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Abstract

The stability of arbitrarily switched discrete-time linear singular (SDLS) systems is studied. Our analysis builds on the recently
introduced one-step-map for SDLS systems of index-1. We first provide a sufficient stability conditions in terms of Lyapunov
functions. Furthermore, we generalize the notion of joint spectral radius of a finite set of matrix pairs, which allows us to fully
characterize exponential stability.
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1. Introduction

In this paper we investigate stability of switched discrete-
time linear singular (SDLS) systems of the form

Eσ(k)x(k + 1) = Aσ(k)x(k), (1)

where σ : N → {1, . . . , n} denotes the switching signal that
determines which of the n ∈ N modes is active at time k.

Singular switched systems arise in many applications, such
as power electronics and systems, flight control systems, net-
work control systems, robot manipulators, economic systems,
and so forth (see e.g. [13, 14, 21, 33, 38]). There are examples
(e.g. the dynamic Leontief system in economic studies [20])
which are canonically given in discrete time; however, system
models stemming from physical first principles usually are for-
mulated in terms of differential equations in continuous time
and also may contain external variables (inputs) which can be
used to influence the dynamics of the system. In this paper we
focus on the stability of the closed loop system, i.e. we assume
that an adequate candidate feedback rule is already chosen and
ask the question whether this controller leads to stability re-
gardless of the switching signal. Furthermore, we assume that
the continuous dynamics are discretized in time because many
feedback controllers are nowadays implemented digitally. The
consideration of a switching signal is often another modelling
simplification where rapidly changing parameters are simpli-
fied as parameters which change their values instantaneously at
some isolated points in time.

There are already quite a few works devoted to the stabil-
ity of SDLS systems, some of them restrict themselves to the
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case of a constant E-matrix [33, 34, 35, 36] and some restrict
the switching signal [1, 7]. The references [8, 13, 21] which
actually study the general SDLS system (1) seem to have over-
looked the fact that even if each mode is causal (i.e. regular and
index-1, see Section 2.2) the corresponding switched system is
not well-posed in general, see the recent publication [2]; in par-
ticular, these references lack a proper solution theory capable
to handle arbitrary switching. In fact, to study the SDLS sys-
tem (1) under arbitrary switching it seems reasonable to impose
an additional causality assumption with respect to the switching
signal, i.e. the future value of the switching signal should not
influence the past values of the state-variable. In other words,
we expect that the value x(k) only depends on the previous state
together with the system parameters of the modes active at time
k or earlier. This intuition is formalized by an index-1 assump-
tion for the overall SDLS which then results in a well defined
one-step-map, see Section 3.

Based on this novel solution framework we are able to gen-
eralize the well known stability result in terms of a common
Lyapunov function to SDLS systems (1), which can be seen as
an discrete time version of the results presented in [15] for the
continuous time and which seems not to have been reported so
far.

Another main contribution is the generalization of the joint
spectral radius to the family of matrix pairs {(Ei, Ai)} associated
to (1) and how it can be used to characterize exponential stabil-
ity of the SDLS system (1). The continuous time counterpart of
the the joint spectral radius is the Lyapunov exponent and was
already studied for switched singular systems in [31]; however,
the methods used in the discrete time case are very different to
the ones used in the continuous time case. Furthermore, we
are able to show that the joint spectral radius of (1) can also be
obtained via a standard switched system of reduced size. This
may have important consequences when calculating (or approx-
imating) the joint spectral radius numerically, but this topic is
outside the scope of the current paper.
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2. Preliminaries

2.1. Switched linear systems
We recall in the following basic properties of switched linear

system of the form

x(k + 1) = Aσ(k)x(k); (2)

where σ : N ∪ {0} → {1, 2, . . . , n} is the switching signal with
n ∈ N modes, Ai ∈ Rn×n are given matrices, i = 1, 2, .., n,
x(k) ∈ Rn is the state at time k ∈ N.
Define the state transition matrix Φσ(k, h) for system (2) as
Φσ(k, h) = I for k = h and, for k > h,

Φσ(k, h) = Aσ(k−1)Aσ(k−2)...Aσ(h).

The unique solution of system (2) with initial condition x(0) =

x0 ∈ Rn is given by

x(k) = Φσ(k, 0)x0, k ≥ 0.

Definition 2.1. System (2) is called exponentially stable if there
exist γ ≥ 1 and 0 ≤ λ < 1 such that for all switching signals
and any solutions x of (2) with x(0) = x0 ∈ Rn the following
inequality holds:

‖x(k)‖ ≤ γλk ‖x0‖ ∀k ≥ 0,

where ‖ · ‖ is some norm on Rn.

Lemma 2.2. (see, [24, 26]) System (2) is exponentially stable
if and only if there exist γ ≥ 1 and 0 < λ < 1 such that for all
switching signals the following inequality holds:

‖Φσ(k, j)‖ ≤ γλk− j, ∀k ≥ j,

where ‖ · ‖ is the induced matrix norm.

Lemma 2.3. (see, [17]) System (2) is exponentially stable if,
and only if, there exists a finite positive integer m such that∥∥∥Ai1 Ai1 ...Aim

∥∥∥ < 1

for all m-tuples (Ai j )
m
j=1 with Ai j ∈ {A1, A2, .., An}.

The stability of (2) can be investigated by using the joint spec-
tral radius of a set of matrices introduced in [23].

Definition 2.4. The joint spectral radius of a family of matrices
{Ai}

n
i=1 is defined to be

ρ({Ai}
n
1) = lim

k→∞
max

σk∈{1,2,..,n}
‖Aσ1 Aσ2 ...Aσk‖

1
k .

The existence of the limit in the definition of the joint spectral
radius is based on following well-known Pólya − Szegö’s result
[22], which we will also need in Section 5.

