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Abstract In this chapter an electrical circuit with switches is modeled as a switched
differential algebraic equation (switched DAE), i.e. each mode is described by a
DAE of the form Ex′ = Ax+Bu where E is, in general, a singular matrix and u
is the input. The resulting time-variance follows from the action of the switches
present in the circuit, but can also be induced by faults occurring in the circuit. In
general, switches or component faults induce jumps in certain state-variables, and
it is common to define additional jump-maps based on physical arguments. How-
ever, it turns out that the formulation as a switched DAE already implicitly defines
these jumps, no additional jump map must be given. In fact, an easy way to calcu-
late these jumps will be presented in terms of the consistency projectors. It turns
out that general switched DAEs can have not only jumps in the solutions but also
Dirac impulses and/or their derivatives. In order to capture this impulsive behavior
the space of piecewise-smooth distributions is used as an underlying solution space.
With this underlying solution space it is possible to show existence and uniqueness
of solutions of switched DAEs (including the uniqueness of the jumps induced by
the switches). With the help of the consistency projector a condition is formulated
whether a switch (or fault) can induce jumps or even Dirac impulses in the solu-
tions. Furthermore, stability of the switched DAE is studied; again the consistency
projectors play an important role.

1 Introduction

In this chapter an electrical circuit with switches is modeled as a switched differen-
tial algebraic equation (switched DAE, DAEs are also known as descriptor systems
or singular systems):
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Eσ(t)ẋ(t) = Aσ(t)x(t)+Bσ(t)u(t) or short Eσ ẋ = Aσ x+Bσ u, (1)

where σ : R→ {1, . . . ,p} is the switching signal, Ep,Ap ∈ Rn×n, Bp ∈ Rn×m for
p ∈ {1, . . . ,p}, p ∈ N is the number of different subsystems, x : R→ Rn is the
state variable and u : R→ Rm is the input. In other words, the system is modeled
as a time-varying linear differential-algebraic equation whose coefficient matrices
are piecewise-constant. The time-variance follows from the action of the switches
present in the circuit, but can also be induced by faults occurring in the circuit.
Hence the proposed framework can be used to study the behavior of the circuit for
nominal switching as well as in the case of sudden component faults.

For a motivation and an illustration of the notation consider the following exam-
ple.

Example 1.1 (ODE vs. DAE description). Consider the two simple circuits as shown in Fig. 1.

−
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Fig. 1 Two simple electrical circuits.

Standard circuit analysis of these two circuits yields the following two ordinary differential
equations (ODEs)

d
dt iL = 1

L u

and
d
dt iL =− 1

L vC,

d
dt vC = 1

C iL,

i.e. each circuit is modeled as an ODE of the form ẋ = Ax+Bu (possibly with B = 0), where x = iL
or x = (iL,vC)

>.
Now assume that the two circuits from Fig. 1 originate from the analysis of the two modes

of the circuit with a switch as shown in Fig. 2. Obviously, it is not possible to directly model the

Fig. 2 A circuit with a switch
whose two modes can be
described by the two circuits
from Fig. 1.
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overall switched circuit as a switched ODE of the form

ẋ(t) = Aσ(t)x(t)+Bσ(t)u(t),

because the two modes are modeled with different state variables, in particular, the variable vC does
not exist in the first mode’s description at all. Furthermore, it is not clear from the ODE description
alone how vC is initialized after a switch. The underlying problem is that standard circuit analysis
eliminates algebraic constraints (like the Kirchhoff’s law) to obtain an ODE description. However,
in the presence of switches this elimination might be different for the different modes, so that the
resulting ODEs are not compatible anymore. If, on the other hand, the algebraic constraints are
not eliminated then this problem disappears. This approach leads to a DAE description of the form
Eẋ = Ax+Bu for each mode; for the two modes of the switched circuit from Fig. 2 these are given
by, with x = (iL,vL, iC,vC)

>,

Mode 1:


L 0 0 0
0 0 0 C
0 0 0 0
0 0 0 0

 ẋ =


0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0

x+


0
0
-1
0

u

and

Mode 2:


L 0 0 0
0 0 0 C
0 0 0 0
0 0 0 0

 ẋ =


0 1 0 0
0 0 1 0
0 1 0 1
-1 0 1 0

x+


0
0
0
0

u.

Now the behavior of the circuit can directly be modeled as a switched DAE of the form (1). In
addition, if the switch does not change the modes instantaneously but spends some time between
the two contacts then this can easily be modeled with a third mode given by

Mode 3:


L 0 0 0
0 0 0 C
0 0 0 0
0 0 0 0

 ẋ =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 1 0

x+


0
0
0
0

u.

