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Abstract

A problem of characterizing conditions under which a topological change in a network of differential algebraic equations
(DAEs) can go undetected is considered. It is shown that initial conditions for which topological changes are indiscernible
belong to a generalized eigenspace shared by the nominal system and the system resulting from a topological change.
A condition in terms of eigenvectors of the nominal system is derived to check for existence of possibly indiscernible
topological changes. For homogenous networks this conditions simplifies to existence of an eigenvector of the Laplacian
of network having equal components. Lastly, a rank condition is derived which can be used to check if a topological
change preserves regularity of the nominal network.
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1. Introduction

Control theory of dynamical networks and multiagent
systems has gained enormous popularity in the last years
because it involves numerous important applications, as
well as many unsolved mathematical questions. In the
engineering domain, dynamical networks and multiagent
systems networks naturally arise in cooperative robotics,
surveillance and environment monitoring Ögren et al.
(2004); Beard et al. (2006); Arcak (2007), as well as
man-made infrastructures such as electrical power grids
Chakrabortty and Khargonekar (2013) and transportation
networks Banavar et al. (2000).

Networks can be modelled in terms of a graph, where the
nodes represent the various network agents and the edges
represent the interaction among the nodes. The overall
network dynamics is then the result of the dynamics of
each node and the network topology (the interconnection
structure formed by the edges). In this context, a key
question is whether a topological change in the form of
a removal or addition of an edge may have an effect on
the overall dynamics. This question is relevant for both
analysis and design purposes. In terms of analysis, it
is important to understand whether a topological change
cannot be detected because this indicates the existence of
an event (for example the loss of a transmission line in a
power grid) which cannot be detected. Also, understand-
ing which topological changes may give rise to drastically
different dynamics is key to identify critical links in the
networks. This question is also relevant from a design per-
spective since it helps to understand how one can possibly
modify the network structure without altering too much
the network behavior.

The problem of detecting network topological changes

has therefore attracted significant attention in the last
decade; see for instance Barooah (2008); Rahimian et al.
(2012); Dhal et al. (2013); Rahimian and Preciado (2015);
Torres et al. (2015); Battistelli and Tesi (2015, 2017);
Costanzo et al. (2017). In all the aforementioned works,
however, the analysis is confined to networks whose dy-
namics can be fully described in terms of differential equa-
tions. In contrast, there are no results dealing with dy-
namics that obey differential-algebraic equations (DAEs),
apart from our own preliminary conference publication
Küsters et al. (2017) which only considers the SISO case
and also does not characterize the set of indiscernible ini-
tial states. Networks of DAEs arise in several applications
of practical interest, examples being water distribution and
electrical networks, where the algebraic equations describe
conservation laws related to mass and energy balance.

In this paper, we consider networks of DAEs with diffu-
sive coupling, and study under what conditions topological
changes (in particular, a removal or addition of an edge)
cannot be detected from observations of the network dy-
namics, referring to this event as “indiscernibility”. We
approach this problem from the perspective of control the-
ory and provide necessary and sufficient conditions for in-
discernibility that depend on the common eigenspaces of
the nominal (before the addition/removal of an edge) and
modified network configuration. In this respect, a very
interesting result is that indiscernibility can be checked
by only looking at the eigenspace of the nominal network
configuration. In many practical cases, the latter is usu-
ally known in advance since it represents the configuration
with which the network is designed to operate. This ren-
ders the approach appealing from a practical viewpoint
since it allows one to check the existence of indiscernible
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topological changes with no need to look at all the possible
modified topologies. Another interesting result is that the
considered approach is general enough so as to include the
case where each network node obeys different dynamics,
and has possibly different state dimension.

The results presented here consider discernibility based
on the whole state trajectory. This is just a prelimi-
nary step, because once a topological change results in
a change of the dynamics, the next question is, whether
this change can actually be seen by a limited amount of
sensors in the network. This problem has been widely
studied in the general framework of switched systems Vi-
dal et al. (2002); Babaali and Egerstedt (2004); Baglietto
et al. (2007); De Santis (2011); Baglietto et al. (2014);
however, these results do not take into account the special
structure of topological changes and it is a topic of future
research to consider discernibility also for networks with a
limited amount of measurements.