Lemma 2.5. Let {ak}
∞
k=1 be a sequence of positive numbers,

such that ak+` ≤ aka` for all k, `. Then the limit limk→∞(ak)
1
k

exists.

Theorem 2.6. (see, [25]) System (2) is exponentially stable if
and only if ρ({Ai}

n
1) < 1.

2.2. Singular systems
We recall some basic properties of discrete-time linear sin-

gular systems of the form

Ex(k + 1) = Ax(k), (3)

where E, A ∈ Rn×n and x(k) ∈ Rn. Usually it is assumed that
E is singular, as otherwise, (3) could be multiplied with the
inverse of E from the left to obtain a standard linear system.

Definition 2.7. A matrix pair (E, A) ∈ Rn×n × Rn×n is called
regular if, and only if, the polynomial det(sE − A) is not identi-
cally zero.

Lemma 2.8 ([32, 11]). A matrix pair (E, A) ∈ Rn×n × Rn×n is
regular if, and only if, there exists invertible matrices S ,T ∈
Rn×n such that

(S ET, S AT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
(4)

where N ∈ RnN×nN is nilpotent and J ∈ RnJ×nJ with nN + nJ = n.

In view of [5] we call (4) a quasi Weierstrass form (QWF) of
(E, A). The QWF is unique up to similarity of the matrices J
and N; in particular, the nilpotency index of N (the smallest
number ν ∈ N such that Nν = 0) is independent of the choices
for S and T and we will define the index of a regular matrix pair
(E, A) as the nilpotency index of N in the QWF. In the index-1
case (also called sometimes causal) it is actually easy to see
that T = [T1,T2] and S = [ET1, AT2]−1 with full column rank
matrices T1, T2 matrices such that

im T1 = S := A−1(im E) := {ξ ∈ Rn : Aξ ∈ im E}

im T2 = ker E

transform (E, A) into QWF, in particular, S ⊕ ker E = Rn. In
fact, the following stronger result holds.

Lemma 2.9 ([12, Appendix A, Thm. 13], cf. [6, Prop. 9]).
The following three statements are equivalent for any
E, A ∈ Rn×n and S := A−1(im E).

a. The matrix pair (E, A) is regular with index-1.

b. S ∩ ker E = {0}.

c. S ⊕ ker E = Rn.

The main relevance of regularity and index-1 is the following
statement about existence and uniqueness of solutions of (3).

Lemma 2.10 ([2, Lem. 2.5]). Assume (E, A) is regular and of
index-1, then the discrete-time singular system (3) with initial
condition x(0) = x0 ∈ Rn has a unique solution if, and only if
x0 ∈ S and the solution is then given by

x(k) = Φk
(E,A)x0, with Φ(E,A) := T

[
J 0
0 0

]
T−1,

where T and J are given by the QWF (4) and Φ(E,A) is indepen-
dent from the specific choice of S and T leading to (4).
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Remark 2.11. The matrix Φ(E,A) corresponds to the matrix Adiff

in continuous time, see e.g. [28] and can be interpreted as the
one-step map for (3). However, it is important to note that this
interpretation is only valid if we assume that (3) holds for at
least two time steps. In fact, from

Ex(1) = Ax(0)

we can only conclude that

x(1) ∈ {Φ(E,A)x(0)} + ker E.

In order to conclude that x(1) = Φ(E,A)x(0) we additionally have
to take into account

Ex(2) = Ax(1)

together with S ∩ ker E = {0}.

Definition 2.12. (see, [9]) Assume that there exists symmetric
positive definite matrix H ∈ Rn×n such that A>HA − E>HE =

−K, where K is symmetric and positive in the sense x>Kx >
0, ∀x ∈ S\{0}. Then the function V : Rn → R≥0, defined by
V(x) = (Ex)>HEx is called a Lyapunov function for system
(3).

Lemma 2.13. (see, [9]) Assume that system (3) is regular and
of index-1. Then system (3) is exponentially stable if, and only
if, there exists a Lyapunov function for system (3).

3. Solution theory for switched singular systems

We now consider the solution properties of the switched
SDLS (1)

Eσ(k)x(k + 1) = Aσ(k)x(k),

where σ : N ∪ {0} → {1, 2, .., n}, n ∈ N, is a switching signal
taking values in the finite set {1, . . . , n}; Ei, Ai ∈ Rn×n are given
matrices, and x(k) ∈ Rn is state vector at time k ∈ N. Sup-
pose that the matrices Ei are singular for all i = 1, 2, .., n. For
notational convenience we put σ(−1) = 1.

Remark 3.1. In (1) the E-matrix is also assumed to depend on
the switching signal. Here we assume that the E and A matrix
change synchronously, which leads to (1). However, one could
also argue that the matrix in front of the future value x(k +

1) should also be the matrix valid in the future, leading to the
following SDLS system

Eσ(k+1)x(k + 1) = Aσ(k)x(k) (5)

which is the system class studied by one of the first papers
on discrete time-varying singular systems by Luenberger [20].
One could even argue that the equation determining the future
value x(k + 1) should be governed by the future coefficient ma-
trices, i.e.

Eσ(k+1)x(k + 1) = Aσ(k+1)x(k),

which, however, can be analyzed with the same methods used
for (1) by just considering a shifted switching signal. The “cor-
rect” modeling choice will in the end depend on the underlying
application and here we decided to focus on the form (1). Some
results concerning (5) have been developed in parallel to this
work and have already appeared [18].

For the continuous time case it suffices to assume that each
matrix pair (Ei, Ai) is regular, to conclude existence and unique-
ness of (distributional) solutions of the corresponding switched
system. This nice solvability characterization is lost in the dis-
crete time case (see e.g. [2, Example 1.1]); in particular, causal-
ity with respect to the switching signal may be lost. It is there-
fore necessary to impose more strict assumptions on the matrix
pairs (Ei, Ai) to be able to conclude suitable solution properties.
Inspired by our previous works on discrete-time singular sys-
tems [3, 4, 19, 2], we introduce the following index-1 notion
for the overall switched system.

