Switch.Observer
for switched linear systems

Stephan Trenn
Jan C. Willems Center for Systems and Control
University of Groningen, Netherlands

Joint work with Ferdinand Küsters and Andreas Wirsen, Fraunhofer ITWM, Kaiserslautern, Germany

Partially supported by BMWi MathEnergy (project number 0324019A) and by DFG grant TR 1223/2-1

Conference on Decision and Control (CDC 2017), Melbourne, Australia, 2017/12/12
The observability problem

Observability notions

Observer design

Summary

Switched System

initial condition x_0

input u → output y

switching signal σ

Observability questions

› Is there a unique x_0 for any given σ, u, y? → observability ✓
› Is there a unique (x_0, σ) for any given u and y?
 → (x, σ)-observability
› Is there a unique σ for any given u, y and unknown x_0?
 → σ-observability $\iff (x, \sigma)$-observability
“Trivial” observer design for \((x, \sigma)\)-obs.

<table>
<thead>
<tr>
<th>Instantenous observability</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x, \sigma))-observability \implies\ local state and mode observability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observer design</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. For each mode run a classical state observer</td>
</tr>
<tr>
<td>2. Pick the one which converges (\rightarrow) mode and state estimation</td>
</tr>
<tr>
<td>3. Repeat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nothing switch specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information at the switch (e.g. jumps) not utilized.</td>
</tr>
</tbody>
</table>
Weaker observability notion

\[\dot{x} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \]

\[y = C_0 x \]

with

\[C_1 = [1, 0] \]
\[C_2 = [0, 1] \]

\[\tilde{y} = C_\sigma \]

\[\text{not observable} \]

Switch observability (\(\sigma_1\)-observability)

Recover \(x\) and \(\sigma\) from \(u\) and \(y\), if at least one switch occurs
Overall observer design

(0. Detect switching time t_S.)

1a. Run partial state observers on $(t_S - \tau, t_S)$ for all modes.
1b. Run partial state observers on $(t_S, t_S + \tau)$ for all modes.

2. Combine partial information to find (i^*, j^*) and state estimation $\hat{x}(t_S)$
Partial state observer

\[
\begin{align*}
\dot{x} &= A_p \dot{x} + B_p u, \\
y &= C_p x + D_p u,
\end{align*}
\]

\[
O_p := \begin{bmatrix}
C_p \\
C_p A_p \\
\vdots \\
C_p A_p^{n-1}
\end{bmatrix}
\]

\[
r_p := \text{rank } O_p
\]

Choose orthogonal \(Z_p \in \mathbb{R}^{n \times r_p} \) with \(\text{im } Z_p = \text{im } O_p^T \), then

\[
\begin{align*}
\dot{z}_p &= Z_p^T A_p Z_p z_p + Z_p^T B_p u \\
y &= C_p Z_p z_p + D_p u
\end{align*}
\]

is observable

Definition (Partial state observer)

Any observer for \(z_p = Z_p^T x \) is a **partial state observer**.

Mode dependence

\(Z_p \) and size \(r_p \) are mode dependent.
Reasonable modes

Definition (Reasonable modes)
Mode i is **reasonable** on $(t_S - \tau, t_S)$:⇔

$$
\exists x_i^{t_S} : y = C_i x_i + D_i u \quad \text{where} \quad \dot{x}_i = A_i x_i + B_i u, \quad x_i(t_S) = x_i^{t_S}
$$

In particular, i^* is reasonable on $(t_S - \tau, t_S)$.

Crucial property of reasonable modes
Partial state observers “converge” for all reasonable modes, i.e.

$$
y \approx C_i \hat{Z}_i + D_i u \quad \text{on} \quad (t_S - \varepsilon, t_S) \quad \forall \text{reasonable } i
$$

Analog definition for reasonable modes j on $(t_S, t_S + \tau)$, with

$$
y \approx C_j \hat{Z}_j + D_j u \quad \text{on} \quad (t_S + \tau - \varepsilon, t_S + \tau) \quad \forall \text{reasonable } j
$$
Illustration of Steps 1 and 2

\[\hat{y}_1 \]
\[\hat{y}_2 \]
\[\hat{y}_3 \]

\[Z_1 \approx Z_1^T x(t_S) \]
\[Z_2 \approx Z_2^T x(t_S) \]

Stephan Trenn (Jan C. Willems Center, U Groningen)
Combining partial state estimations

Question
How to combine the obtained information before and after the switch?

Obvious fact

\((x, \sigma_1)\)-observability \implies \text{observability for known } \sigma \text{ with one switch}
\implies \ker \mathcal{O}_i \cap \ker \mathcal{O}_j = \{0\} \quad \forall i \neq j
\implies \text{rank } [Z_i, Z_j] = n \quad \forall i \neq j

State estimation candidates

For \((i, j) = (i^*, j^*)\) we have

\[
\begin{bmatrix}
\hat{Z}_i^- \\
\hat{Z}_j^+
\end{bmatrix}
\approx
\begin{bmatrix}
Z_i^T \\
Z_j^T
\end{bmatrix} x(t_S) \implies x(t_S) \approx
\begin{bmatrix}
Z_i^T \\
Z_j^T
\end{bmatrix}^+ \begin{bmatrix}
\hat{Z}_i^- \\
\hat{Z}_j^+
\end{bmatrix} =: \hat{x}_{ij}
\]
Final step

Theorem

For sufficiently accurate partial observers and for all reasonable \((i, j)\)

\[
(i, j) = (i^*, j^*) \implies \begin{bmatrix} Z_i^T \\ Z_j^T \end{bmatrix} \hat{x}_{ij} \approx \begin{bmatrix} \hat{z}_i^- \\ \hat{z}_j^+ \end{bmatrix}
\]

\[
(i, j) \neq (i^*, j^*) \implies \begin{bmatrix} Z_i^T \\ Z_j^T \end{bmatrix} \hat{x}_{ij} \not\approx \begin{bmatrix} \hat{z}_i^- \\ \hat{z}_j^+ \end{bmatrix}
\]
Summary: Observer design

1. Run partial state observers for
\[
\dot{z}_p = Z_p^T A_p z_p + Z_p^T B_p u \\
y = C_p Z_p z_p + D_p u \\
im Z_p := im \mathcal{O}_p^T
\]
on \((t_S - \tau, t_S)\) and \((t_S, t_S + \tau)\)

\[\rightarrow\] reasonable mode pairs \((i, j)\) and partial state estimates \(\hat{Z}_i, \hat{Z}_j^+\)

2. Calculate candidate full state estimations \(\hat{x}_{ij} = \begin{bmatrix} z_i^T \\ z_j^T \end{bmatrix}^T \begin{bmatrix} \hat{Z}_i^- \\ \hat{Z}_j^+ \end{bmatrix}\)

\[\rightarrow\] choose unique \((i, j) = (i^*, j^*)\) for which
\[
\begin{bmatrix} z_i^T \\ z_j^T \end{bmatrix} \hat{x}_{ij} \approx \begin{bmatrix} \hat{Z}_i^- \\ \hat{Z}_j^+ \end{bmatrix}
\]
Discussion and Extensions

› Novel observability notion: *Switch observability*
 - Assumes that at least one switch occurs
 - Individual modes can have unobservable states
 - Better suited for fault-induced switches

› Novel observer-design suited to switch-observable systems
 - Based on partial state observers
 - Linear costs in number of possible faults
 - Extension to switched DAEs possible
 - Knowledge of switching time assumed
 - Unavoidable time delay until result is available
 - Choice of specific left-inverse of $[Z_i, Z_j]^T$ crucial for performance