Finally we would like to note that detecting topolog-
ical changes can be seen as part of the more general
problem of network reconstruction/identification Timme
(2007); Chowdhary et al. (2011); Sanandaji et al. (2011);
Nabavi and Chakrabortty (2016); Angulo et al. (2017).
In fact, checking whether or not two different network
configurations can generate the same dynamics can also
be approached by asking under what conditions one can
uniquely identify from observations the coupling parame-
ters of the network. However, the problem considered here
has much more “structure” than a generic topology iden-
tification problem. For example, identification approaches
do not assume prior knowledge of a nominal network con-
figuration. In the present context, this knowledge makes it
possible to provide conditions on discernibility that can be
checked by only looking at the properties of the nominal
network configuration.

This paper is organized as follows. First, we define a
nominal network of DAEs and obtain a resulting overall
DAE. We also note the effect of addition/removal of an
edge on the overall DAE and characterize it as a rank
one update to system matrix. Then, we introduce the
notion of indiscernibility and bring out a connection be-
tween indiscernibility and existence of common generalized
eigenspace. This leads to a simple condition on nominal
network which can be used to characterize all topologi-
cal changes which are possibly-indiscernible. Afterwards,
we consider a special case of homogeneous networks and
obtain a condition for possibly indiscernible topological
change which can be checked solely from eigenvectors of
the Laplacian of nominal network. Lastly, we give a simple
rank condition which helps us check whether a topological
change is regularity preserving.

2. System class

We consider a family of N ∈ N differential algebraic
equations (DAEs),

Eiẋi = Aixi +Biui,

yi = Cixi,
i ∈ {1, 2, . . . , N}, (1)

where Ei, Ai ∈ Rni×ni , ni ∈ N, Bi, C
>
i ∈ Rni×p, p ∈ N.

Note that each system can have its own state dimension
and we allow multiple inputs and outputs (but with the
same number p for all systems).

The systems are coupled with each other via diffusive
coupling, i.e. for a given undirected coupling graph G =
(V,E) with vertices V = {1, 2, . . . , N} and edges E ⊆ V×
V the input of the i-th system is determined by the output
of all neighbouring systems as follows:

ui =
∑

k:(i,k)∈E

wik(yk − yi), (2)

where wij > 0 with wji = wij for i, j ∈ V.
Let the weighted Laplacian matrix L = [`i,j ]i,j∈V of the

graph G be given by

`ij =


−wij , i 6= j, (i, j) ∈ E,

0, i 6= j, (i, j) 6∈ E,∑
k:(i,k)∈E

wik, i = j;
(3)

note that L ∈ RN×N is a symmetric and positive semidef-
inite matrix. We then can write the coupled dynamics in
compact form as

E ẋ = (A− B(L⊗ Ip)C)x =: ALx, (4)

where, for n :=
∑N
i=1 ni,

x := (x>1 , x
>
2 , . . . , x

>
N )>,

E := diag{E1, . . . , EN} ∈ Rn×n,
A := diag{A1, . . . , AN} ∈ Rn×n,
B := diag{B1, . . . , BN} ∈ Rn×Np,
C := diag{C1, . . . , CN} ∈ RNp×n,

and L⊗Ip ∈ RNp×Np denotes the usual Kronecker product
of L ∈ RN×N with the identity matrix Ip ∈ Rp×p.

3. Indiscernible initial states

In the following we are interested in the effect of a topo-
logical change in the coupling structure and its effect on
the systems dynamics. In particular, we are interested
in characterizing topological change which do not result
in changes in the dynamics (for certain initial values). A
topological change in the form of a removal/addition of
an edge or, more general, a change in the edge weight, re-
sults in a change of the description (4) where L is replaced
by the new Laplacian matrix L while all other matrices
(E ,A,B, C) remain unchanged.
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Definition 1 (Indiscernible initial states). Consider
the coupled system (4). An initial value x0 ∈ Rn is called
indiscernible with respect to the topological change L→ L
iff for all solutions x of E ẋ = ALx and all solutions x of
E ẋ = ALx the following implication holds:

x(0) = x0 = x(0) =⇒ x(t) = x(t) ∀t ∈ R.

Note that x0 = 0 is always an indiscernible initial state
(independently of the specific topological variation) and
for certain topological variations it may be the only in-
discernible initial state. We are now interested in fully
characterizing the set of all indiscernible initial states. To-
wards this goal we will need to recall some basic properties
about eigenvectors of matrix pairs, c.f. (Berger et al., 2012,
Defs. 3.1&3.3).

Definition 2 (Eigenvalues and eigenvector chains).
For a matrix pair (E,A) ∈ Rn×n ×Rn×n a complex num-
ber λ ∈ C is called (generalized) eigenvalue if there exists
a nontrivial v ∈ Cn \ {0} such that (A− λE)v1 = 0. The
set of all eigenvalues of (E,A) is denoted by spec(E,A).