In general, switches or component faults induce jumps in certain state-variables,
and it is common to define additional jump-maps based on physical arguments [9].
However, it turns out that the appropriate formulation as a switched DAE already
implicitly defines these jumps, no additional jump map must be given. In fact, an
easy way to calculate these jumps will be presented in terms of the consistency
projectors.

In order to allow for jumps in the solution, the problem is embedded into a dis-
tributional solution framework. It turns out that general switched DAEs can have
not only jumps in the solutions but also Dirac impulses and/or their derivatives.
Actually, this is in agreement with the observation of a small experiment (see also
the last part of Example 1.1): When connecting a coil via a switch to a constant
voltage source, one can observe a spark when opening the switch, which can be ex-
plained by a voltage peak induced by the rapid drop of the current in the coil. For
ideal elements this peak is in fact the Dirac impulse because it is the (distributional)
derivative of a jump. Unfortunately, it is not possible to just take the classical distri-
bution space as formally introduced by Schwartz in the 50s [31] as a solution space
for switched DAEs. Roughly speaking, the reason is that this space is too large. For
example, it is not possible to define a restriction of a general distribution to some in-
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terval or, equivalently, to multiply a distribution with a piecewise-constant function,
but these operations are needed to formulate the problem as a switched DAEs. To
overcome this problem, the smaller space of piecewise-smooth distributions [34, 33]
is considered as an underlying solution space.

With the right underlying solution space it is possible to study existence and
uniqueness of solutions of switched DAEs. The latter is strongly related to the so
called regularity of the coefficient matrices and it will turn out that regularity of the
matrix pairs is necessary and sufficient for the existence of unique solutions. A re-
markable consequence of this general existence and uniqueness result of solutions of
switched DAEs is the above mentioned property that the jumps induced by switches
(or faults) are already determined uniquely by the switched DAE description.

With the help of the aforementioned consistency projectors it is easy to formulate
conditions whether a switch (or fault) can induce jumps or even Dirac impulses
in the solutions. This has important application for designing, e.g., fault tolerant
systems, because if a component fault can induce Dirac impulses in the solution, this
peak of voltages or currents of the circuit might destroy other components possibly
leading to a cascading total destruction of the circuit.

In the context of control theory, asymptotic stability of a switched DAE is an
important property. It is well known for switched systems (not in DAE form), that
switching between stable subsystems can yield an unstable overall system. This is
not the case when one is able to find a common Lyapunov function. It will be shown
that this result can be generalized to switched DAEs. The consistency projectors
play a prominent role again.

The proposed framework also has limitations. The major drawback is that the
distributional solution framework can not be used in a general nonlinear context. In
particular, state dependent switching is not covered by the presented theory. Since
diodes yield state depending switching and play an important role for power con-
verters, extensions of the presented theory to encompass at least diodes is ongoing
research.

2 Mathematical preliminaries: Distribution theory

Before introducing piecewise-smooth distributions in the second part of this section,
classical distributions as formalized by Schwartz [31] are summarized and important
properties are highlighted. A (real-valued) distribution is a continuous linear map
from the space of test functions C ∞

0 into the real numbers R, where C ∞
0 is the set of

all functions ϕ : R→ R which are smooth (i.e. arbitrarily often differentiable) and
are zero outside some compact set. Continuity of a distribution is defined in terms
of a certain topology on the space of test functions C ∞

0 , however, this topology is
rarely used, instead one works with the following characterization of continuity.

Lemma 2.1. A linear map D : C ∞
0 →R is continuous if, and only if, limn→∞ D(ϕn)=

0 for all sequences (ϕn) ∈ (C ∞
0 )N with the following properties:
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(C1) ∃ compact K ⊆ R ∀n ∈ N ∀t /∈ K : ϕn(t) = 0 and
(C2) ∀i ∈ N : limn→∞ ‖ϕ(i)

n ‖∞ = 0,

where ‖ · ‖∞ denotes the supremum norm of a (bounded) function.

The space of all distributions is denoted by D, i.e.

D := { D : C ∞
0 → R | D is linear and continuous } .

Distributions are also called generalized functions because of the following result,
which shows that the fairly large class of locally integrable functions f : R→ R,
(i.e.

∫
K f < ∞ for any compact K ⊆ R) is a “subspace” of D.

Lemma 2.2. Each locally integrable f : R→R induces a distribution fD ∈D given
by

fD : C ∞
0 → R, ϕ 7→

∫
R

ϕ(t) f (t)dt,

and the correspondence is one-to-one in the following sense:

fD = gD ⇔ f = g almost everywhere.

Distributions induced by locally integrable functions are called regular distribu-
tions.

A very important and useful property of distributions is that all distributions have
a derivative within D.

Lemma 2.3. The distributional derivative of D ∈ D is given by

D′(ϕ) :=−D(ϕ ′), D ∈ D, ϕ ∈ C ∞
0 ,

and is a distribution again. Furthermore, for differentiable f : R→ R it holds that
( f ′)D = ( fD)′.