Definition 3.2. System (1) is called an arbitrarily switched sin-
gular system of index-1 if

Si ∩ ker E j = {0}, ∀i, j ∈ {1, 2, .., n}, (6)

where Si := A−1
i (im Ei).

Since condition (6) also needs to hold for i = j and in view
of Lemma 2.9 it follows that each individual pair (Ei, Ai) needs
to be regular and of index-1, i.e. the definition is indeed a gen-
eralization of the index-1 property for the non-switched case.
Note furthermore, that we do not assume that the “mixed” ma-
trix pairs (E j, Ai) are regular and index-1 (because Si is defined
in terms of Ei and not E j). We highlight the following conse-
quences from the index-1 definition.

Lemma 3.3 ([2, Lem. 3.3]). Suppose the SDLS system (1) is of
index-1. Then the following statements hold:

(a) rank Ei = r, i = 1, . . . , n.

(b) Si ⊕ ker E j = Rn, for all i, j ∈ {1, 2, .., n}.

Based on the index-1 assumption it is now possible to give
an explicit solution formular for the SDLS system (1).

Lemma 3.4 ([2, 3.5]). The SDSL (1) of index-1 in the sense of
Definition 3.2 has a unique solution with x(0) = x0 ∈ R if, and
only if, x0 ∈ Sσ(0). This solution satisfies

x(k + 1) = Φσ(k+1),σ(k)x(k) ∀k ∈ N, (7)

where Φi, j is the one-step map from mode j to mode i given by

Φi, j := Π
ker E j

Si
Φ(E j,A j),

where Π
ker E j

Si
is the unique projector onto Si along ker E j and

Φ(E j,A j) is the one-step map corresponding to mode j as in
Lemma 2.10.

Note that a direct consequence of the solution formula (7)
is that all solutions satisfy x(k) ∈ Sk for all k (as expected).
Furthermore, the definition of the one-step-map consist of two
parts: first the old state is mapped to an intermediate state with
the one-step-map of the current mode, afterwards the new state
is obtained by applying a projector, so that the new state is con-
sistent with the new algebraic constraint, cf. also Remark 2.11.
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Remark 3.5. Similar as for classical switched systems (2), it
is now possible to define also a transition matrix Φσ(k, h) for
SDLS system (1) as follows:

Φσ(k, h) = Φσ(k),σ(k−1)Φσ(k−1),σ(k−2) · · ·Φσ(h+1),σ(h)

for k > h and
Φσ(h, h) = Π

ker Eσ(h)

Sσ(h)
.

Then all solutions of the SDLS system (1) are given by

x(k) = Φσ(k, 0)x0. (8)

Note that also for x0 < Sσ(0), the formula (8) results in a valid
solution, however, in general x(0) , x0 and

x(0) = Π
ker Eσ(0)

Sσ(0)
x0.

In what follows we give a constructive formula for the ma-
trix Φi, j as well as for the unique solution to SDSL system (1).
These formulas will be helpful in the forthcoming stability anal-
ysis.

Lemma 3.6 ([2, Lem. 4.1]). Consider the SDLS system (1)
and assume that it is index-1. For i = 1, . . . , n, let Ti :=
[s1

i , . . . , s
r
i , h

r+1
i , . . . , hn

i ] be such that it columns form bases of
Si and ker Ei, respectively. Let P :=

[
Ir 0
0 0

]
∈ Rn×n, where Ir

is an r × r, identity matrix, Q := In − P. Finally, let Pi :=
TiPT−1

i = Π
ker Ei
Si

, Qi := I − Pi = Π
Si
ker Ei

and Qi, j := T jQT−1
i for

i, j = 1, . . . , n. Then the following properties hold

(i) Gi, j := Ei + AiQi, j is nonsingular for all i, j ∈ {1, 2, . . . , n},

(ii) Π
ker E j

Si
= I − Qi, jG−1

i, j Ai,

(iii) Φ(Ei,Ai) = PiG−1
i,i Ai,

(iv) Φi, j = (I − Qi, jG−1
i, j Ai)P jG−1

j, j A j.

4. Stability of switched system based on Lyapunov func-
tions

We will establish a sufficient condition for the exponential
stability for SDLS systems (1) in terms of the Laypunov func-
tions of each mode. This approach is inspired by a similar result
available for the continuous time case [15]; in particular, it gen-
eralizes the common Lyapunov function approach for standard
switched system.

Theorem 4.1. Consider the SDSL (1) of index-1 and assume
that every subsystem Eix(k + 1) = Aix(k) is exponentially sta-
ble with a Lyapunov function Ti : Rn → R≥0 in the sense of
Definition 2.12. If

Vi (Pix) ≤ V j (Pix) , ∀i, j = 1, 2, .., n, (9)

where Pi = Π
ker Ei
Si

, then the SDLS system (1) is exponentially
stable for arbitrary switching signals

Proof.
Step 1: We construct a Lyapunov function for the switched sys-
tem which decreases along solutions.
If x ∈ Si ∩ S j then x = Pix = P jx. From condition (9) we have

Vi(x) = Vi(Pix) ≤ V j(Pix) = V j(x),

V j(x) = V j(P jx) ≤ Vi(P jx) = Vi(x).

Thus, Vi(x) = V j(x) for all x ∈ Si ∩ S j, therefore we can
define a common (piecewise-quadratic) Lyapunov function for
system (1) as follows:

V : Rn → R, x→
{
Vi(x) if x ∈ Si,

0 otherwise.