A tuple of (complex) vectors (v1, v2, . . . , vk) ∈ (C\{0})k
is called eigenvector chain (EVC) of (E,A) for an eigen-
value λ ∈ C iff v1 is an eigenvector and for all i =
2, 3, . . . , k:

(A− λE)vi = Evi−1. (5)

The eigenspace of order k for eigenvalue λ ∈ C is recur-
sively given by V0

λ := {0} and

Vkλ := (A− λE)−1(EVk−1
λ ) ⊆ Cn;

here (A−λE)−1 stands for the set-valued preimage (A−λE
is not invertible).

The limit Vλ :=
⋃
k∈N Vkλ of the increasing subspace se-

quence Vkλ is called generalized eigenspace for eigenvalue
λ; note that V1

λ is the space of eigenvectors corresponding
to λ.

When introducing eigenvalues, eigenvectors and eigen-
vector chains, it is common to assume regularity of the
matrix pair (E,A), i.e. the polynomial det(sE −A) is not
identically zero. While this is not strictly necessary, most
of the following properties only hold under the regularity
assumption and we will mention this additional assump-
tion appropriately.

An interesting characterization for eigenvector chains of
a regular matrix pair (E,A) is the following (Berger et al.,
2012, Prop. 3.8): (v1, v2, . . . , vk) is an eigenvector chain
for eigenvalue λ ∈ C if, and only if, all (complex-valued)
functions, i = 1, 2, . . . , k,

xi(t) = eλt[v1, v2, . . . , vi]

(
ti−1

(i− 1)!
, . . . ,

t2

2
, t, 1

)>
(6)

are linearly independent solutions of Eẋ = Ax; note that
xi(0) = vi. In fact, the following stronger result holds
(which is a simple consequence from the above character-
ization together with (Berger et al., 2012, Thm 3.6)):

Lemma 3. For a regular matrix pair (E,A) with dis-
tinct eigenvalues {λ1, λ2, . . . , λd} ∈ C there exists for each
` ∈ {1, 2, . . . , d} and for each j ∈ {1, 2, . . . ,dimV1

λ`
} a

number k`,j and an eigenvector chain (v`,j1 , v`,j2 , . . . , v`,jk`,j )
for eigenvalue λ` such that all solutions of Eẋ = Ax are
given by

x(t) =

d∑
`=1

eλ`t
dimV1

λ`∑
j=1

k`,j∑
i=1

α`,j,i

i∑
η=1

v`,jη
ti−η

(i− η)!
(7)

and the coefficients α`,j,i are uniquely determined by the
initial value x(0). In particular, the set v`,ji

∣∣∣∣∣∣
` ∈ {1, . . . , d},
j ∈ {1, . . . ,dimV1

λ`
},

i ∈ {1, . . . , k`,j}


is linearly independent and the coefficients α`,j,i are deter-
mined by the unique decomposition

x(0) =

d∑
`=1

dimV1
λ`∑

j=1

k`,j∑
i=1

α`,j,i v
`,j
i .

With the help of common EVCs it is now possible to
characterize all indiscernible initial states as follows:

Theorem 4. Consider a network with dynamics given by
(4) and a regularity preserving1 topological change L→ L.
Let

CL,L :=

 v ∈ Cn

∣∣∣∣∣∣∣∣
∃(v1, v2, . . . , vk) common EVC of
(E ,AL), (E ,AL) for the same
eigenvalue λ ∈ C and
v = vi for some i ∈ {1, 2, . . . , k}


be the set of all vectors which appear in a common eigen-
vector chain of (E ,AL) and (E ,AL). Then x0 ∈ Rn is an

indiscernible initial state for the topological change L→ L
if, and only if, it is in the span of all common eigenvector
chains of (E ,AL) and (E ,AL), i.e.

x0 ∈ spanCL,L ∩ Rn.

Proof. Sufficiency is easily seen by considering a linear
combination of (common) solutions of the form (6).