Finally, distributions can be multiplied with smooth functions as follows:

αD(ϕ) := D(αϕ), D ∈ D, α ∈ C ∞, ϕ ∈ C ∞
0

and again this generalizes the multiplication of functions: (α f )D = α fD. Further-
more, the product rule for derivatives holds, i.e.

(αD)′ = α
′D+αD′.

The most famous distribution which is not induced by a function and which can
be seen as the initiating object to study distributions in the first place is the Dirac
impulse (or Dirac-Delta) given by

δ (ϕ) := ϕ(0), ϕ ∈ C ∞
0 .

In general, the Dirac impulse at t ∈ R is given by δt(ϕ) := ϕ(t). The Dirac impulse
is the (distributional) derivative of the Heaviside step function 1[0,∞), i.e. δ = 1[0,∞)

′.
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The main contribution of Schwartz was the embedding of the Dirac impulse
into a general functional analytical framework (viewing it as a linear operator on
the space of test functions). However, this approach yielded a very large space of
distributions where many distributions don’t have intuitive properties and can’t be
handled easily. For example, in theory there exists a continuous function which
is nowhere differentiable, but in the distributional framework this function has a
derivative and there is no intuition how this distribution looks like. This existence of
“weird” distributions makes it impossible to simply plug in a distribution x into the
switched DAE (1) because it is not clear how the product of the piecewise-constant
coefficient matrices Eσ and Aσ with ẋ or x should be defined. If one rewrites (1)
with the help of restrictions to intervals as

(Epi ẋ)[ti,ti+1) = (Apix+Bpiu)[ti,ti+1), ∀i ∈ Z, (2)

where σ(t) = pi for t ∈ [ti, ti+1) and i∈Z then the following remark shows that there
is no suitable definition for the terms in (1) in a general distributional framework.

Remark 2.4 (Restriction impossible, [34, Rem. 9], see also [33, Thm. 2.2.2]).

0 1

− 1
2

1
3

− 1
4

Fig. 3 A “bad” distribution for which a restriction to the interval (0,∞) is not possible.

Consider the following (well defined!) distribution, see also Fig. 3

D = ∑
i∈N

diδdi , di :=
(−1)i

i+1
, i ∈ N.

The restriction to the interval (0,∞) should then be

D(0,∞) = ∑
k∈N

1
2k+1

δ 1
2k+1

,

but for any test function ϕ ∈ C ∞
0 with ϕ(0) 6= 0 the infinite sum does not converge,

hence the restriction is not well defined.

The problem in the above counter-example is the accumulation of Dirac impulses at
zero. If, however, the Dirac impulses are isolated then it seems very trivial to define
a restriction to intervals. For example the restriction of the Dirac impulse δ to the
closed interval [0,∞) should be the Dirac impulse itself again, while the restriction
to the open interval (0,∞) should be the zero distribution. In order to be able to
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define a restriction for distributions it therefore seems reasonable to consider first
the space of piecewise-regular distributions

Dpwreg :=

{
D = fD+ ∑

t∈T
Dt

∣∣∣∣∣ f is locally integrable, T ⊂ R locally finite,
∀ t ∈ T : Dt ∈ span{δt ,δ

′
t ,δ
′′
t , . . .}

}
,

where span{δt ,δ
′
t ,δ
′′
t , . . .} denotes the set of all finite linear combinations of the

Dirac impulse at t and its derivatives. For a piecewise-regular distribution D = fD+
∑t∈T Dt the restriction to some interval M ⊆ R is simply defined by

DM := ( fM)D+ ∑
t∈T∩M

Dt ,

where fM :R→R is the restriction of f given by fM(t)= f (t) if t ∈M and fM(t)= 0
otherwise. Although this space is suitable for defining a restriction it is still too
big as a solution space for the switched DAE (1) because of the following two
reasons: 1) Dpwreg is not closed under differentiation, i.e. x ∈ Dpwreg does not imply
ẋ ∈ Dpwreg, in particular the restriction of ẋ is still not well defined, and 2) It is not
possible to specify initial values since neither x(t), x(t−) nor x(t+) are well defined
quantities for x ∈ Dpwreg. Cobb [5] solved the second problem by considering the
space of piecewise-continuous distributions, i.e. he considered piecewise-regular
distributions D = fD+∑t∈T Dt with piecewise-continuous f and defined D(t−) :=
f (t−) and D(t+) := f (t+). However, Cobb seemed to have overlooked the first
problem. The following definition of the space of piecewise-smooth distributions
resolves this problem.