Suppose x(k), k ∈ N, is the solution of system (1), then

V(x(k + 1)) −V(x(k))
= Vσ(k+1)(x(k + 1)) −Vσ(k)(x(k))
= Vσ(k+1)(Pσ(k+1)x(k + 1)) −Vσ(k)(x(k))
≤ Vσ(k)(x(k + 1)) −Vσ(k)(x(k))
= (Eσ(k)x(k + 1))>Hσ(k)(Eσ(k)x(k + 1))
− (Eσ(k)x(k))>Hσ(k)(Eσ(k)x(k))

= (Aσ(k)x(k))>Hσ(k)(Aσ(k)x(k)) − (Eσ(k)x(k))>Hσ(k)(Eσ(k)x(k))
= x(k)>(A>σ(k)Hσ(k)Aσ(k) − E>σ(k)Hσ(k)Eσ(k))x(k)

= −x(k)>Kσ(k)x(k).

Since Kσ(k) is positive definite on Sσ(k) it is shown that indeed
V decreases along solutions.

Step 2: We show existence of λi ∈ (0, 1] for all i ∈ {1, . . . , n}
such that

x>Kix ≥ λiVi(x) ∀x ∈ Si.

Let S̃i := {y ∈ Si | Vi(y) = 1}. Since S̃i is the preimage of a
closed set under a continuous function it is closed. Seeking a
contradiction suppose that S̃i is unbounded, then there exists a
sequence {y`} within S̃i, such that ‖y`‖ → ∞ as ` → ∞. Due to
the positive definiteness of the matrix Hi, there exists a positive
constant γi, such that 1 = Vi(y`) = (Eiy`)>HiEiy` ≥ γi‖Eiy`‖2.
Let Ẽi be the restriction of Ei toSi.According to Lemma 3.3(b),
Si⊕ker Ei = Rn, hence, Ẽi : Si → Ei(Si) is a bijective mapping,
therefore, it has an inverse Ẽ−1

i . Since y` ∈ Si, we find ‖y`‖ =

‖Ẽ−1
i Eiy`‖ ≤ ‖Ẽ−1

i ‖‖Eiy`‖ ≤ 1
√
γi
‖Ẽ−1

i ‖, which contradicts the
assumption ‖y`‖ → ∞ as ` → ∞. We therefore have shown that
S̃i is compact, hence

λ̄i := min
y∈S̃i

y>Kiy > 0

is well defined. Furthermore, by definition of Ki and positive
definiteness of Hi we have y>Kiy = y>E>i HiEiy− y>A>i HiAiy =

Vi(y) − y>A>i HiAiy ≤ 1 for all y ∈ S̃i and hence λ̄i ≤ 1. Since
for any x ∈ Si \ {0} we have that x

√
Vi(x)

∈ S̃i, we can therefore
conclude that

x>Kix =

(
x

√
Vi(x)

)>
Ki

x
√
Vi(x)

Vi(x) ≥ λ̄iVi(x).
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Step 3: We show exponential stability.
Let λ̄ := min{λ̄1, . . . , λ̄n} ∈ (0, 1] then from Step 2 we imme-

diately obtain:

V(x(k)) ≤ (1 − λ̄)kV(x(0)), ∀k ≥ 0.

Since Ki is positive definite on Si there exists γ̄i > 0 such that
x>Kix ≥ γ̄i‖x‖2 for all x ∈ Si. Hence we have, with γ̄ :=
min{γ̄1, . . . , γ̄n},

‖x(k)‖2 ≤
x(k)>Kσ(k)x(k)

γ̄
≤
V(x(k))

γ̄
≤

(1 − λ̄)k

γ̄
V(x(0))

≤
‖Eσ(0)Hσ(0)Eσ(0)‖

γ̄
(1 − λ̄)k‖x(0)‖2.

We therefore have shown exponential stability

‖x(k)‖ ≤ γλk‖x0‖

with λ :=
√

1 − λ̄ ∈ [0, 1) and (recalling that x(0) = Π
ker Eσ(0)

Sσ(0)
x0)

γ :=
∥∥∥∥Πker Eσ(0)

Sσ(0)

∥∥∥∥ √
‖Eσ(0)Hσ(0)Eσ(0)‖/γ̄. �

Remark 4.2. Similar as in the continuous time case it is possi-
ble to relax the condition (9) to

Vi(Pix) ≤ µV j(Pix), ∀i, j = 1, 2, .., n.

where µ ≥ 1. Then exponential stability holds then for all
switching signals whose dwell time is sufficiently large. To be
precise, assume that every subsystem Eix(k + 1) = Aix(k) is
exponentially stable with Lyapunov function Vi : Rn → R≥0,
Vi(x) = (Eix)>Hi(Eix), where Hi are the symmetric positive
definite matrices, such that A>i HiAi − E>i HiEi = −Ki, i =

1, 2, . . . , n, and Ki are symmetric and positive in the sense that
x>Kix > 0, ∀x ∈ S i\{0} and let λ = min

i
inf

x∈S i\{0}

x>Ki x
Vi(x) . As

shown in the proof of Theorem 4.1 we have λ ∈ (0, 1] and it is
easily seen that the case λ = 1 is only possible if x(k) = 0 is the
only solution of (1). Otherwise, expontential stability holds if
the dwell time d of the switching signal satisfies

d > log1−λ(1/µ).

5. The joint spectral radius and exponential stability

The previous section provided only a sufficient condition for
exponential stability, we will now provide a necessary and suf-
ficient condition for exponential stability in terms of the joint
spectral radius. Furthermore, we will exploit the solution prop-
erties to calculate the joint spectral radius via a standard system
of reduced size. Finally, we highlight that the conditions sim-
plify significantly under a certain commutativity assumption.

