0.

C. Impulse controllability: backward approach

In order to incorporate all modes on the bounded interval,
we make use of a backwards method. This method considers
the set of points from which the impulse controllable space
of the last mode can be reached. To that extend we first
consider the largest set of points from which the impulse
controllable space can be reached impulse freely from the
preceding mode. Therefore we define the following sequence
of sets regarding the switched DAE (1) with switching signal
(8):

Kbn = C imp
n ,

Kbi−1 = im Πi−1 ∩
(
e−A

diff
i−1(ti−1−ti)Kbi +Ri−1

)
+ 〈Eimp | Bimp〉+ kerEi−1,

i = n, n− 1, . . . , 1.

Remark 18: Recall that im Πi−1 = V(Ei,Ai) and that
C imp
i = V(Ei,Ai) + Ri + kerEi. Therefore we have that
Kbi ⊆ C

imp
i .

With these sets, we can prove the following lemma.
Lemma 19: Consider the switched DAE (Eσẋ)[ti−1,ti) =

(Aσ)[ti−1,ti) +(Bσu)[ti−1,ti). Then Kbi−1 is the largest set of
points at time t−i−1 from which Kbi can be reached (at t−i ) in
an impulse free way.

Proof: First we show that for all xi−1 ∈ Kbi−1 there
exists an input such that the corresponding solution with
initial value xi−1 at t−i−1 is impulse free on [ti−1, ti) and
xu(t−i , t

−
i−1;xi−1) ∈ Ki. To do so, consider first the case

xi−1 ∈ im Πi−1∩
(
e−A

diff
i−1(ti−1−ti)Kbi+Ri−1

)
. Since xi−1 ∈

im Πi−1 we know that xi−1 is a consistent initial value.
Hence it will not produce any Dirac impulses for a zero
input and the corresponding solution (x̂, 0) satisfies

x̂(t−i ) = eA
diff
i−1(ti−ti−1)xi−1 ∈ Kbi +Ri−1,

where we used the fact, that Ri−1 is Adiff
i−1-invariant. Let

x̂(t−i ) = ξ+η with ξ ∈ Kbi and η ∈ Ri−1. Now we are able
to choose a smooth solution (x̃, u) on [ti−1, ti) such that
x̃(t−i−1) = 0 and x̃(t+i ) = −η. Then (x, u) := (x̂ + x̃, u) is
an impulse free solution on [ti, ti−1) with x(t−i−1) = x̂(t−i )+
x̃(t−i−1) = xi−1 +0 and x(t−i ) = x̂(t−i )+ x̃(t−i ) = (ξ+η)+
(−η) = ξ ∈ Kbi . Next assume that xi−1 ∈ Ri−1. Then there
exists an input u such that xu(t−i , t

−
i−1;xi−1) = 0 ∈ Kbi .

Finally, suppose that xi−1 ∈ kerEi−1 then by applying a
zero input the state jumps to zero after switching to the i−1st

mode. Altogether, linearity implies that for all xi−1 ∈ Ki−1
there exist an input u such that Kbi is reached impulse freely.

Next we show that this is the largest set of points from
which Kbi is impulse freely reachable. Let (x, u) be any
impulse-free solution of (1) on [ti−1, ti) with x(t−i ) ∈ Kbi .
We need to show that xi−1 := x(t−i−1) ∈ Kbi−1. Clearly
by definition, xi−1 ∈ Cimp

i−1 = im Πi−1 + 〈Eimp
i−1 | B

imp
i−1〉 +

kerEi−1. Choose ξ ∈ im Πi−1, η ∈ 〈Eimp
i−1 | B

imp
i−1〉,

ζ ∈ kerEi−1 such that xi−1 = ξ + η + ζ. Then the solution
xi can be decomposed into

xi = xaut(t
−
i , t
−
i−1, ξ) + xu(t−i , t

−
i−1, η) + xaut(t

−
i , t
−
i−1, ζ).

Note that kerE ⊆ ker Π which implies that
xaut(t

−
i , t
−
i−1, ζ) = 0, from Πi−1η = 0 we conclude

that xu(t−i , t
−
i−1, η) ∈ Ri−1 and finally ξ ∈ im Πi−1 implies

Πi−1ξ = ξ, hence

ξ = e−A
diff
i−1(ti−ti−1)xi − θ

where θ = e−A
diff
i−1(ti−ti−1)xu(t−i , t

−
i−1, η) ∈ Ri−1, be-

cause Ri−1 is Adiff-invariant. Hence ξ ∈ im Πi−1 ∩(
e−A

diff
i−1(ti−1−ti)Kbi +Ri−1

)
and the claim is shown.

