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Stability of switched DAEs

Abstract. Differential algebraic equations (DAEs) are used to model dynamical systems with
constraints given by algebraic equations. In the presence of sudden structural changes (e.g.
switching or faults) this leads to a switched DAE. A special feature of switched DAEs is the
presence of induced jumps or even Dirac impulses in the solution. This chapter studies stability
of switched DAEs taking into account the presence of these jumps and impulses. For a rigorous
mathematical treatment it is first necessary to introduce a suitable solution space - the space of
piecewise-smooth distributions. Within this distributional solution space the notion of stability
encompasses impulse-freeness which is studied first. Afterwards stability under arbitrary and
slow switching is investigated. A generalization to switched DAEs of a classical result con-
cerning stability and commutativity is presented as well as a converse Lyapunov theorem. The
theoretical results are illustrated with intuitive examples.

3.1. Introduction

3.1.1. Systems class: definition and motivation

The main interest in this chapter are systems described by switched differential
algebraic equations (switched DAEs) of the form

Eσ(t)ẋ(t) = Aσ(t)x(t) or short Eσẋ = Aσx (3.1)

where σ : R → {1, 2, . . . , P} denotes the switching signal choosing one of the P ∈ N

modes at each time t ∈ R. Here it is assumed that σ is admissible in the sense that
it is piecewise-constant, right-continuous and has locally only finitely many jumps.
Furthermore, it is assumed that each mode of the switched DAE (3.1) is given by a
regular matrix pair (Ei, Ai), i ∈ {1, 2, . . . , P}, i.e. det(sEi − Ai) is not the zero
polynomial.

The main motivation to study this system class is modeling electrical circuits with
switches or faults [DOM 10, TRE 12a]. Another motivation might be the analysis of
a closed loop composed of a (non-switched) DAE

Eẋ = Ax +Bu

Chapter written by S. TRENN.
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together with a switched feedback controller of the form

u(t) = Fσ(t)x(t) or

u(t) = Fσ(t)x(t) +Gσ(t)ẋ(t)

resulting in (3.1). Finally, (3.1) might be considered as a piecewise-constant approx-
imation of time-varying DAEs E(t)ẋ = A(t)x , however, no theory for this kind of
approximation is available yet.

Here the main focus is on stability of switched DAEs (3.1), in particular the ques-
tion: when is it true that asymptotic stability of Epẋ = Apx for all p ∈ {1, . . . , P}
implies asymptotic stability of Eσẋ = Aσx for all switching signals σ?

This chapter is based on the works of the author (in collaboration with several
colleagues) which began with the conference article [LIB 09] and the extended
journal paper [LIB 12] concerning stability of switched DAEs. Further results also
discussed here appeared in [DOM 10] (impulse detection), [LIB 11] (commutativity
and stability), [TRE 12b, TRE 12c] (converse Lyapunov Theorem) as well as in
the survey article concerning switched DAEs [TRE 12a]. There are only a few
papers by other authors who consider switched DAEs (and their stability), e.g.
[GEE 96a, GEE 96b, MEN 06a, MEN 06b, RAO 10, WUN 08, ZHA 06]; however,
none of these work resolve the dilemma that a switched DAE might exhibit solutions
with jumps and impulses (hence distributional solutions) and at the same time the
equation (3.1) doesn’t make sense for general distributions x. The approach taken
here is based on the piecewise-smooth distributional solution framework as intro-
duced by the author in [TRE 09b, TRE 09a]. For an overview on the different solution
concepts for DAEs see also the recent survey [TRE 13].

3.1.2. Examples

Before making precise the solution concepts for switched DAEs and the stability
definition, consider the following set of two examples.

Example 1a: Example 1b:

(E1, A1) =

([
0 0
0 1

]

,

[
1 −1
0 −1

])

(E2, A2) =

([
0 0
1 1

]

,

[
−1 0
0 −1

])

(E1, A1) =

([
0 0
0 1

]

,

[
1 −1
0 −1

])

(E2, A2) =

([
0 0
0 1

]

,

[
1 0
0 −1

])

The solution of the corresponding non-switched DAEs are identical for both exam-
ples and are illustrated in the middle of Figure 3.1. A typical trajectory (with jumps
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Figure 3.1. Solution behavior of Examples 1: switched for Example 1a (left), non-switched

(middle), switched for Example 1b (right).

indicated by dashed lines) for Example 1a with sufficiently fast switching is shown
in the left of Figure 3.1; clearly, the solution grows unbounded, hence the switched
system is unstable. A different behavior results for Example 1b (shown in the right of
Figure 3.1): although the non-switched behavior is indistinguishable from the one of
Example 1a, the switching now leads to a convergent trajectory (independently of the
switching signal). The key observation here is that the behavior of the switched DAE
cannot be deduced from the non-switched dynamics alone, the induced jumps play an
important role as well. In fact, it is easily seen, that V (x) = x2

1 + x2
2 is a Lyapunov

function for all individual modes in Example 1 in the sense that for all solution of the
non-switched system this function (strictly) decreases along solutions. So in contrast
to switched ODEs (see e.g. [LIB 03]) the existence of a common Lyapunov function
in the usual sense is not sufficient for stability of switched DAEs.

Another phenomena occurring in switched DAEs are impulses (and not only
jumps) in the solutions. That this is not only a theoretical possibility shows the
following Example 2 based on a simple electrical circuit as given in Figure 3.2.