5.1. Definitions

We first define notions of stability for SDLS systems.

Definition 5.1. System (1) is called stable if there exists a
positive constant γ such that for all switching signals, the
corresponding solution x(·) with the initial condition x(0) =

Π
ker Eσ(0)

Sσ(0)
x0 for x0 ∈ Rn, satisfies

‖x(k)‖ ≤ γ ‖x0‖ .

Definition 5.2. System (1) is called exponentially stable if there
exist positive constants γ and 0 ≤ λ < 1, such that for all
switching signals, the corresponding solution x(·) with the ini-
tial condition x(0) = Π

ker Eσ(0)

Sσ(0)
x0 for x0 ∈ Rn fulfills

‖x(k)‖ ≤ γλk ‖x0‖ .

Note that the (exponential) stability definitions are in terms
of x0 and not in terms of x(0) (which is unequal from x0 in
general); this is important for precise characterizations in terms
of the transition matrix (in particular for concluding an upper
bound of the transition matrix, see e.g. the necessity part of the
proof of the forthcoming Theorem 5.5).

Our goal is now to characterize exponential stability with a
generalization of the joint spectral radius similar as in Theo-
rem 2.6. Therefore, we first define the joint spectral radius of
a family of matrix pairs {(E1, A1), (E2, A2), . . . , (En, An)} corre-
sponding to the SDLS system (1) of index-1 as follows.

Definition 5.3. The joint spectral radius of (1) of index-1 is

ρ
({

(Ei, Ai)
}n
1

)
:= lim

k→∞
max

i0,i1,...,ik
∈{1,...,n}

∥∥∥Φik ,ik−1Φik−1,ik−2 · · ·Φi1,i0

∥∥∥1/k
,

where Φi, j is the one-step-map as in Theorem 3.4 and ‖ · ‖ is the
induced matrix norm.

We will show the existence of the limit in Definition 5.3.
Letting ak = max

i1,i2,...,ik
∈{1,...,n}

∥∥∥Φik ,ik−1Φik−1,ik−2 · · ·Φi1,i0

∥∥∥ , we have the fol-

lowing estimates:

ak+m = max
i0,i1,...,ik+m
∈{1,...,n}

∥∥∥Φik+m,ik+m−1Φik+m−1,ik+m−2 · · ·Φi1,i0

∥∥∥
≤ max

im,...,ik+m
∈{1,...,n}

∥∥∥Φik+m,ik+m−1Φik+m−1,ik+m−2 · · ·Φim+1,im

∥∥∥
max

i0,i1,...,im
∈{1,...,n}

∥∥∥Φim,im−1Φim−1,im−2 · · ·Φi1,i0

∥∥∥
= akam.

Hence Lemma 2.5 ensures the existence of the required limit.

Remark 5.4. In the index-0 case, i.e., when Ei = In, i =

1, 2, .., n, we find Φik ,ik−1Φik−1,ik−2 · · ·Φi1,i0 = Aik−1 Aik−2 ...Ai0 . Thus
the joint spectral radius of a family of matrix pairs {(In, Ai)}ni=1
equals the joint spectral radius of the family of matrices {Ai}

n
i=1.

5.2. Stability characterization via joint spectral radius
Theorem 5.5. The switched system (1) of index-1 is exponen-
tially stable if, and only if,

ρ
({

(Ei, Ai)
}n
1

)
< 1.
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Proof. Sufficiency. Let K > 0 and λ ∈ (0, 1) such that
maxi0,i1,...,ik∈{1,...,n}

∥∥∥Φik ,ik−1Φik−1,ik−2 · · ·Φi1,i0

∥∥∥1/k
≤ λ < 1 for all

k ≥ K and let x(·) be a solution of (1) for some switching signal
σ, then due to Theorem 3.4 and in view of (8), for all k ≥ K

‖x(k)‖ ≤
∥∥∥Φσ(k),σ(k−1) · · ·Φσ(1),σ(0)

∥∥∥ ‖x0‖ ≤ λ
k‖x0‖

≤ γλk‖x0‖,

for any γ ≥ 1. In fact, let γ ≥ 1 be such that

γ ≥ max
1≤k<K

max
i0,i1,...,ik
∈{1,...,n}

∥∥∥Φik ,ik−1Φik−1,ik−2 · · ·Φi1,i0

∥∥∥
λk ,

then, clearly, for all 0 ≤ k < K

‖x(k)‖ ≤ γλk‖x0‖.

Necessity. In view of (8), we have that

‖x(k)‖ = ‖Φσ(k, 0)x0‖ ≤ γλ
k‖x0‖

for all k ≥ 0, x0 ∈ Rn, all switching signals σ and all corre-
sponding solutions x(·). Since ‖ · ‖ is an induced matrix norm
we therefore have

max
i0,i1,...,ik
∈{1,...,n}

∥∥∥Φik ,ik−1Φik−1,ik−2 · · ·Φi1,i0

∥∥∥ ≤ γλk,

hence,
ρ
({

(Ei, Ai)
}n
1

)
≤ lim

k→∞
γ1/kλ = λ < 1. �

Remark 5.6. With similar arguments as in the proof of Theo-
rem 5.5 it is actually possible to show that ρ

({
(Ei, Ai)

}n
1

)
< 1 if,

and only if, there exists K > 0 such that∥∥∥ΦiK ,iK−1ΦiK−1,iK−2 · · ·Φi1,i0

∥∥∥ < 1 ∀i0, i1, . . . , iK ∈ {1, . . . , n}.