Corollary 20: Consider the switched DAE (1) with
switching signal (8). Then Kfi−1 ∩ Kbi is the smallest set
containing states that can be reached in an impulse free way
on (t0, ti) and can be extended in an impulse free way on
[ti, tf ).

Proof: By Lemma 12 we have for all xi ∈ Kfi−1∩Kbi ⊆
Kfi−1 ∩ C

imp
i that there exists an x0 such that xu(t, x0) is



impulse free and xu(t−i , x0) = xi. And by Lemma 19 there
exists an input such that C imp

n is reached impulse freely from
xi.

Let (x, u) be an impulse free solution. Then by Lemma 11
we have that at ti xi ∈ Kfi−1∩C

imp
i and therefore xi ∈ Kfi−1.

Since we can reach C imp
n impulse freely from xi it must hold

that xi ∈ Kbi . Therefore xi ∈ Kfi−1 ∩ Kbi , which proves the
result.

Since Kbi−1 is the largest set from which Kbi can be
reached impulse freely, it follows intuitively that the system
is globally impulse controllable if the augmented consistency
space is contained in Kb0. This would mean that all consistent
trajectory of the initial mode can be steered impulse freely
to the impulse controllable space of the last mode. This idea
is formalized in the next theorem.

Theorem 21: Consider the switched system (1) with
switching signal (8). The system is impulse controllable if
and only if

V(E0,A0,B0) ⊆ K
b
0.

Proof: (⇐) Assume that V(E0,A0,B0) ⊆ Kb0. This
means that for all initial conditions x0 ∈ V(E0,A0,B0) there
must exists an input u such that the resulting trajectory is
impulse free and reaches Kbn. Hence the system is impulse
controllable.

(⇒) Assume that the system is impulse controllable. Then
for all x0 ∈ V(E0,A0,B0) there exists an input u such that
the resulting trajectory is impulse free. Since it holds for all
x0 ∈ V(E0,A0,B0) it must hold that

V(E0,A0,B0) ⊆ K
b
0,

which proves the desired result.
To illustrate the results from Theorem 21 we show the

following example where we verify impulse controllability.
Example 22: Consider the switched DAE with the follow-

ing modes and switching times t1 = ln(4) and t2 = t1 + 1
2π.

(E0, A0, B0) =
([

0 0 0
0 1 0
−1 0 1

]
,
[

0 1 −1
0 1 0
−1 0 1

]
,
[
1
0
0

])
,

(E1, A1, B1) =
([

1 0 0
0 1 0
0 0 1

]
,
[
0 0 0
0 0 −1
0 1 0

]
,
[
0
0
0

])
,

(E2, A2, B2) =
([

1 0 0
0 0 1
0 0 0

]
,
[

1 0 0
0 1 0
−1 0 1

]
,
[
0
0
0

])
.

Since the second mode rotates the state, it is easy to calculate
that.

C imp
2 = span

{[
1
0
1

]
,
[
0
1
0

]}
, Kb1 = span

{[
1
1
0

]
,
[

0
0
−1

]}
,

Then calculating the subspaces involved yields

Π0 = im
[
0 1
1 0
1 0

]
, e−A

diff
0 ln(4)Kb1 = im

[−2 −3
1 0
−3 −4

]
,

R0 = span
{[

1
0
−1

]}
, kerE0 = span

{[
1
0
1

]}
.

From this it can be calculated that Kb0 = Rn and hence the
system is impulse controllable.

IV. CONCLUSIONS

We have studied impulse controllability of switched DAEs
on a finite interval. Based on sequence of subspace defined
forward in time we were able to provide a sufficient condition
for impulse-controllability. In order to fully characterize
impulse-controllability we introduced a sequence of sub-
spaces defined backwards in time.

As a future direction of research, a natural extension is
to obtain results on impulse free stabilization. In the current
literature impulse free trajectories are part of the definition
of stability of switched (autonomous) DAEs. Therefore,
impulse controllability is a necessary condition for switched
DAEs with inputs to be stabilizable. However, necessary
and sufficient condition for stabilizability of non autonomous
switched DAEs are yet to be formulated.
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