−
+

Lu vL

iL

−
+

Lu vL

iL

Figure 3.2. An electrical circuit with a switch leading to Example 2 which exhibits impulsive

solutions.
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Under the assumption of a constant input value, i.e. u̇ = 0, the two modes of the
electrical circuit can be written as

Example 2:

switch closed: switch open:




1 0 0
0 L 0
0 0 0



 ẋ =





0 0 0
0 0 1
−1 0 1



x,





1 0 0
0 L 0
0 0 0



 ẋ =





0 0 0
0 0 1
0 1 0



x,

where x = [u, iL, vL]
⊤.

Consider now the situation, that the switch is closed at time t = 0 and the initial
current is zero, i.e. iL(0) = 0. The inductivity law L d

dt iL = vL = u now yields that
the current is given by the formula (see also Figure 3.3):

iL(t) =
u

L
t

as long as the switch is closed. In particular, u 6= 0 implies i(t) 6= 0 for all t > 0. If at
time t = ts > 0 the switch is open, then the current iL must jump to zero because the
ideal switch doesn’t allow any current when open. However, the inductivity law of the
ideal inductor remains valid, hence the voltage over the inductor is the derivative of the
current even when the current jumps to zero. There are only two possibility now: Since
the current has a jump no classical derivative exists and there is no solution to this
switched system unless iL(ts) = 0 (and hence u ≡ 0). The other possibility is to allow
for a bigger solution space where the derivative of a jump is well defined: the space
of distributions (a.k.a. generalized functions). Adopting the second viewpoint, the
(unique) solution for vL contains now a Dirac impulse of magnitude −iL(ts−) at t =
ts, because a distributional derivative of a jump yields a Dirac impulse. Although an
ideal Dirac impulse does not occur in reality, one might see a spark when opening the
switch in a realization of the circuit. This spark can be interpreted as the approximate
realization of the Dirac impulse resulting from the mathematical analysis of the circuit
model.

To summarize the observations made on the basis of the above examples: 1) Each
mode evolves within a certain consistency space and switches may lead to inconsistent
initial values and jumps. 2) For stability the jumps play an essential role; a common
Lyapunov function in the classical sense does not suffice to guarantee stability. 3)
Switching can even lead to the presence of Dirac impulses which (interpreted as an
infinite peak) makes the switched system unstable.

The remainder of this chapter is organized as follows. In Section 3.2 some basic
facts about switched DAEs are collected and recalled. In particular, the solution the-
ory for non-switched DAEs is discussed including the definition of the consistency
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t

vL(t)

ts
t

iL(t)

ts

u

δts

Figure 3.3. The mathematical solution of Example 2 where the switch initially is closed and is

then opened at t = ts.

projectors and the flow matrices Adiff as well as the concept of Lyapunov functions for
non-switched DAEs. A brief summary of the classical distribution theory is given and
it is highlighted that the space of distributions as a whole is not suitable for a solution
space of switched DAEs. The space of piecewise-smooth distributions is introduced
as a suitable solution space for switched DAEs. The main focus of this book chap-
ter is on stability results for switched DAE which are presented in Section 3.3. First
impulse-freeness as a necessary condition for stability is investigated. Afterwards a
sufficient condition for asymptotic stability under arbitrary switching as well as for
slow switching is given. A classical result concerning commutativity and stability is
generalized to switched DAEs. Finally, a converse Lyapunov theorem is presented for
switched DAEs.

3.2. Preliminaries

3.2.1. Non-switched DAEs: Solutions and consistency projector

For E,A ∈ R
n×n, n ∈ N, consider the non-switched DAE

Eẋ = Ax (3.2)

with regular matrix pair (E,A), i.e. det(sE − A) is not the zero polynomial. The
following result is classical [WEI 68], see also [GAN 59].

THEOREM.– The matrix pair (E,A) with square matrices E,A is regular if, and only

if, there exist invertible matrices S and T such that

(SET, SAT ) =

([
I 0
0 N

]

,

[
J 0
0 I

])

, (3.3)
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where N is nilpotent.

The decoupling (3.3) is called Weierstrass canonical form when it also assumed
that J and N are in Jordan canonical form. For the further analysis of DAEs (3.2) this
assumption is not needed and is also disadvantageous because aiming for a decoupling
with J in Jordan canonical form calls for complex transformation matrices S and T
even when E and A are real valued. For that reasons it is more convenient to consider
a quasi-Weierstrass form (QWF) (3.3) where there is no restriction on J and N apart
from the nilpotency of N . In [BER 12] it is shown how to obtain the QWF via the so
called Wong-sequences:

V0 := R
n , Vi+1 := A−1(EVi), i = 0, 1, 2, . . . , V∗ :=

⋂

i

Vi,

W0 := {0} , Wi+1 := A−1(EWi), i = 0, 1, 2, . . . , W∗ :=
⋃

i

Wi.

Choosing full (column) rank matrices V and W such that imV = V∗ and imW =
W∗ one obtains the QWF (3.3) via the transformation matrices T = [V W ] and
S = [EV AW ]−1. Taking into account that the “pure” DAEdifferential algebraic
equation!pure

Nẇ = w

for any nilpotent matrix N has only the trivial solution w = 0 the following result is
immediate.

COROLLARY.– Consider the DAE (3.2) with regular matrix pair (E,A) and cor-

responding QWF (3.3) with J ∈ R
n1×n1 obtained by S and T = [V W ], where

V ∈ R
n×n1 . Then any classical (i.e. differentiable) solution x of (3.2) is given by

x(t) = V eJtv0, v0 ∈ R
n1 .

In particular, C(E,A) := imV = V∗ is the consistency space of the DAE (3.2).