For showing the converse implication, let us assume that
x0 is indiscernible i.e., x ≡ x̄, where x denotes the solution
of E ẋ = ALx, x(0) = x0 and x̄ is the solution of E ˙̄x =
ALx̄, x̄(0) = x0; in particular, x is given by (7), where

(v`,j1 , . . . , v`,jk`,j ) is the j-th eigenvector chain of (E ,AL) for
eigenvalue λ` and

x̄(t) =

d̄∑
`=1

eλ̄`t
dim V̄1

λ̄`∑
j=1

k̄`,j∑
i=1

ᾱ`,j,i

i∑
η=1

v̄`,jη
ti−η

(i− η)!
,

1i.e. the matrix pairs (E,AL), (E,AL) are both regular
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where (v̄`,j1 , . . . , v̄`,jk`,j ) is an eigenvector chain of (E ,AL) for

one of the d̄ eigenvalues λ̄1, . . . , λ̄d̄.
Due to the linear independence of the exponential func-

tion (with distinct growth rates) it follows that x ≡ x̄ is
only possible, when there is at least one common eigen-
value (unless x0 = 0). We can reorder the eigenvalues
such that for some r ≥ 1

λ1 = λ̄1, . . . , λr = λ̄r

and λp 6= λ̄q for all p, q > r, then x ≡ x̄ implies for ` =
1, 2, . . . , r

dimV1
λ`∑

j=1

k`,j∑
i=1

α`,j,i

i∑
η=1

v`,jη
ti−η

(i− η)!
=

dim V̄1
λ̄`∑

j=1

k̄`,j∑
i=1

ᾱ`,j,i

i∑
η=1

v̄`,jη
ti−η

(i− η)!
(8)

and, for all ` > r and all corresponding i, j

α`,j,i = 0, ᾱ`,j,i = 0.

By repeatedly taking time-derivatives of (8) and evalu-
ating at t = 0 we obtain the following equalities for
κ = 0, . . . , κ`max := max{k`,j , k̄`,j} − 1:

w`κ :=

dimV1
λ`∑

j=1

k`,j∑
i=1

α`,j,iv
`,j
i−κ =

dimV1
λ̄`∑

j=1

k̄`,j∑
i=1

α`,j,iv̄
`,j
i−κ;

here we use the convention that quantities indexed outside
their actual domain are zero by definition. It then follows
for all ` = 1, 2, . . . , r and all κ = 0, 1, 2, . . . , κ`max:

(A− λEL)w`κ =

dimV1
λ`∑

j=1

k`,j∑
i=1

α`,j,i(A− λEL)v`,ji−κ

=

dimV1
λ`∑

j=1

k`,j∑
i=1

α`,j,iEv`,ji−κ−1 = Ew`κ+1,

where w`κ`max+1 := 0. An analogous calculation shows that

(A− λEL)w`κ = Ew`κ+1;

in particular, the tuple (w`κ`max
, . . . , w`1, w

`
0) (note the re-

versed order) satisfies the eigenvector chain condition (5)
and we have shown that

x(0) =

r∑
`

w`0

is an element of spanCL,L.
�

Remark 5. Note that existence of at least one common
eigenvector is both necessary and sufficient for the exis-
tence of a nontrivial indiscernible initial condition (because
any common eigenvector chain also contains a common
eigenvector). But the set of initial conditions which are
indiscernible are not limited to the span of common eigen-
vectors; they are spanned by common eigenvector chains.
Only when all (common) eigenvalues are semi-simple (i.e.
they do not correspond to Jordan blocks of size bigger than
one), the span of common eigenvectors yields the whole
space of indiscernible initial states.

4. Indiscernible topological changes

In the design of a suitable network topology (with Lapla-
cian matrix L) one goal could be to avoid the existence of
any (nontrivial) indiscernible initial state with respect to
many fault scenarios L→ L. It is therefore meaningful to
define the following properties of a topological change:

Definition 6. For a coupled system (4) a topological
change L → L is called always-discernible if there is
no (nontrivial) indiscernbible initial state and possibly-
indiscernible if there exists a nontrivial indiscernible initial
state.

Note that we do not simply say that a topological change
is discernible/indiscernible because the possibility to de-
tect a topological change strongly depends on the ini-
tial state. Furthermore, even when a topological change
is possibly-indiscernible, it will usually be discernible for
almost all initial states, because the subspace of indis-
cernible initial states is a subspace of dimension usually
smaller than n.

Our goal is now to provide a simple characterization of
possible-indiscernibility which does not require the calcu-
lation of the whole set of indiscernible initial states. The
following lemma is a key observation towards this goal:

Lemma 7. Let (λ, v) ∈ C × Cn \ {0} be an eigenvalue-
eigenvector pair of (E ,AL). Then (λ, v) is also an
eigenvalue-eigenvector of (E ,AL) if, and only if,

v ∈ ker(AL −AL)

Proof.

(AL − λE)v = 0 ⇔ (AL −AL +AL − λE)v = 0

(AL−λE)v=0⇔ (AL −AL)v = 0.