Definition 2.5 (Piecewise-smooth distributions, [33, 34]). First, define the space
of piecewise-smooth functions as

C ∞
pw :=

{
α = ∑

i∈Z
1[ti,ti+1)αi

∣∣∣∣∣ { ti ∈ R | i ∈ Z } locally finite,

ti < ti+1, (αi)i∈Z ∈ (C ∞)Z

}
.

Now, the space of piecewise-smooth distributions is defined as

DpwC ∞ :=

{
D = fD+ ∑

t∈T
Dt

∣∣∣∣∣ f ∈ C ∞
pw, T ⊂ R locally finite,

∀ t ∈ T : Dt ∈ span{δt ,δ
′
t ,δ
′′
t , . . .}

}
.

The space of piecewise-smooth distributions combines the idea from Cobb’s piece-
wise-continuous distributions (position of impulses not fixed a-priori) and from the
space of impulsive-smooth distributions (closed under differentiation) introduced in
[17] in the context of optimal control and later used for studying DAEs, see e.g.
[13, 29]. The latter allows Dirac impulses and its derivatives only at zero but it was
already suggested in [14] (without carrying out the details) to allow Dirac impulses
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everywhere (without accumulation points). Another viewpoint of piecewise-smooth
distributions is based on the axiomatic definition of general distributions as lo-
cally finite derivatives of continuous functions (see e.g. [8]) because any piecewise-
smooth distribution can be represented locally as a finite derivative of a piecewise-
smooth function. One important feature of the piecewise-smooth distributions is the
existence of the Fuchssteiner multiplication [10, 11, 33] which defines an associa-
tive (but not commutative) multiplication between two arbitrary piecewise-smooth
distributions and which fulfills the Leibniz’s product rule. Here this multiplication
will not be used in its full generality, because for studying (1) only the product of
a piecewise-smooth function with a piecewise-smooth distribution is needed. The
latter is given by

αD := ∑
i∈Z

αiD[ti,ti+1), α ∈ C ∞
pw, D ∈ DpwC ∞ ,

where α = ∑i∈Z(αi)[ti,ti+1) with αi ∈ C ∞. The matrix vector product in (1) is de-
fined in the classical way, i.e. for M ∈ (C ∞

pw)
m×n and x ∈ (DpwC ∞)n the product

Mx ∈ (DpwC ∞)m is a vector of sums of scalar products1. Note that the Fuchssteiner
multiplication makes the standard formulation (1) of a switched DAE equivalent to
the restriction based formulation (2).

Definition 2.6 (Point-wise evaluation). Let t ∈ R and D = fD+∑τ∈T Dτ then the
left/right evaluation of D at t is given by

D(t−) := f (t−) = lim
ε↘0

f (t− ε), D(t+) := f (t+) = f (t)

and the impulsive part of D at t is

D[t] :=

{
Dt , t ∈ T
0, t /∈ T.

3 Regularity of matrix pairs (E,A)

It is assumed that each mode of the switched DAE (1) is described by a regular
matrix pair (E,A). In this section some properties and consequences of regularity
are collected.

1 This is actually a consequence from the standard identification of x = (x1, . . . ,xn) ∈ (DpwC ∞ )n

with the corresponding functional x : C ∞
0 → Rn given by x(ϕ) = (x1(ϕ), . . . ,xn(ϕ))

>. Some au-
thors [28, 19] identify x = (x1, . . . ,xn) ∈ (DpwC ∞ )n with x : (C ∞

0 )n → R and x(ϕ) := ∑
n
i=1 xi(ϕi).

This different viewpoint of the “vector” x makes it necessary to define the matrix vector product
differently, however these authors do not give a motivation for this different viewpoint.
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Definition 3.1 (Regularity). A matrix pair (E,A) ∈ Rm×n ×Rm×n, n,m ∈ N, is
called regular if, and only if, m = n and the polynomial det(sE−A) is not the zero
polynomial.

In the following theorem characterizations of regularity of (E,A) are given which
highlight the importance of regularity of (E,A) with respect to solvability of the
corresponding DAE Eẋ = Ax + f . Note that here “solution” refers to a classical
solution, i.e. a differentiable function x fulfilling the DAE.

Theorem 3.2 (Characterizations of regularity). The following statements
are equivalent for matrix pairs (E,A) with square matrices E,A ∈ Rn×n:

1. The matrix pair (E,A) is regular.
2. There exist invertible matrices S,T ∈Rn×n such that (E,A) is transformed

into a quasi-Weierstrass form

(SET,SAT ) =
([

I 0
0 N

]
,

[
J 0
0 I

])
, (3)

where J is some matrix and N is a nilpotent matrix.
3. For all smooth f : R→ Rn there exists a solution x of Eẋ = Ax+ f and x

is uniquely given by the value x(t0) for any fixed t0 ∈ R.
4. The only solution x of Eẋ = Ax with x(0) = 0 is the trivial solution.