EXAMPLE.– Consider a DAE (3.2) given by the regular matrix pair

(E,A) =









0 4 0
1 0 0
0 0 0



 ,





−4π −4 0
−1 4π 0
−1 −4 4







 .

Any solution is given by

x(t) =





0 4
1 0
1 1



 e

[

−1 −4π
π −1

]

t
v0.

For v0 = (0, 1)⊤ the corresponding solution and the consistency space is shown in
Figure 3.4.
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x1

x2

x3

Figure 3.4. Illustration of a consistency space and a solution of a DAE.

Assuming that the DAE (3.2) is “switched on” at some time, say t = 0, the problem
of inconsistent initial values arises. In the QWF-coordinates the DAE (3.2) reads as
the following two independent equations

v̇ = Jv and Nẇ = w

and the corresponding initial values v0 and w0. For the ODE v̇ = Jv any initial value
is consistent, in particular v(0+) = v0. For the pure DAE Nẇ = w however, only
w0 = 0 is consistent and w(0+) = 0 whatever the initial value for w(0−) was. Hence
any inconsistent initial value (v(0−), w(0−))⊤ = (v0, w0) jumps to the consistent
initial value (v(0+), w(0+)) = (v0, 0) or in other words:

(
v(0+)
w(0+)

)

=

[
I 0
0 0

](
v(0−)
w(0−)

)

.

Translating this jump map back to the original coordinates of (3.2) leads to the fol-
lowing definition.

DEFINITION.– Let S, T ∈ R
n×n be invertible such that (3.3) holds. Then

Π(E,A) = T

[
I 0
0 0

]

T−1

with block sizes corresponding to the ones in (3.3) is called the consistency projector
of the DAE (3.2)
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Note that the definition of the consistency projector is independent of the choice
of T and can be easily calculated with the help of the Wong sequences. Furthermore,
the consistency projector is a projector onto V∗ along W∗, in particular

imΠ(E,A) = C(E,A).

The consistency projector now uniquely determines the jump induced by an inconsis-
tent value (for details on a suitable distributional solution concept see Section 3.2.4):

THEOREM.– Consider a DAE (3.2) with regular matrix pair (E,A) and correspond-

ing consistency projector Π(E,A). Assume the DAE is “switched on” at t = 0 and

x(0−) is given. Then there exists a unique solution x of the corresponding inconsis-

tent initial value problem and

x(0+) = Π(E,A)x(0−).

Finally, the so called differential projector [TAN 10] is defined which also plays
an import role in the solution representation of the DAE (3.2).

DEFINITION.– Consider the DAE (3.2) with regular matrix pair (E,A) and choose

(e.g. by using the Wong sequences) invertible matrices S, T such that (3.3) holds. The

differential projector is defined as

Πdiff
(E,A) := T

[
I 0
0 0

]

S,

where the block sizes correspond to the block sizes in the QWF (3.3). Furthermore,

define the flow matrix corresponding to (3.2) by

Adiff := Πdiff
(E,A)A = T

[
J 0
0 0

]

T−1.

The relevance of the flow matrix for (3.2) is as follows [TAN 10]:

THEOREM.– Consider the DAE (3.2) with regular matrix pair and corresponding

matrix Adiff and consistency space C(E,A). Then the following equivalence holds:

x solves (3.2) ⇔ x solves ẋ = Adiffx ∧ x(0) ∈ C(E,A)

In particular, if the DAE (3.2) is “switched on” at t = 0 and x(0−) = x0 ∈ R
n is

arbitrary, then the unique solution x on (0,∞) is given by:

x(t) = eA
difftΠ(E,A)x0. (3.4)

Note that the differential projector (and not only Adiff) plays some role in the
explicit solution formula for the inhomogeneous DAE Eẋ = Ax+ f , see [TRE 12a].
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3.2.2. Lyapunov functions for non-switched DAEs

DEFINITION.– Consider a DAE (3.2) with regular matrix pair (E,A) and corre-

sponding consistency space C(E,A). Assume that there exist matrices P = P⊤ > 0

(i.e. positive definite) and Q = Q⊤ > 0 on C(E,A) which solve the generalize Lya-
punov equation

A⊤PE + E⊤PA = −Q. (3.5)

Then V : Rn → R≥0 : x 7→ (Ex)⊤PEx is called Lyapunov function for (3.2).

Note that any Lyapunov function V is monotonically decreasing along (nonzero)
solutions of (3.2):

d
dtV

(
x(t)

)
=

(
Ex(t)

)⊤
PEẋ(t) +

(
Eẋ(t)

)⊤
PEx(t)

= x(t)⊤E⊤PAx(t) + x(t)⊤A⊤PEx(t)

= −x(t)⊤Qx(t) < 0.

For a more general definition of a Lyapunov function for (also nonlinear) DAEs, the
reader is referred to [LIB 12].

For ODEs it is well known that asymptotic stability is equivalent with the existence
of a Lyapunov function; a similar statement also holds for DAEs [OWE 85].

THEOREM.– The DAE (3.2) is asymptotically stable if, and only if, there exists a

Lyapunov function for (3.2).

3.2.3. Classical distribution theory

Example 2 from the Introduction showed that switched DAEs of the form (3.1) can
lead to distributional solutions. Therefore, it is necessary to recapitulate some basic
facts concerning distributions as formally introduced by Schwartz [SCH 51].