In fact, if such a K > 0 exists, then exponential stability is
guaranteed with

λ = max
i0,i1,...,iK
∈{1,...,n}

∥∥∥ΦiK ,iK−1ΦiK−1,iK−2 · · ·Φi1,i0

∥∥∥1/K

γ = max
1≤k<K

max
i0,i1,...,ik
∈{1,...,n}

∥∥∥Φik ,ik−1Φik−1,ik−2 · · ·Φi1,i0

∥∥∥
λk

5.3. Reduced order joint spectral radius
Although it is possible, to explicitly calculate the one-step-

maps Φi, j via Lemma 3.6, we want to provide another approach
to check for exponential stability. The advantage of the lat-
ter approach is that one can reduce the initial n-dimensional
switched linear singular system (1) to a well-understood r-
dimensional switched linear nonsingular system. This reduc-
tion is based on the following result.

Proposition 5.7. Consider the switched singular system (1) of
index-1 and let Ti and Gi, j be given as in Lemma 3.6. Then

T−1
i G−1

i, j AiT j =: Āi, j =

(
Ā1

i, j 0
Ā2

i, j In−r

)
, (10)

for some Ā1
i, j ∈ Rr×r and Ā1

i, j ∈ R(n−r)×r where r as in
Lemma 3.3(a) is assumed to be positive. Furthermore, for any
switching signal we have that x(·) is a solution of (1) if, and
only if, v(·) is a solution of

v(k + 1) = Ā1
σ(k)σ(k−1)v(k) (11)

and

x(k) = Tσ(k−1)

(
v(k)

−Ā2
σ(k)σ(k−1)v(k)

)
.

In particular, (1) is exponentially stable if, and only if, (11) is
exponentially stable.

Proof.
Observe that Gi, jPi = (Ei + AiT jQT−1

i )TiPT−1
i = EiPi +

AiT jQPT−1
i = EiPi. Further, since Qi is the projection onto

ker Ei along S i, it follows EiQi = 0, therefore, EiPi = Ei(Pi +

Qi) = Ei. Thus, Gi, jPi = Ei, hence Pi = G−1
i, j Ei.

Furthermore, according to the proof of item (ii) of Lemma 3.6
Gi, jTiQ = AiT jQ, hence, T−1

i G−1
i, j AiT jQ = Q.

Therefore, we obtain

Āi, j = T−1
i G−1

i, j AiT j =

(
Ā1

i, j O
Ā2

i, j In−r

)
,

Ēi, j := T−1
i G−1

i, j EiTi =

(
Ir O
O On−r

)
.

Multiplying both sides of system (1) by T−1
σ(k)G

−1
σ(k)σ(k−1), and

using the transformation x̄(k) = T−1
σ(k−1)x(k), we get

Ēσ(k)σ(k−1) x̄(k + 1) = Āσ(k)σ(k−1) x̄(k). (12)

Putting x̄(k) := (v(k)>,w(k)>)>, where v(k) ∈ Rr, w(k) ∈ Rn−r,
we can reduce system (12) to (11) in combination with

w(k) = −Ā2
σ(k)σ(k−1)v(k).

Since (1) has by assumption only finitely many different modes,
max

i∈{1,...,n}
‖Ti‖ < ∞, max

i∈{1,...,n}
‖T−1

i ‖ < ∞; as well as max
i, j∈{1,...,n}

‖Ā2
i, j‖ <

∞; consequently, x(k) converges exponentially to zero if, and
only if, v(k) does. �

Remark 5.8. Comparing (11) with (7) it becomes apparent
that Ā1

i, j does not directly correspond to Φi, j for i , j, because
in (11) we have that Ā1

σ(k),σ(k−1) relates v(k) with v(k + 1), while
in (7) the matrix Φσ(k+1),σ(k) relates x(k) with x(k + 1).

Theorem 5.9. Assume that system (1) is of index-1 with r > 0
as in Lemma 3.3(a) and consider the reduced system (11). Then

ρ
(
{(Ei, Ai)}ni=1

)
= ρ

(
{Ā1

i, j}
n
i, j=1

)
= lim

k→∞
max

i−1,i0,...,ik−1
∈{1,...,n}

∥∥∥Ā1
ik−1,ik−2

...Ā1
i0,i−1

∥∥∥1/k
.

The proof of Theorem 5.9 is based on the following lemma.

Lemma 5.10. Assume that system (1) is of index-1. Then the
following statements hold for all i, j, k ∈ {1, . . . , n}:
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(i) Φi, jP j = Φi, j,

(ii) Φi, j = Φ̃i, j,kP j where Φ̃i, j,k := Π
ker E j

Si
P jG−1

j,k A j.

(iii) PiG−1
i, j AiΠ

ker E j

S i
= PiG−1

i, j Ai,

Proof.

(i) From Lemma 2.10 it follows that

Φ(E j,A j)Q j = T j

[
J j 0
0 0

]
T−1

j T j

[
0 0
0 I

]
T−1

j = 0

and hence by Lemma 3.4 we have Φi, jQ j = 0 which con-
cludes the proof because P j = I − Q j.

(ii) Due to (i) and Lemma 3.6 we have for any ξ ∈ Rn

Φi, jξ = Φi, jP jξ = Π
ker E j

Si
P jG−1

j, j A jP jξ.

Since P jξ ∈ S j = A−1
j (im E j) there exists η ∈ Rn such that

A jP jξ = E jη and according to the proof of Proposition 4.7
we have P j = G−1

j,k E j for all j, k, in particular, G−1
j, j E j =

P j = G−1
j,k E j, so that

Φi, jξ = Π
ker E j

Si
P jG−1

j, j E jη = Π
ker E j

Si
P jG−1

j,k E jη

= Π
ker E j

Si
P jG−1

j,k A jP jξ = Φ̃i, j,kP jξ.

Since ξ ∈ Rn was arbitrary, the claim is shown.