Proof. 1⇔2 This is a classical result going back to Weierstrass [36], for a proof
see e.g. the textbook [19]. The prefix “quasi” in “quasi-Weierstrass form” is used
because it is not assumed here that J and N are in Jordan canonical form [2].

2⇒3 It suffices to show that v̇ = Jv+ f1 and Nẇ = w+ f2 are solvable for all
smooth f1, f2 and the solutions are uniquely determined by the values v(t0) and
w(t0). Classical ODE theory provides this already for v. Consider the operator
(N d

dt − I) : C ∞→ C ∞, which is invertible with inverse given by

(N d
dt − I)−1 =−

ν−1

∑
i=0

(N d
dt )

i,

where ν ∈ N is the nilpotency index of N, i.e. ν is the minimal value such that
Nν = 0. Hence the unique solution of Nẇ = w+ f2 is given by

w =−
ν

∑
i=0

(N d
dt )

i( f2) =−
ν

∑
i=0

Ni f (i)2 .

3⇒4 Choosing f = 0 in 3 implies 4.
4⇒1 This is shown in [19, Thm. 2.14]. The basic idea is to choose n+1 different

pairs (λi,vi) ∈ R×Rn \ {0}, i = 1, . . . ,n+ 1 such that (Eλi −A)vi = 0 and a
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vanishing nontrivial linear combination ∑
n+1
i=1 αivi = 0 for αi ∈ R not all zero.

Then x(t) = ∑
n+1
i=1 αivieλit is not identically zero but solves Eẋ = Ax, x(0) = 0.

ut

Since the quasi-Weierstrass form (3) will play an important role in the following, a
convenient method to obtain the transformation matrices S,T is presented with the
following theorem which utilizes the Wong sequences (named after [37]).

Theorem 3.3 (Wong sequences and the quasi-Weierstrass form [1, 2]). Let (E,A)
be a regular matrix pair. Define the Wong sequences of subspaces by, for i ∈ N,

V 0 := Rn, V i+1 := A−1(EV i), W 0 := {0}, W i+1 := E−1(AW i),

where M−1S := { x ∈ Rn |Mx ∈S } denotes the pre-image of the set S ⊆ Rn

under the matrix M ∈ Rn×n and MS := { y = Mx | x ∈S } denotes the image of
S under M. These sequences get stationary after finitely many steps; denote the
limits with V ∗ and W ∗. Choose full rank matrices V,W such that imV = V ∗ and
imW = W ∗ then

T := [V,W ], S := [EV,AW ]−1

are invertible and put (E,A) into a quasi-Weierstrass form (3).

4 Explicit solution formula for non-switched DAE

In this section two explicit formulas for the solutions of the DAE

Eẋ = Ax+ f , (4)

are presented. The first is based on certain projections defined with the help of the
quasi-Weierstrass form (3), the second is based on the Drazin inverses of E and A.
The Drazin inverse approach only works when E and A commute, i.e. EA=AE must
hold. This is in general not true, but by multiplying both matrices with (Eλ0−A)−1

for some λ0 with det(Eλ0−A) 6= 0 this assumption always holds [3].

Definition 4.1 (Consistency, differential, and impulse projector, [32]). Consider
a regular matrix pair (E,A) and its quasi-Weierstrass form (3) obtained by corre-
sponding transformation matrices S,T ∈ Rn×n. Let the block sizes in the quasi-
Weierstrass form be n1×n1 and n2×n2. The consistency projector is given by

Π(E,A) := T
[

I 0
0 0

]
T−1,

the differential projector is given by

Π
diff
(E,A) := T

[
I 0
0 0

]
S,
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and the impulse projector is given by

Π
imp
(E,A) := T

[
0 0
0 I

]
S,

where I is the identity matrix of size n1×n1 for the consistency and differential
projector and of size n2×n2 for the impulse projector.

Note that, in contrast to the consistency projector, the differential and impulse pro-
jectors are not projectors in the usual sense because they are in general not idempo-
tent matrices. Furthermore, it is not difficult to see that the definition of the projec-
tors does not depend on the specific choices of the transformations S and T .

Definition 4.2 (Drazin inverse). Let M ∈ Rn×n. Any matrix MD ∈ Rn×n is called
Drazin inverse of M if

1. MMD = MDM,
2. MDMMD = MD, and
3. ∃ν ∈ N : MDMν+1 = Mν .

Lemma 4.3 ([3], see also [2]). For all M ∈Rn×n there exists a unique Drazin inverse
MD. Furthermore, if M = T−1

[
C 0
0 N

]
T , where T ∈ Rn×n is invertible, C ∈ Rn1×n1 ,

n1 ∈ N, is an invertible matrix and N ∈ Rn2×n2 , n2 = n−n1, is nilpotent, then

MD = T−1
[
C−1 0

0 0

]
T.