The space of distributions D is defined as the set of all linear and continuous oper-
ators D : C∞

0 → R, where C∞
0 denotes the set of smooth functions ϕ : R → R

with bounded support (i.e. ϕ(t) = 0 for all sufficiently large |t|) equipped with a
suitable topology. The distributional derivate of a distribution D ∈ D is given by
D′(ϕ) = D(ϕ′). Functions 1 can be imbedded into the space of distributions via the
injective homomorphism f 7→ fD given by:

fD : C∞
0 → R, ϕ 7→

∫

R

f(t)ϕ(t) ds t.

1. to be precise: locally integrable functions which are identified with each other if they only differ on
a set of measure zero
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If f : R → R is a differentiable function then the distributional derivative coincides
with the classical derivative, i.e.

(f ′)D = (fD)
′.

The famous Dirac impulse (a.k.a. Dirac Delta, Delta function) at t ∈ R is given by

δt(ϕ) = ϕ(t), δ := δ0.

It is easily seen that the Dirac impulse is the (distributional) derivative of the Heaviside
step function and, in general, any (distributional) derivative of a jump will lead to a
Dirac impulse. Distributions can be multiplied with smooth functions via

(αD)(ϕ) := D(αϕ) for D ∈ D, ϕ ∈ C∞
0 , α ∈ C∞.

This multiplication corresponds to the pointwise multiplication of functions.

When considering distributional solutions of the switched DAE (3.1) one has to
consider x ∈ D

n and it is necessary to define the products Eσẋ as well as Aσx.
However, this is not possible in general because t 7→ Eσ(t) and t 7→ Aσ(t) are not
smooth functions of t. One possible solution to this problem could be the following
observation:

Eσẋ = Aσx
i ∈ Z : σ

∣
∣
[ti,ti+1) ≡ pi

}

⇔ ∀i ∈ Z : (Epi
ẋ)[ti,ti+1) = (Api

x)[ti,ti+1)

where DI ∈ D denotes a restriction of the distribution D ∈ D to the interval I ⊆ R

which generalizes the restriction of functions fI given by

fI(t) :=

{

f(t), t ∈ I,

0, t /∈ I.

Hence one arrives at a new question: How to define a restriction of distributions to
intervals? The following example shows (for details see [TRE 09a, Thm. 2.2.2]) that
this definition is in general not possible!

EXAMPLE.– Consider the following (well defined!) distribution (see also Figure 3.5):

D :=
∑

i∈N

di δdi
, di :=

(−1)i

i+ 1
.

A restriction of D to the interval (0,∞) should give:

D(0,∞) =
∑

k∈N

d2k δd2k
.
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Choose any ϕ ∈ C∞
0 with ϕ[0,1] ≡ 1, then

D(0,∞)(ϕ) =
∑

k∈N

d2k =
∑

k∈N

1

2k + 1
= ∞,

hence D(0,∞) is not a well defined distribution.

0 1

- 12

1
3

- 14

ϕ

Figure 3.5. Illustration of a “bad” distribution (red arrows) for which a restriction to the

interval (0,∞) is not possible, because D(0,∞)(ϕ) is not well defined.

Hence one arrives at the following dilemma: Switched DAEs have distributional
solutions so it is necessary to read (3.1) as an equation of distributions which in turn
makes it necessary to define the product of a piecewise-constant function with a distri-
bution or, equivalently, define a distributional restriction. But a distributional restric-
tion cannot be defined in general. Another problem not mentioned so far is that for
distributions it is not possible to speak of an initial value because distributions are not
functions of time, e.g. D(0) doesn’t makes sense for general distributions D ∈ D.

The underlying problem for this dilemma is the fact that the space of distribu-
tions is just too big; it contains distributions which are troublesome and lead to the
above mentioned difficulties. For example there exist continuous functions which are
nowhere differentiable (e.g. the Weierstrass function), but its distributional derivatives
exist and it is hard to handle this kind of distributions. However, these “pathological”
distributions are not really of interest when studying switched DAEs (3.1); the only
important thing is that Dirac impulses (and its derivatives) should be handled. This
leads to the definition of a suitable smaller space of distribution as defined in the next
subsection.

3.2.4. Piecewise-smooth distributions and solvability of (3.1)

The following definition first appears in [TRE 08] (with more details in
[TRE 09a]). For an overview on other approaches concerning distributional solution
see the recent survey article [TRE 13].
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DEFINITION.– The space of piecewise-smooth distributions is defined as (see also

Figure 3.6)

DpwC∞ :=

{

fD +
∑

t∈T

Dt

∣
∣
∣
∣
∣

f ∈ C∞
pw, T ⊆ R locally finite,

∀t ∈ T : Dt =
∑nt

i=0 a
t
iδ

(i)
t

}

,

where C∞
pw denotes the space of piecewise-smooth functions, i.e. f ∈ C∞

pw if, and only

if, there exists smooth functions fi ∈ C∞, i ∈ Z and a strictly ordered unbounded set

{ ti ∈ R | i ∈ Z } such that f =
∑

i∈Z
(fi)[ti,ti+1).

fD

ti−1

Dti−1

ti

Dti

ti+1

Dti+1

Figure 3.6. Illustration of a piecewise-smooth distribution.

Piecewise-smooth distributions have, among others, the following properties
which are relevant here:

1. Closed under differentiation: D ∈ DpwC∞ ⇒ D′ ∈ DpwC∞ .

2. Restriction to any interval I ⊆ R well defined:

DI := (fI)D +
∑

t∈T∩I

Dt, where D = fD +
∑

t∈T

Dt.

3. Multiplication with piecewise-smooth functions well-defined 2:

αD =
∑

i∈Z

αiD[ti,ti+1), where α =
∑

i∈Z

(αi)[ti,ti+1).