(iii) We have

PiG−1
i, j AiΠ

ker E j

S i
= PiG−1

i, j Ai(I − Qi, jG−1
i, j Ai)

= PiG−1
i, j Ai − PiG−1

i, j AiQi, jG−1
i, j Ai

= PiG−1
i, j Ai − TiPT−1

i G−1
i, j AiT jQT−1

i G−1
i, j Ai

= PiG−1
i, j AiP j − TiPQT−1

i G−1
i, j AiP j

PQ=0
= PiG−1

i, j AiP j = PiG−1
i, j Ai,

where we used T−1
i G−1

i, j AiT jQ = Q, which was already
shown in the proof of Proposition 5.7. �

Proof of Theorem 5.9
From Lemma 5.10 it follows that

Φik ,ik−1Φik−1,ik−2 · · ·Φi2,i1Φi1,i0

= Φ̃ik ,ik−1,ik−2 Pik−1Φ̃ik−1,ik−2,ik−3 Pik−2 · · · Φ̃i2,i1,i0 Pi1Φ̃i1,i0,i−1 Pi0

= Π
ker Eik−1
Sik

Tik−1 PĀik−1ik−2 PĀik−2ik−3 · · · PĀi1,i0 PĀi0,i−1 T−1
i−1

Pi0 .

(13)
Therefore,

ρ
(
{(Ei, Ai)}ni=1

)
= lim

k→∞
max

i0,i1,...,ik
∈{1,...,n}

∥∥∥Φik ,ik−1Φik−1,ik−2 · · ·Φi1,i0

∥∥∥1/k

(13)
= lim

k→∞
max

i−1,...,ik
∈{1,...,n}

∥∥∥∥Πker Eik−1
Sik

Tik−1 PĀik−1,ik−2 ...PĀi0,i−1 T−1
i−1

Pi0

∥∥∥∥1/k

≤ lim
k→∞

max
i−1,...,ik−1
∈{1,...,n}

∥∥∥PĀik−1,ik−2 ...PĀi0,i−1

∥∥∥1/k
·

lim
k→∞

max
i−1,...,ik
∈{1,...,n}

(∥∥∥∥Πker Eik−1
Sik

Tik−1

∥∥∥∥ ∥∥∥T−1
i−1

Pi0

∥∥∥)1/k

= lim
k→∞

max
i−1,...,ik−1
∈{1,...,n}

(∥∥∥PĀik−1,ik−2 ...PĀi0,i−1

∥∥∥)1/k

= lim
k→∞

max
i−1,...,ik−1
∈{1,...,n}

(∥∥∥Ā1
ik−1,ik−2

...Ā1
i0,i−1

∥∥∥)1/k
= ρ

(
{Ā1

i, j}
n
i, j=1

)
.

On the other hands, we clearly have PiΠ
ker E j

Si
= Π

ker E j

Si
which

together with Lemma 5.10(iii) and (13) yields

Π
ker Eik−1
Sik

Tik−1 PĀik−1,ik−2 . . . PĀi1,i0 PĀi0,i−1 T−1
i−1

= Π
ker Eik−1
Sik

Tik−1 PĀik−1,ik−2 . . . PĀi1,i0 PĀi0,i−1 T−1
i−1

Π
ker Ei−1
Si0

= Π
ker Eik−1
Sik

Tik−1 PĀik−1,ik−2 . . . PĀi1,i0 PĀi0,i−1 T−1
i−1

Pi0Π
ker Ei−1
Si0

= Φik ,ik−1 . . .Φi1,i0Π
ker Ei−1
Si0

.

(14)

Note that PiΠ
ker E j

Si
Pi = Pi, which is equivalent to

PT−1
i Π

ker E j

Si
TiP = P, (15)

therefore,

ρ
(
{Ā1

i, j}
n
i, j=1

)
= lim

k→∞
max

i−1,...,ik−1
∈{1,...,n}

∥∥∥Ā1
ik−1,ik−2

...Ā1
i0,i−1

∥∥∥1/k

= lim
k→∞

max
i−1,...,ik−1
∈{1,...,n}

∥∥∥PĀik−1,ik−2 ...PĀi0,i−1

∥∥∥1/k

(15)
= lim

k→∞
max

i−1,...,ik
∈{1,...,n}

∥∥∥∥PT−1
ik−1

Π
ker Eik−1
Sik

Tik−1 PĀik−1,ik−2 ...PĀi0,i−1

∥∥∥∥1/k

≤ lim
k→∞

max
i−1,...,ik
∈{1,...,n}

∥∥∥∥Πker Eik−1
Sik

Tik−1 PĀik−1,ik−2 ...PĀi0,i−1 T−1
i−1

∥∥∥∥1/k
·

lim
k→∞

max
i−1,ik−1
∈{1,...,n}

(∥∥∥PT−1
ik−1

∥∥∥ ∥∥∥Ti−1

∥∥∥)1/k

(14)
= lim

k→∞
max

i−1,...,ik
∈{1,...,n}

∥∥∥∥Φik ,ik−1 ...Φi1,i0Π
ker Ei−1
S i0

∥∥∥∥1/k

≤ lim
k→∞

max
i−1,...,ik
∈{1,...,n}

∥∥∥Φik ,ik−1 ...Φi1,i0

∥∥∥1/k
· lim

k→∞
max
i−1,i0
∈{1,...,n}

∥∥∥∥Πker Ei−1
S i0

∥∥∥∥1/k

= lim
k→∞

max
i0,...,ik
∈{1,...,n}

∥∥∥Φik ,ik−1 ...Φi1,i0

∥∥∥1/k
= ρ

(
{(Ei, Ai)}ni=1

)
.