The solution of the DAE (4) based on the above defined projectors as well as on the
Drazin inverse is now given in the following theorem.

Theorem 4.4 (Explicit solution formula). Let (E,A) be a regular matrix pair
and let Π(E,A), Π diff

(E,A) and Π
imp
(E,A) be the consistency, differential and impulse

projector, resp., as in Definition 4.1. Furthermore, let

Adiff := Π
diff
(E,A)A and E imp := Π

imp
(E,A)E.

Then all solutions of (4) are given by, for c ∈ Rn,

x(t) = eAdifft
Π(E,A)c+

∫ t

0
eAdiff(t−s)

Π
diff
(E,A) f (s)ds−

n−1

∑
i=0

(E imp)i
Π

imp
(E,A) f (i)(t).

(5)
If, in addition, EA = AE then also

x(t) = eEDAtEDEc+
∫ t

0
eEDA(t−s)ED f (s)ds− (I−EDE)

n−1

∑
i=0

(EAD)iAD f (i)(t).
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Proof. The quasi-Weierstrass form (3) with corresponding transformation matrices
S,T ∈ Rn×n yields that x solves Eẋ = Ax+ f if, and only if, ( v

w) := T−1x solves
v̇ = Jv+ [I 0]S f and Nẇ = w+ [0 I]S f , hence, together with the step 2⇒3 in the
proof of Theorem 3.2

x(t) = T
(

v
w

)
= T

(
v
0

)
+T

(
0
w

)
= T

(
eJtv0

0

)
+T

(∫ t
0 eJ(t−s)[I 0]S f (s)ds

0

)
+T

(
0

−∑
n−1
i=0 Ni[0 I]S f (i)(t)

)
= Te

[
J 0
0 0

]
t
[

I 0
0 0

]
T−1c+

∫ t

0
Te
[

J 0
0 0

]
(t−s)

[
I 0
0 0

]
S f (s)ds

−
n−1

∑
i=0

T
[

0 0
0 Ni

][
0 0
0 I

]
S f (i)(t)

= eT
[

J 0
0 0

]
T−1tT

[
I 0
0 0

]
T−1c+

∫ t

0
eT
[

J 0
0 0

]
T−1(t−s)T

[
I 0
0 0

]
S f (s)ds

−
n−1

∑
i=0

(
T
[

0 0
0 N

]
T−1

)i

T
[

0 0
0 I

]
S f (i).

Together with

T
[

J 0
0 0

]
T−1 = T

[
I 0
0 0

]
SS−1

[
J 0
0 I

]
T−1 = Π

diff
(E,A)A = Adiff

and

T
[

0 0
0 N

]
T−1 = T

[
0 0
0 I

]
SS−1

[
I 0
0 N

]
T−1 = Π

imp
(E,A)E = E imp

the first proposed solution formula is obtained. The second solution formula is stan-
dard and can be found in [3, 19]. ut

Remark 4.5 (Remarks on the solution formulas).

1. If EA = AE then both solution formulas are almost identically, because then it
can be shown, see [2], that ED = Π diff

(E,A) and EDE = Π(E,A). However, it is in

general not true that AD = Π
imp
(E,A) or EAD = E imp therefore the second formula

needs the “correction term” I−EDE.
2. From the solution formula (5) it follows that

x(0) = Π(E,A)c−
n−1

∑
i=0

(E imp)i
Π

imp
(E,A) f (i)(0),

in particular, the initial value problem (4), x(0) = x0 ∈ Rn has a solution if, and
only if,

x0 +
n−1

∑
i=0

(E imp)i
Π

imp
(E,A) f (i)(0) ∈ imΠ(E,A) = V ∗,
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which characterizes consistency of the initial value.
3. If x is allowed to have jumps or even Dirac impulses, i.e. x∈ (DpwC ∞)n, then The-

orem 4.4 is still true, i.e. considering distributional solutions doesn’t add any new
solutions to the problem (for which the DAE Eẋ = Ax+ f should hold globally).
In particular, also all distributional solutions have consistent initial values. Fur-
thermore, if f contains jumps or Dirac impulses, i.e. f ∈DpwC ∞ then the solution
formula also holds, however it is necessary to define the notion of the antideriva-
tive H =

∫
0 D of the distribution D which fulfills H ′ = D and H(0−) = 0, see [34,

Prop. 3].
4. The proof of Theorem 4.4 reveals that instead of the consistency projector Π(E,A)

in formula (5) any matrix M with imM = imΠ(E,A) = V ∗ could be used. How-
ever, the special choice of Π(E,A) yields that this formula holds also true when an
inconsistent initial value is given, see the next section.