4. Left and right evaluation possible:

D(t+) := f(t+), D(t−) := f(t−), where D = fD +
∑

t∈T

Dt.

2. This multiplication is in fact a special case of the Fuchssteiner multiplication [FUC 68, FUC 84]
defined for piecewise-smooth distributions, for details see [TRE 09a, Sec. 2.4]
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5. Impulse evaluation possible:

D[t] :=

{

Dt, if t ∈ T

0, otherwise,
where D = fD +

∑

t∈T

Dt.

With these properties it is now possible to speak of distributional solutions of the
switched DAE (3.1):

x solves (3.1) :⇔ x ∈ (DpwC∞)n and (3.1) holds in DpwC∞

and the following important result holds [TRE 12a, Cor. 6.5.2].

THEOREM.– Consider the switched DAE (3.1) with regular matrix pairs (Ep, Ap),
p ∈ {1, 2, . . . , P}. Then for all admissible switching signals σ there exists a solu-

tion x ∈ (DpwC∞)n and x is uniquely determined on [0,∞) by the value x(0−). In

particular, all jumps and impulses induced by the switches are unique.

3.3. Stability results

This section starts with a definition of asymptotic stability of switched DAEs (3.1)
which takes into account that solutions are now distributions.

DEFINITION.– The switched DAE (3.1) is called asymptotically stable if, and only if,

for all switching signals σ and all solutions x of (3.2) it holds that x is impulse free

(i.e. x[t] = 0 for all t ∈ R) and x(t±) → 0 for t → ∞

Note that impulse-freeness does not exclude the presence of jumps. The prop-
erty of impulse-freeness and convergence to zero can be handled independently and a
characterization of impulse-freeness is presented first [TRE 09a].

THEOREM.– Consider a switched DAE (3.1) with regular matrix pairs (Ep, Ap),
p ∈ {1, 2, . . . , P}, and corresponding consistency projector Πp. Then all solutions

x ∈ (DpwC∞)n of (3.1) are impulse free for all admissible switching signals σ if, and

only if, the following impulse-freeness condition holds

∀p, q ∈ {1, 2, . . . , P} : Eq(I −Πq)Πp = 0 (3.6)

EXAMPLE.– Consider Example 2 from the Introduction again. With the help of the
Wong-sequences the matrices Vc, Wc corresponding to the closed switch and Vo, Wo

corresponding to the open switch can be calculated easily:

Vc =





0 1
1 0
0 1



 , Wc =





0
0
1



 and Vo =





1
0
0



 , Wo =





0 0
0 1
1 0



.
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Hence the corresponding consistency projectors are

Πc =





1 0 0
0 1 0
1 0 0



 and Πo =





1 0 0
0 0 0
0 0 0



.

Since

Eo(I −Πo)Πc =





0 0 0
0 L 0
0 0 0



 6= 0

the impulse-freeness condition (3.6) is not fulfilled and hence Dirac impulses can
occur, which is in agreement of the ad-hoc analysis of Example 2 in the Introduction.

3.3.1. Stability under arbitrary switching

In this subsection the question shall be answered when a switched DAE (3.1) is
asymptotically stable for all admissible switching signals. One necessary condition
is by definition impulse-freeness of all solutions, hence (3.6) has to hold; further-
more, each individual mode Epẋ = Apx has to be asymptotically stable (which is
one instance of the switched DAE (3.1) where the switching signal is constant), hence
according to Theorem 3.2.2 there exist Lyapunov-functions Vp, p ∈ {1, 2, . . . , P} for
each mode of the switched DAE. For switched ODEs a sufficient condition for stabil-
ity of the switched system would be V1 = V2 = . . . VP, however Example 1a showed
that this is not the case for switched DAEs anymore because the jumps have to be
incorporated as well. This leads to the following result [LIB 09].

THEOREM.– Consider a switched DAE (3.1) with regular matrix pairs (Ep, Ap),
p ∈ {1, 2, . . . , P}, and corresponding consistency projectors Πp and consistency

spaces CEp,Ap
= imΠp. Assume that the impulse-freeness condition (3.6) holds and

that each mode has a Lyapunov function Vp according to Theorem 3.2.2. Then the

following Lyapunov-jump condition

∀p, q = 1, . . . , P ∀x ∈ C(Ep,Ap) : Vq(Πqx) ≤ Vp(x) (3.7)

ensures asymptotic stability of the switched DAE (3.1) for all admissible switching

signals.

Note that the Lyapunov-jump condition implies that Vp and Vq must coincide on
the intersection C(Ep,Ap) ∩ C(Eq,Aq) because for all x in that intersection it holds that
Πqx = x = Πpx and hence:

Vq(x) = Vq(Πqx) ≤ Vp(x) = Vp(Πpx) ≤ Vq(x).

In particular, for switched ODEs the condition (3.7) simplifies to the well known
common-Lyapunov-function condition, because then all consistency space are R

n.



Stability of switched DAEs 25

Furthermore, if (3.7) holds it is possible to define a “common” Lyapunov function for
(3.1) as follow:

V (x) :=

{

Vp(x), x ∈ C(Ep,Ap),

arbitrary, otherwise

So Theorem 3.3.1 can also be read as: The switched DAE is asymptotically stable
if there exists a common Lyapunov function V such that (3.7) holds. An interesting
question is whether the converse also holds; this question is answered positively in
Subsection 3.3.3 under certain commutativity assumptions and in Subsection 3.3.4 for
the case of exponential stability.