�
Utilizing the special structure of AL−AL we can derive

the main result of this section:

Theorem 8. Consider a family of DAEs of the form (1)
connected by a network graph G = (V,E) with weighted
Laplacian L resulting in the overall system (4), which
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we assume to be regular. Any regularity-preserving re-
moval/addition of the edge (i, j) is a possibly-indiscernible
topological change if, and only if, there exists an eigenvec-
tor v ∈ Cn \ {0} of (E ,AL) with

(Cv)i − (Cv)j ∈ ker

[
Bi
Bj

]
; (9)

here (Cv)k ∈ Rp (for k either i or j) denotes the k-th
(block) entry of the vector Cv ∈ RNp consisting in total of
N entries of length p.

Proof. The addition/removal of edge (i, j) leads to a
topological change L→ L with

L = L± wij(ei − ej)(ei − ej)>;

hence v ∈ ker(AL −AL) if, and only if,

Cv ∈ kerB((ei − ej)(ei − ej)> ⊗ Ip);

where we used bilinearity of the Kronecker product and
wij 6= 0. It is easily seen that

B((ei− ej)(ei− ej)>⊗ Ip) =


0 0 0 0 0
0 Bi 0 -Bi 0
0 0 0 0 0
0 -Bj 0 Bj 0
0 0 0 0 0

, (10)

with suitably sized zero matrices. Together with Theo-
rem 4 (in particular, Remark 5) and Lemma 7 this shows
the claim of the Theorem. �

Remark 9. The condition (9) derived in Theorem 8 will
be satisfied if either (Cv)i = (Cv)j or (Cv)i − (Cv)j ∈

ker

[
Bi
Bj

]
. If (Cv)i = (Cv)j then there is no diffusion tak-

ing place at the edge (i, j) and as a result any addition or
removal of edge between i-th and j-th vertex will go un-

detected. On the other hand, if (Cv)i − (Cv)j ∈ ker

[
Bi
Bj

]
then the diffusive coupling between i-th and j-th vertex is
unable to influence the dynamics at the respective vertices.
Thus, any addition or removal of edge between i-th and
j-th vertex will once again go undetected. Further, if we
assume that input matrices Bi are of full column rank for
all i, then condition (9) reduces to (Cv)i = (Cv)j.

For illustrating above result, we recall from (Küsters
et al., 2017, Ex. 6), an example of an electrical circuit
which is a variant of the well known Wheatstone bridge.

Example 10. Consider a circuit as shown in Figure 1.

Here nodes 1 and 2 are connected to capacitors and
hence lead to dynamic equations. On the other hand

R 34

R14

R13

R24

R23

C1

C2

v4

v1 v3

v2

Figure 1: RC-circuit.

nodes 3 and 4 lead to algebraic equations. At each node,
we have the following DAEs

Node 1 : −C1v̇1 = u1, y1 = v1,

Node 2 : −C2v̇2 = u2, y2 = v2,

Node 3 : 0 = u3, y3 = v3,

Node 4 : 0 = u4, y4 = v4,

along with the following conditions arising from the topol-
ogy of the circuit

u1 = R14(v1 − v4) +R13(v1 − v3),

u2 = R24(v2 − v4) +R23(v2 − v3),

u3 = R13(v3 − v1) +R23(v3 − v2) +R34(v3 − v4),

u4 = R14(v4 − v1) +R24(v4 − v2) +R34(v4 − v3).

The overall system equation is given by (4) with

E =


−C1 0 0 0

0 −C2 0 0
0 0 0 0
0 0 0 0

, A = 04×4, B = I4, C = I4

and

L =

[
R13+R14 0 −R13 −R14

0 R23+R24 −R23 −R24

−R13 −R23 R13+R23+R34 −R34

−R14 −R24 −R34 R14+R24+R34

]
.

In this case, equation (4) reduces to

E v̇(t) = Lv(t). (11)

Assuming equal values of magnitude one for all the resis-
tances and capacitances in this circuit, we compute the
eigenvalues and eigenvectors of the matrix pair (E ,L).
There are two finite eigenvalues λ1 = 0 and λ2 = −2 with
corresponding eigenvectors

v1 =


1
1
1
1

 , v2 =


1
−1
0
0

 .

Clearly, both the eigenvectors are such that (Cv)3−(Cv)4 =
0 is satisfied. Thus, by Theorem 8, the addition/removal
of edge (3, 4) is undetectable for “any” consistent initial
value.
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5. Indiscernibility for homogeneous networks

For homogenous networks, it is possible to simplify the
result further. In this case, we have identical differential
equations connected by a graph G = (V,E) with weighted
Laplacian L. Substituting Ei = E, Ai = A, Bi = B,
Ci = C and ni = n for all i ∈ V in (4), we are able to
write the overall dynamics in a simplified form as follows.