5 Inconsistent initial values

In the presence of switches the initial conditions need not to be consistent so that
no solution (classical or distributional) with this initial value exists. It is therefore
necessary to make precise what a “solution” to an inconsistent initial value problem
should be. The viewpoint here is the following: An inconsistent initial value can only
occur if the considered DAE was not active before the initial time (say t0 = 0). This
gives rise to the following initial trajectory problem (ITP), where x0 : (−∞,0)→Rn

is some initial trajectory:

x(−∞,0) = x0
(−∞,0)

(Eẋ)[0,∞) = (Ax)[0,∞)+ f[0,∞).
(6)

If x0(0) is not consistent for Eẋ = Ax+ f then no classical solution exists, how-
ever it will be shown in the following that a distributional solution exists. Therefore,
(6) is considered as an equation of piecewise-smooth distributions, in particular, the
inhomogeneity f and the initial trajectory are also piecewise-smooth distributions.

Theorem 5.1 (Solvability of the ITP). Let (E,A) be a regular matrix pair.
Then for every initial trajectory x0 ∈ (DpwC ∞)n and any inhomogeneity f ∈
(DpwC ∞)n the ITP (6) has a unique solution x ∈ (DpwC ∞)n. In particular, the
jump from x0(0−) to x(0+) and the impulsive part x[0] is uniquely deter-
mined. In fact, if f [0] = 0 then
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x(0+) = Πx0(0−)−
n−1

∑
i=0

(E imp)i
Π

imp f (i)(0+),

x[0] =−
n−1

∑
i=0

(E imp)i+1(I−Π)x0(0−)δ (i)

−
n−1

∑
i=0

(E imp)i+1
i

∑
j=0

Π
imp f (i− j)(0+)δ ( j),

where Π is the consistency projector and E imp = Π impE with impulse projec-
tor Π imp as in Definition 4.1. In particular, if f = 0 then

x(0+) = Πx0(0−)

and, on the open interval (0,∞),

ẋ = Adiffx.

Furthermore, if f is smooth then the solution x restricted to the open interval
(0,∞) is induced by the smooth function given by (5) where c = x0(0−).

Proof. Choose S,T ∈Rn×n invertible such that (E,A) is put into a quasi-Weierstrass
form (3) with block sizes n1×n1 and n2×n2, resp., and let T−1x = ( v

w). In the new
coordinates the ITP (6) then decouples into

v(−∞,0) = v0
(−∞,0), w(−∞,0) = w0

(−∞,0),

v̇[0,∞) = (Jv+[I 0]S f )[0,∞), (Nẇ)[0,∞) = (w+[0 I]S f )[0,∞),

where
(

v0
w0

)
= T−1x0. It can be shown (see e.g. the proof of [33, Thm. 3.3.8]) that the

ITP for v just yields the same solutions on [0,∞) as the classical solution of the ODE
initial value problem v̇ = Jv+ f , v(0) = v0(0−). In particular v(0+) = v(0−) and
v[0] = 0. As shown in [33, Thm. 3.1.7] the DAE for w can equivalently be written
as a special “switched” DAE without initial trajectory

Nitpẇ = w+ fitp,

where Nitp := N[0,∞) and fitp =−w0
(−∞,0)+

[
0 I
]

S f[0,∞). Since the operator Nitp
d
dt :

(DpwC ∞)n2 → (DpwC ∞)n2 is still nilpotent, the solution formula derived in the proof
of Theorem 3.2 still holds, i.e. w is uniquely given by
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w =−
n2−1

∑
i=0

(Nitp
d
dt )

i( fitp)

=
n−1

∑
i=0

(N[0,∞)
d
dt )

i(w0
(−∞,0))−

n−1

∑
i=0

(N[0,∞)
d
dt )

i([0 I]S f[0,∞)).

This shows existence and uniqueness of a solution x of the ITP (6) and x = T ( v
w).

Some calculations within the piecewise-smooth distributional framework yield

(N[0,∞)
d
dt )

i(w0
(−∞,0)) =

{
w0
(−∞,0), i = 0,

−Niw0(0−)δ (i−1), i > 0,

and, with the abbreviation f̃ := [0 I]S f ,

(N[0,∞)
d
dt )

i( f̃[0,∞)) =

{
f̃(0,∞), i = 0,

Ni f̃ (i)
(0,∞)

+Ni
∑

i−1
j=0 f̃ (i−1− j)(0+)δ ( j), i > 0.

Hence,

w(0+) =−
n−1

∑
i=0

Ni[0 I]S f (i)(0+)

and

w[0] =−
n−2

∑
i=0

Ni+1w0(0−)δ (i)−
n−2

∑
i=0

Ni+1
i

∑
j=0

[0 I]S f (i− j)(0+)δ ( j).