EXAMPLE.– Consider again the Examples 1a and 1b from the Introduction. The
corresponding consistency projectors are given by

Example 1a Example 1b

Π1 =

[
0 1
0 1

]

, Π2 =

[
0 0
1 1

]

, Π1 =

[
0 1
0 1

]

, Π2 =

[
0 0
0 1

]

.

It is easily seen that the impulse-freeness condition (3.6) holds for both examples.
Consider now two Lyapunov functions V1 and V2 for Example 1a, then the Lyapunov-
jump condition (3.7) would imply for all ξ ∈ R

V1((ξ, ξ)
⊤) ≥ V2(Π2(ξ, ξ)

⊤) = V2((0, 2ξ)
⊤) ≥ V1(Π1(0, 2ξ)

⊤) = V1((2ξ, 2ξ)
⊤).

Hence for all x ∈ C(E1,A1) it follows that V1(x) ≤ V1(2x) and V1 cannot be a Lya-
punov function for E1ẋ = A1x. Hence in agreement of the observed instability of
Example 1a, it is not possible to find Lyapunov functions V1 and V2 fulfilling (3.7).
On the other hand consider Example 1b where one can choose P1 = I = P2 and
Q1 =

[
0 0
0 −2

]
= Q2 as solutions of the corresponding generalized Lyapunov equa-

tion (3.5) leading to the Lyapunov function V1(x) = V2(x) = x2
2. Now the Lyapunov-

jump condition (3.7) is satisfied with equality:

x ∈ C(E1,A1) ⇔ x =

(
ξ
ξ

)

, hence V2(Π2x) = V2((0, ξ)
⊤) = ξ2 = V1(x),

x ∈ C(E2,A2) ⇔ x =

(
0
ξ

)

, hence V1(Π1x) = V1((ξ, ξ)
⊤) = ξ2 = V2(x).

The above results also hold for nonlinear switched DAEs in quasi-linear form:

Eσ(x)ẋ = fσ(x),

the impulse freeness condition (3.6) is then replaced by the condition:

∀p, q∈{1, . . . , P} ∀x−
0 ∈Cp ∃ unique x+

0 ∈Cq : x+
0 − x−

0 ∈kerEq(x
+
0 )

where Cp is the consistency manifold of Ep(x)ẋ = fp(x); for details see [LIB 12].
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3.3.2. Slow switching

For switched ODEs it is well known that fast switching might be the reason for an
unstable behavior and that under a “slow switching” assumption asymptotic stability
holds. Consider the set of switching signals with dwell time τd > 0:

Στd :=

{

σ : R → {1, . . . , N}
∣
∣
∣
∣
∣

∀ switching times ti ∈ R, i ∈ Z :

ti+1 − ti ≥ τd

}

.

The following result [LIB 09] shows now that for any impulse-free switched DAE
with asymptotically stable modes a dwell time exists such that the switched DAE is
asymptotically stable.

THEOREM.– Consider the switched DAE (3.1) for which (3.6) is satisfied and each

mode is asymptotically stable. Then there exists a dwell time τd > 0 such that (3.1) is

asymptotically stable for all σ ∈ Στd .

Note that Examples 1a and 1b both satisfy (3.6) and all modes are asymptotically
stable, hence both examples are asymptotically stable for slow switching; in fact a
dwell time τd > ln

√
2 will make the switched DAE of Example 1a asymptotically

stable and, as Example 1b is asymptotically stable for any switching signal, any dwell
time τd > 0 will make Example 1b asymptotically stable.

The above result also holds when considering an averaged dwell time condition
[HES 99], for details see[LIB 12].

3.3.3. Commutativity and stability

It is well known [NAR 94] that for switched ODEs the following result holds:

THEOREM.– Consider the switched ODE

ẋ = Aσx (3.8)

with Ap Hurwitz, p ∈ {1, 2, . . . , P} and commuting Ap, i.e.

[Ap, Aq] := ApAq −AqAp = 0. ∀p, q ∈ {1, 2, . . . , P} (3.9)

Then (3.8) is asymptotically stable for all switching signals σ.

The proof idea is in fact rather simple: Consider the switching times t0 < t1 <
. . . < tk < t of a switching signal σ and let pi := σ(ti+), then

x(t) = eApk
(t−tk)eApk−1

(tk−tk−1) · · · eAp1
(t2−t1)eAp0

(t1−t0)x0

(3.9)
= eA1∆t1eA2∆t2 · · · eAP∆tPx0
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and ∆tp → ∞ for at least one p and t → ∞.

The obvious question is now: How to generalize this result to switched DAEs
(3.1)? A straightforward generalization is however not obvious because it is not clear
which matrices have to commute and how the jumps have to be incorporated. In
fact, Example 1a is not asymptotically stable for fast switching but the A-matrices
do commute! Hence simply assuming that the A-matrices commute does not work
for switched DAEs. It turns out [LIB 11] that in fact the matrices Adiff as defined in
Definition 3.2.1 are the ones of interest.

THEOREM.– Consider the switched DAE (3.1) with regular matrix pairs satisfying

(3.6) and with corresponding matrices Adiff
p , p ∈ {1, 2, . . . , P} as in Definition 3.2.1.

Assume the impulse-freeness condition (3.6) is satisfied and each mode of the switched

DAE is asymptotically stable. If all Adiff-matrices commute, i.e.

[Adiff
p , Adiff

q ] = 0 ∀p, q ∈ {1, 2, . . . , P} (3.10)

then (3.1) is asymptotically stable for all admissible switching signals. Furthermore, if

(3.10) holds then there exists a common quadratic Lyapunov function satisfying (3.7).