E ẋ = ALx, (12)

where
E := (IN ⊗ E),

AL := (IN ⊗A)− L⊗BC.

As a result, indiscernibility of homogenous DAE net-
work can be partly described in terms of the eigenvectors
of the Laplacian of the connection graph under certain
observability assumptions. For that we first note the
following properties of eigenvalue-eigenvectors pairs of
(E ,AL) in the homogeneous case.

Lemma 11. Let α1, α2, . . . , αN ∈ R be the N real eigen-
values (counting multiples) of the symmetric Laplacian L.
Then, for (E ,AL) as above,

spec(E ,AL) =

N⋃
i=1

spec(E,A− αiBC). (13)

Further, let v be a (generalized) eigenvector of (E ,AL) for
an eigenvalue λ of (E ,AL) with λ ∈ spec(E,A−αBC) for
some eigenvalue α of L. Then

v = z ⊗ w (14)

where z is an eigenvector of L corresponding to α and w is
a (generalized) eigenvector of (E,A−αBC) corresponding
to λ. Moreover, if v and w are generalized eigenvectors,
then they have the same rank.

Proof. Since L is symmetric there exists an orthogo-
nal coordinate transformation S such that S>LS = Λ =
diag{α1, . . . , αN}. Choose a coordinate transformation
D := S⊗ In for AL. From the properties of the Kronecker
product (X ⊗ Y )> = X> ⊗ Y > and (X ⊗ Y )(Z ⊗W ) =
(XZ ⊗ YW )) it follows that

D>(IN ⊗A)D = (S> ⊗ In)(IN ⊗A)(S ⊗ In)

= (S> ⊗ In)(S ⊗A) = IN ⊗A,

D>ED = E

and

D>(L⊗BC)D = (S> ⊗ In)(L⊗BC)(S ⊗ In)

= Λ⊗BC.

Therefore,

D>ALD = D>(IN ⊗A)D −D>(L⊗BC)D

= (IN ⊗A)− (Λ⊗BC)

= diag{A− α1BC,A− α2BC, . . . , A− αNBC},

which shows (13).
Note that for any eigenvalue-eigenvector pair (α, z) ∈

R× RN of L and any (λ,w) ∈ C× Cn we have

(AL − λE)(z ⊗ w)

=
(
(IN ⊗A)− (L⊗BC)

)
(z ⊗ w)− λ(z ⊗ Ew)

= (z ⊗Aw)− (Lz ⊗BCw)− λ(z ⊗ Ew)

= (z ⊗Aw)− (αz ⊗BCw)− λ(z ⊗ Ew)

= z ⊗
(
(A− αBC − λE)w

)
= 0 (15)

and, generalizing,

(AL − λE)i(z ⊗ w) = z ⊗
(
(A− αBC − λE)iw

)
.

This shows that any (generalized) eigenvalue-eigenvector
pairs (α, z) and (λ,w) of L and (E,A−αBC), respectively,
leads to a generalized eigenvector v = z ⊗ w of (E ,AL) of
the same rank. Furthermore, the dimension of

span

 z ⊗ w

∣∣∣∣∣∣∣
∃α ∈ specL : (L− αI)z = 0 and

∃λ ∈ spec(E,A− αBC) ∃i ∈ N :

(A− αBC − λE)iw = 0


is n = N · n, hence there is a bijection between the set
of all eigenvectors of (E ,AL) and the set of eigenvectors
given by (14), which concludes the proof. �

Using Lemma 11 we now get the following result for
indiscernible initial conditions of a homogenous DAE
network.

Theorem 12. Consider a family of identical DAEs (1) of
the form

Eẋ = Ax+Bu

y = Cx

connected via the diffusive coupling (2) by a network with
weighted Laplacian L resulting in the overall system (12),
which we assume to be regular. Suppose furthermore that
B 6= 0, C 6= 0, BC 6= 0 and that (E,A,C) is observable
in the behavioral sense, i.e, rank

[
λE−A
C

]
= n for all λ ∈

C, see e.g. Berger et al. (2017). Then, any regularity-
preserving removal/addition of the edge (i, j) is a possibly-
indiscernible topological change if, and only if, either there
exists an eigenvector z ∈ CN \ {0} of L such that

zi = zj (16a)

or there exists an eigenvector w ∈ Cn \ {0} of (E,A) with

Cw ∈ kerB. (16b)