Thus, we get ρ
(
{(Ei, Ai)}ni=1

)
= ρ

(
{Ā1

i, j}
n
i, j=1

)
. �

Remark 5.11. The joint spectral radius in Definition 5.3 may
also called Bohl exponent for the index-1 SDSL (1), cf. [10]
and the references therein. Concerning the computation of the
joint-spectral radius (or Bohl exponent) of the SDLS system (1)
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we first remark, that already in the nonsingular case the calcu-
lation (of an approximation) is an NP-hard problem [27] and
the situation gets even worse for the SDLS system (1) because
according to Definition 5.3 the joint spectral radius needs to
be calculated for n2 matrices (instead of n matrices in the non-
singular case). This complexity issues is to a little extend re-
solved by Theorem 5.9, because it shows that the calculation
can be carried out with smaller r × r matrices instead of n × n
matrices.

We illustrate Theorem 5.9 by applying it to the following Ex-
ample.

Example 5.12. Let

(E1, A1) =


 1 3 −1

1 3 −1
−1 1 1

 ,
1 2 0
0 1 −1
0 1 1


 ,

(E2, A2) =


 3 −6 −3

0 −3 0
−6 −9 6

 ,
 1 −2 −1
−1 −2 −1
−1 −2 3




A simple computation shows that ker E1 = ker E2 =

span{(1, 0, 1)>}, S 1 = S 2 = span{(−1, 1, 0)>, (0,−1, 1)>},
hence S i ∩ ker E j = {0}, i, j = 1, 2. Hence system (1) with
the above data is of index-1. An easy computation shows that

with the choice of T1 = T2 =

[
−1 0 1
1 −1 0
0 1 1

]
, we have

Ā1
1,1 = Ā1

1,2 =

[ 1
2 0
0 1

2

]
, Ā1

2,2 = Ā1
2,1 =

[ 1
3 0
0 1

3

]
,

Φ11 = Φ21 =

 1
4
−1
4
−1
4

0 1
2 0

−1
4
−1
4

1
4

 , Φ22 = Φ12 =

 1
6
−1
6
−1
6

0 1
3 0

−1
6
−1
6

1
6

 ,
Using Theorem 5.9, we find ρ({(Ei, Ai)}2i=1) = 1

2 < 1. Accord-
ing to Theorem 5.5, the SDLS system with the above data
{(Ei, Ai)}2i=1 is therefore exponentially stable.
We see that the spectral radius cannot be read off directly from
Φi, j but can be easily determined from Ā1

i, j.

5.4. Commutativity and exponential stability

It is well known (see e.g. [17, 37]), that a certain commu-
tativity conditions ensure exponential stability under arbitrary
switching for switched systems, hence Lemma 3.4 immediately
leads to the following result on exponential stability under ar-
bitrary switching.

Corollary 5.13. Consider the SDLS system (1) of index-1 and
assume that all one-step maps Φi, j as in Theorem 3.4 have
eigenvalues in the (open) unit circle and commute with each
other. Then the SDLS system (1) is exponentially stable. In par-
ticular, the joint spectral radius is the the largest absolut value
of all eigenvalues of all one-step-maps Φi, j.

Due to Proposition 5.7 it is also possible to test the commu-
tativity condition on the smaller matrices Ā1

i, j.

Corollary 5.14. Consider the SDLS system (1) of index-1 and
let Ā1

i, j be given according to Proposition 5.7. If all eigenvalues
of Ā1

i, j are in the (open) unit circle and all Ā1
i, j commute with

each other then the SDLS system (1) is exponentially stable.

Remark 5.15. (i) Since

det(λIr − Āi, j) = det(λT−1
i G−1

i, j EiTi − T−1
i G−1

i, j AiT j)

= det(T−1
i G−1

i, j ) det(λEiTi − AiT j),

and due to the block upper diagonal structure of Āi, j, all
eigenvalues of Ā1

i, j are also finite (generalized) eigenval-
ues of the pair (EiTi, AiT j) (i.e. those λ ∈ C such that
det(λEiTi − AiT j) = 0). Hence a sufficient condition for
Ā1

i, j having only eigenvalues in the unit circle is that the
pair (EiTi, AiT j) has this property.

(ii) There seems to be no obvious connection between the
eigenvalues of Φi, j and Āi, j and also not between the com-
mutativity of each. Hence as of now it is not clear, which
stability condition is more conservative.

Example 5.16. Let us consider Example 5.12 again. Clearly,
the diagonal matrices Ā1

i, j commute and the eigenvalues have
magnitude smaller than one, hence (without explicitely cal-
culating the joint spectral radius we can conclude via Corol-
lary 5.14 that (1) is exponentially stable under arbitrary switch-
ing. Note that the matrices Φi, j also commute and their spec-
trum is given by {0, 1/2, 1/2} or {0, 1/3, 1/3}, so Corollary 5.13
can also be used to establish exponential stability of (1).

Remark 5.17. There are many similarities between the contin-
uous and discrete time case. In fact, the single-mode one-step
map Φ(E,A) is identical to the matrix Adiff which describes the
dynamics of Eẋ = Ax via the equation ẋ = Adiffx (see [28, 29]).
There is also a similarity when considering switching, in both
cases the dynamics are described by the single-mode one-step
map in combination with a certain projector. However, the ma-
jor difference between continuous and discrete time case is that
for the discrete time case, the resulting dynamics can still be
described in a usual way (i.e. x(k + 1) = Mx(k) for some matrix
M), while in the continuous time case the resulting dynamics
are a combination of a continuous flow with a discrete jump.
In particular, an adequate notion of commutativity for the con-
tinuous time case and the corresponding proof of exponential
stability [16] is much more complicated than for the discrete
time case.

6. Conclusion

In this paper a class of SDLS systems of index-1 is in-
troduced and a corresponding one-step-map is established.
The stability of such systems is studied by using Lyapunov
functions as well as the joint spectral radius of a set of matrix
pairs. Furthermore, certain commutativity conditions are
shown to preserve exponential stability.
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