It is interesting to note that there is no explicit conditions on the jumps via the
consistency projectors. However, it can be shown that (3.10) implies

[Πp, A
diff
q ] = 0 ∧ [Πp,Πq] = 0 ∀p, q ∈ {1, 2, . . . , P}.

Invoking (3.4) it is now easy to see that for given switching times t0 < t1 < . . . <
tk < t and pi := σ(ti+), the solution of (3.1) is given by

x(t) = eA
diff
pk

(t−tk)Πpk
e
Adiff

pk−1
(tk−tk−1)Πpk−1

· · · eAdiff
p1

(t2−t1)Πp1
eA

diff
p0

(t1−t0)Πp0
x0

and invoking the above commutativity properties allows for the following rearrange-
ment

x(t) = eA
diff
1 ∆t1Π1 e

Adiff
2 ∆t2Π2 · · · eA

diff
P

∆tPΠPx0

where ∆tp → ∞ for at least one p and t → ∞.

The construction of the common quadratic Lyapunov function is as follows (for
details see [LIB 11]): First choose a coordinate transformation T which simultan-
iously block-diagonalizes all Adiff-matrices, i.e. for all p ∈ {1, 2, . . . , P}

T−1Adiff
p T = diag(Ap1, Ap2, . . . , Apl) for some l ∈ N,

where each Apk is either the zero matrix or Hurwitz. This is possible due to the
commutativity condition (3.10). Then, again due to (3.10) it is possible to find for
each k a symmetric positive definite matrix Pk and a scalar αk > 0 such that:

A⊤
pkPk + PkApk < −αkPk ∀p ∈ Pk := { p ∈ {1, 2, . . . , P} | Apk 6= 0 } .
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If Pk = ∅ for some k ∈ {1, 2, . . . , l} then set Pk = I . A common quadratic Lyapunov
function is now given by

V (x) = x⊤T−T diag(P1, P2, . . . , Pl)T
−1x.

3.3.4. Lyapunov exponent and converse Lyapunov theorem

The goal of this chapter is to study the maximal exponential growth rate of the
switched DAE (3.1) and then, using a characterization of a finite growth rate, estab-
lish the existence of a common Lyapunov function when (3.1) is (uniformly) exponen-
tially stable for all admissible switching functions. For this consider again the explicit
solution formula (under the assumption that (3.6) holds) already used in the previous
subsection:

x(t)=eA
diff
pk

(t-tk)Πpk
e
Adiff

pk−1
(tk-tk−1)Πpk−1

· · · eAdiff
p1

(t2-t1)Πp1
eA

diff
p0

(t1-t0)Πp0
︸ ︷︷ ︸

=: Φσ(t, t0)

x(t0−),

where Φσ(t, t0) is the evolution matrix of (3.1) from t0 to t corresponding to the
switching signal σ. When considering all admissible switching signals σ then the set
of evolution matrices only depend on the time difference t − t0 and this leads to the
following definition.

DEFINITION.– Consider the switched DAE (3.1) with regular matrix pairs and let

M :=
{
(Adiff

p ,Πp)
∣
∣ corresponding to (Ep, Ap), p = 1, . . . , P

}

be the set of Adiff-matrices and consistency projectors Πp corresponding to the matrix

pairs (Ep, Ap), p ∈ {1, 2, . . . , P}. The set of all evolution matrices with time span

t > 0 is then

St :=







k∏

i=0

eA
diff
i τiΠi

∣
∣
∣
∣
∣
∣
∣
∣

(Adiff
i ,Πi) ∈ M,

k∑

i=0

τi = ∆t,

τi > 0, i = 1, 2, . . . , k − 1, τk ≥ 0







.

Furthermore, denote the set of all evolution operators as S :=
⋃

t>0 St.

An interesting property of the sets St is their semigroup property [TRE 12c]:

Ss+t = SsSt := { ΦsΦt | Φs ∈ Ss,Φt ∈ St } .

Note that this semigroup property relies on the fact that

[Adiff,Π] = 0 ∀(Adiff,Π) ∈ M.
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The exponential growth bound for the switched DAE (3.1) is now defined as follows.

DEFINITION.– For t > 0 the exponential growth bound of (3.1) is

λt(St) := sup
Φt∈St

ln ‖Φt‖
t

∈ R ∪ {−∞,∞}.

This definition implies that for all solutions x of Eσẋ = Aσx satisfying (3.6) and
all t > 0:

‖x(t)‖ = ‖Φtx(0−)‖ ≤ ‖Φt‖ ‖x(0−)‖ ≤ eλt(St) t‖x(0−)‖.

A major difference to switched ODEs without jumps is the possibility that λt(St) =
±∞! In fact, when all jumps are given by zero consistency projections then λt(St) =
−∞. On the other hand λt(St) = ∞ is also possible as Example 1a from the Intro-
duction shows:

EXAMPLE.– Consider again Example 1a. For a high switching frequency the dynam-
ics are dominated by the jumps, i.e.

Φσ(t, 0) ≈ (Π1Π2)
k =

[
1 1
1 1

]k

= 2k−1

[
1 1
1 1

]

where k ∈ N is half the number of switches of σ in the interval [0, t]. Therefore,
Φσ(t, 0) is not bounded uniformly in σ and λt(St) = ∞. The effect of increasing the
switching frequency is illustrated in Figure 3.7.

t

‖x‖

t

‖x‖

Figure 3.7. The norm of a typical solution x of the switched DAE of Example 1a where the

switching frequency is higher in the right picture than in the left picture. Apparently, the

growth rate is much higher for faster switching.