In both cases any indiscernible initial state takes the form
v = z ⊗ w as in (14).
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Proof. From Theorem 4 (see also Remark 5), the exis-
tence of indiscernible states is equivalent to the existence
of an eigenvalue-eigenvector pair (λ, v) common to (E ,AL)
and (E ,AL). By invoking Lemma 7, we know that exis-
tence of a common eigenvector v of (E ,AL) and (E ,AL)
implies (AL −AL)v = 0. By Lemma 11 the latter can be
rewritten as

(L− L)z ⊗BCw = 0,

where z and w satisfy, for some α ∈ C,

v = z ⊗ w, (17a)

(A− αBC)w = λEw, (17b)

Lz = αz. (17c)

Hence we either have BCw = 0 or (L−L)z = 0. If BCw =
0 then by (17b) we have that w is an eigenvector of (E,A).
Due to the assumption that BC 6= 0 and by observability
of (E,A,C), we have Cw 6= 0. Thus, Cw ∈ kerB.

If instead (L − L)z = 0 then (ei − ej)(ei − ej)>z = 0,
and thus we get zi = zj .

To show the converse claim, assume that either (16a) or
(16b) holds. Then (AL −AL)v = 0 for any v of the form
v = z⊗w and in view of Lemma 7 together with Remark 5
it suffices to show that in both cases we can construct
v = z⊗w in such a way that v is an eigenvector of (E ,AL).
In the first case, let α ∈ C be the corresponding eigenvalue
for the eigenvector z of L and choose any eigenvector w
of (E,A − αBC). Then (15) shows that v = z ⊗ w is
an eigenvector of (E ,AL). In the second case we have
BCw = 0, hence w is also an eigenvector of (E,A−αBC)
for any α. Hence we may choose any eigenvector z of L
and (15) again shows that v = z ⊗ w is an eigenvector of
(E ,AL). �

We note following aspects of the conditions obtained in
Theorem 12.

1. First note that the two conditions in (16) have a very
distinct feature which is as follows. The condition zi = zj
only depends on the Laplacian of network graph. On the
other hand existence of eigenvector w of the pair (E,A)
for which Cw ∈ kerB is solely a property of the individual
subsystems. Thus, Theorem 12 offers two independent
indiscernibility conditions – one on the network and the
other one on each subsystem.

2. The fact, that existence of an eigenvector w of the
pair (E,A) for which Cw ∈ kerB leads to indiscernibility,
is quite intuitive because of the following reason. If we
set the initial conditions of the i-th and j-th subsystem
to be w, then the diffusive coupling between i-th and j-th
node will be annihilated by the matrix B. Thus it will
not have any effect on the overall dynamics and hence
addition/removal of edge (i, j) will be unnoticed.

3. If we assume that the matrix B is full column
rank then the condition for indiscernibility (16) depends
only on the Laplacian eigenvector z which must satisfy
zi = zj . The Laplacian matrix L always has at least one
eigenvalue which is zero with corresponding eigenvector

z = (1, 1, . . . , 1)>. The condition zi = zj is always satis-
fied for this eigenvector. As a consequence, any topological
change of a homogeneous network is necessarily possibly-
indiscernible. This special eigenvector corresponds to the
situation where all subsystems start with the same initial
value; as a consequence, the diffusive coupling is zero and
a topological variation has no effect on the dynamics.

4. In order to have diffusive coupling, it is necessary
to assume B 6= 0, C 6= 0 and BC 6= 0. Moreover, the
observability assumption on (E,A,C) is also required, as
otherwise it is possible to set the initial conditions of each
subsystem in its unobservable subspace. Consequently, the
ensuing dynamics will have no effect on the output of the
individual subsystems and, therefore, will have no effect
on the overall network behavior.

6. Regularity preserving topological changes

Our main results (Theorems 4 and 8) assume regularity
preserving topological changes. Without the regularity as-
sumption, uniqueness of solutions does not hold any more,
so that even Definition 1 becomes meaningless. In general,
it is not a trivial task to decide whether the overall DAE
(4) is regular or not. The following examples show that
it is possible that although all subsystems are regular, the
coupled system loses regularity; and, on the other hand,
the coupled system can be regular although the individual
subsystems are not regular.

Example 13 (Loss of regularity by coupling2).
Consider two DAE systems given by

0 = x1 + u1, 0 = x2 + u2,
y2 = x1, y2 = x2,

which are clearly regular. However, under diffusive cou-
pling with coupling strength w12 = w21 = 1

2 , the overall
system reads as

0 = 1
2x1 + 1

2x2,

0 = 1
2x1 + 1

2x2,

which is not regular.