There is however a simple characterization for boundedness of St [TRE 12c]:
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THEOREM.– Consider the switched DAE (3.1) with the corresponding sets St, t > 0,

of evolution matrices and denote with MΠ :=
{
Π

∣
∣ (Adiff,Π) ∈ M for some Adiff

}

the set of all consistency projectors. Then

St is bounded ⇔ MΠ is product bounded,

where a set is called product bounded if, and only if, all finite products are uniformly

bounded.

If the set of evolution operatorsSt is bounded it makes sense [TRE 12c] to consider
the long-term growth bound or the (upper) Lyapunov exponent of S.

THEOREM.– Consider the switched DAE (3.1) with regular matrix pairs and associ-

ated evolution operator sets St and S. Assume that the set of consistency projectors

is product bounded and contains at least one nonzero projector. Then the (upper)
Lyapunov exponent

λ(S) := lim
t→∞

λt(St) = lim
t→∞

sup
Φt∈St

ln ‖Φt‖
t

of (3.1) is well defined and finite.

The above results does not rely on the assumption that the switched DAE (3.1)
fulfills the impulse-freeness condition (3.6) because it is only concerned with the set
St defined as products of exponentials and consistency projectors. In fact, even when
impulses occur in the solutions of (3.1) it still holds that x(t+) = Φtx(0−) for some
Φt ∈ St.

For formulating a converse Lyapunov theorem the following notion of exponential
stability is needed.

DEFINITION.– Consider the switched DAE (3.1) with regular matrix pairs satisfying

(3.6). Then (3.1) is called uniformly exponentially stable if, and only if, there exists

M ≥ 1 and µ > 0 such that for all admissible switching signals and all solutions it

holds that

‖x(t+)‖ ≤ Me−µt‖x(0−)‖, ∀t ≥ 0.

The following converse Lyapunov theorem was first reported in [TRE 12b] and the
details are presented in [TRE 12c].

THEOREM.– Consider the switched DAE (3.1) with regular matrix pairs satisfying

(3.6). If (3.1) is uniformly exponentially stable then there exists a common Lyapunov

function V : Rn → R≥0 for (3.1) in the sense that it decreases exponentially along

solutions and (3.7) holds.
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The basic idea of the proof is as follows: Exponential stability with constants M
and µ implies that the Lyapunov exponent fulfills

λ(S) ≤ −µ < 0.

Choose any ε ∈ (0, µ) and define the Lyapunov function candidate

V (x) := sup
t>0

sup
Φt∈St

e−(λ(S)+ε)t‖Φtx‖.

It is then easily seen that

V (Φtx) ≤ e(λ(S)+ε)tV (x),

in particular,
V (Πpx) ≤ V (x)

for all consistency projectors Πp, p ∈ {1, 2, . . . , P}. Hence V is indeed a common
Lyapunov function for (3.1).

Note that the above constructed Lyapunov function V is in general not smooth.
The smoothing techniques from [LIN 96] or [CAI 07] might not work here because
they might result in a Lyapunov function candidate violating (3.7).

3.4. Conclusion

This chapter has studied stability related questions for switched DAEs. It turns
out that most classical stability results for switched ODEs can be generalized for
switched DAEs; however, these generalizations are not always straightforward due
the possible presence of jumps and impulses in the solutions of switched DAEs. The
analysis presented here always assumed regularity of matrix pairs defining the modes
of the switched DAE; this assumption guarantees existence and uniqueness of solu-
tions, it would be interesting to investigate switched DAEs without this assumption.
Another avenue of further research concerns the commutativity results which might
be generalized to certain Lie-algebraic conditions. Another question is concerned how
exactly switched DAEs fit into the general hybrid-systems framework as proposed in
[GOE 09]; one apparent incompatibility is the possible presence of Dirac impulses in
solutions of switched DAEs.
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impulse evaluation, 23
left and right evaluation, 22
multiplication, 22
piecewise-smooth-, 22
restrictions, 20, 22

dwell time, 26
evaluation

impulse-, 23
left and right-, 22

evolution matrix, 28
exponential growth bound, 29

exponential stability, 30
flow matrix, 18

commuting-, 27
Fuchssteiner multiplication, 22
generalize Lyapunov equation, 19
growth bound, 29

infinite, Example, 29
impulse, see Dirac impulse
impulse-freeness condition, 23

nonlinear-, 25
inconsistent initial values, 14, 17
instability

due to impulses, 14, 23
Example, 12

jumps, 14
leading to instability, 12

Lyapunov equation (generalized), 19
Lyapunov exponent, 30
Lyapunov function, 19

common, 13
common quadratic-, 27
for switched DAEs, 25
non-smooth, 31

nilpotent matrix, 16
non-switched DAEs, 15
nonlinear switched DAEs, 25
piecewise-smooth distributions, 22
product bounded, 30
projector

consistency-, 17
differential-, 18

pure DAE, 16
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quasi-Weierstrass form, 16
QWF, see quasi-Weierstrass form
regular matrix pair, 11
restrictions of distributions, 20, 22
semigroup property, 28
stability

arbitrary switching, 24
asymptotic-, 19, 23
commutativity, 26
impulse freeness, 23
slow switching, 26

switched DAEs, 11

distributional solution, 23
evolution matrix, 28
nonlinear, 25
quasi-linear form, 25
stability, 23

switching
arbitrary, 24
dwell time, 26
slow, 26

Weierstrass canoncial form, 16
Wong sequences, 16