Example 14 (Regularization by coupling).
Consider the following three DAE systems

0 = x1, 0 = x2, 0 = u3

y1 = x1, y2 = x2, y3 = x3

where the third DAE is not regular (because E3 = 0 = A3).
However, under diffusive coupling with w12 = w21 = 0,
w13 = w31 = R1 > 0, and w23 = w32 = R2 > 0, the
overall DAE reads as

0 = x1

0 = x2

0 = (R1 +R2)x3 −R1x1 −R2x2

2We thank Ferdinand Küsters for providing this nice example.
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which is regular, for any positive choices of R1 and R2.
Another example is the Wheatstone bridge as in Exam-
ple 10 above.

Under the (reasonable) assumption that the nominal
coupled DAE (E ,AL) is regular, one can interpret any
topological change L → L as an introduction of an ad-
ditional feedback term:

AL = AL ± B ((L− L)⊗ Ip)C︸ ︷︷ ︸
:=F

.

Therefore, we can use the following sufficient condition for
regularity:

Lemma 15 ((Bunse-Gerstner et al., 1992, Thm. 11)).
Consider a regular matrix pair (E,A) ∈ Rn×n × Rn×n
and B ∈ Rn×p. If

rankE = rank[E,B],

then (E,A+BF ) is regular for all feedback matrices F ∈
Rp×n.

Therefore, we arrive immediately at the following suffi-
cient condition for regularity preservation:

Corollary 16. Consider a regular coupled DAE (4). If
rank E = rank[E ,B] then any topological change L → L is
regularity preserving.

Due to the block structure of E and B, the condi-
tion rank E = rank[E ,B] is equivalent to rankEi =
rank[Ei, Bi] for all i = 1, 2, . . . , N . In fact, by consid-
ering a removal/addition/change of a single edge (i, j) the
regularity-preservation condition reduces in view of (10)
to the two sufficient conditions

rankEi = rank[Ei, Bi] and rankEj = rank[Ej , Bj ].

In other words, any topological change involving only
edges between nodes which satisfy the rank condition
rankEi = rank[Ei, Bi] preserves regularity of the corre-
sponding DAE.

7. Conclusions

Understanding when a topological variation cannot be
detected is fundamental for monitoring, and eventually
controlling, complex networks. In this paper, we have
studied this problem for a class of linear DAE networks,
using tools from control theory. The results, which ac-
count for multivariable and heterogenous dynamics, show
that the problem can be fully characterized in terms of
generalized eigenspaces. Moreover, under rather mild con-
ditions, the existence of indiscernible topological changes
can be assessed by only looking at the properties of the
nominal network configuration.

Our results represent only a first step towards the devel-
opment of algorithms for detecting and isolating network

topological changes. Yet, the results provide many quanti-
tive insights into the problem. For example, they indicate
that under homogeneity and obervability assumptions, the
dynamics at the nodes do not play any role in determining
the set of indiscernible states. In this case, assessing dis-
cernibility is not more difficult than for a simple integrator
network Battistelli and Tesi (2015).

We envision two main directions for future research,
both of major practical value. First, understanding how
the present results can be extended to the case where only
a subset of nodes is available for measurements. Second,
extending the analysis so as to incorporate a notion of “de-
gree” of discernibility, as done in Baglietto et al. (2014).
In fact, it is natural to expect that states close (in terms
of Euclidean distance) to the indiscernibility set are in
practice as much critical as indiscernible states. A notion
of “degree” of discernibility would then help us to iden-
tify regions of the state space where detecting topological
changes is more easy or difficult to obtain.
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Canada.

Rahimian, M. A., Preciado, V. M., 2015. Detection and isolation of
failures in directed networks of lti systems. IEEE Trans. Control
Network Systems 2 (2), 183–192.

Sanandaji, B. M., Vincent, T. L., Wakin, M. B., 2011. Exact topol-
ogy identification of large-scale interconnected dynamical systems
from compressive observations. In: Proc. American Control Conf.
2011. San Francisco, CA, USA, pp. 649–656.

Timme, M., 2007. Revealing network connectivity from response dy-
namics. Physical Review Letters 98, 224101.

Torres, J. A., Dhal, R., Roy, S., 2015. Detecting link failures in
complex network processes using remote monitoring. In: Proc.
American Control Conf. 2015. Chicago, USA.

Vidal, R., Chiuso, A., Sastry, S. S., 2002. Observability and identifi-
ability of jump linear systems. In: Proc. 41st IEEE Conf. Decis.
Control. pp. 3614–3619.

9