Together with analogous rearrangements of matrices as in the proof of Theorem 4.4
this yields the claimed expressions for x(0+) and x[0]. ut
Viewing now the switched DAE (1) as a repeated ITP (where the switching times
are the initial times) one obtains the following result. Note that it has to be assumed
that the switching times do not accumulate, otherwise this approach does not work.

Corollary 5.2 (Existence and uniqueness of solutions of a switched DAE).
Consider the switched DAE (1) with regular matrix pairs (Ep,Ap), p ∈
{1, . . . ,p} and assume for the switching signal σ

σ ∈ Σ0 :=

{
σ : R→{1, . . . ,p}

∣∣∣∣∣ σ has locally finitely many switches,

σ(−∞,0) is constant

}

Then there exists a globally defined solution x ∈ (DpwC ∞)n which is uniquely
given by x(0−).

Remark 5.3 (On the assumption that σ(−∞,0) is constant). The assumption in Corol-
lary 5.2 that the switching signal σ in (1) is constant on (−∞,0) is just a technicallity
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to ensure uniqueness of the solution also backward in time. If one is interested only
in the behavior of the solution on [0,∞) then this assumption is not necessary to
obtain the same result. More formally, one could also just study the corresponding
ITP

x(−∞,0) = x0
(−∞,0)

(Eσ ẋ)[0,∞) = (Aσ x+Bσ u)[0,∞)

with some initial trajectory x0 ∈ (DpwC ∞)n then it doesn’t matter how σ is defined
on (−∞,0).

Example 5.4 (Example 1.1 continued). Consider the switched circuit from Fig. 2 and the corre-
sponding switched DAE (1) with matrices (E1,A1,B1), (E2,A2,B2), (E3,A3,B3) as given at the
end of Example 1.1, i.e. (E1,A1,B1) correspond to the switch in the left position, (E2,A2,B2) cor-
respond to the switch in the right position and (E3,A3,B3) describes the system when the switch
is in between. To check whether the switched DAE is uniquely solvable for all input signals u,
regularity of the matrix pairs (E1,A1), (E2,A2), (E3,A3) must be checked:

det(sE1−A1) =CLs2, det(sE2−A2) =CLs2 +1, det(sE3−A3) =Cs.

Hence, Corollary 5.2 implies that the switched DAE (1) has a solution for every switching signal
σ ∈ Σ0 and for every input u ∈ DpwC ∞ and this solution is uniquely determined by x(0−). To
characterize the jumps at the switching instances the Wong sequences are calculated first. The
corresponding limit spaces are given by

V ∗(E1,A1)
= im


1 0
0 0
0 0
0 1

 , V ∗(E2,A2)
= im


1 0
0 1
1 0
0 -1

 , V ∗(E3,A3)
= im


0
0
0
1

 ,

W ∗
(E1,A1)

= im


0 0
1 0
0 1
0 0

 , W ∗
(E2,A2)

= im


0 0
1 0
0 1
0 0

 , W ∗
(E3,A3)

= im


1 0 0
0 1 0
0 0 1
0 0 0

 ,
and the consistency, differential and impulse projectors are given by

Π(E1,A1) =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , Π(E2,A2) =


1 0 0 0
0 0 0 -1
1 0 0 0
0 0 0 1

 , Π(E3,A3) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,

Π
diff
(E1,A1)

=


1
L 0 -1

L 0
0 0 0 0
0 0 0 0
0 1

C 0 -1
C

 , Π
diff
(E2,A2)

=


1
L 0 -1

L 0
0 -1

C 0 1
C

1
L 0 -1

L 0
0 1

C 0 -1
C

 , Π
diff
(E3,A3)

=


0 0 0 0
0 0 0 0
0 0 0 0
0 1

C 0 -1
C

 ,

Π
imp
(E1,A1)

=


0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , Π
imp
(E2,A2)

=


0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , Π
imp
(E3,A3)

=


0 0 1 0
1 0 0 0
0 0 0 1
0 0 0 0

 .
With the help of these projectors the reinitialization of x(0+) for a given (possibly inconsistent) ini-
tial value x(0−) =: (i0L,u

0
L, i

0
C,u

0
C) and the corresponding impulse in the solution can be calculated

for each mode by the formula given in Theorem 5.1
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Mode 1: iL(0+) = i0L, vL(0+) = u(0+), iC(0+) = 0, vc(0+) = v0
C,

iL[0] = 0, vL[0] = 0, iC[0] = 0, vc[0] = 0,

Mode 2: iL(0+) = i0L, vL(0+) =−v0
C, iC(0+) = i0L, vc(0+) = u0

C,

iL[0] = 0, vL[0] = 0, iC[0] = 0, vc[0] = 0,

Mode 3: iL(0+) = 0, vL(0+) = 0, iC(0+) = 0, vc(0+) = v0
C,

iL[0] = 0, vL[0] =−Li0Lδ , iC[0] = 0, vc[0] = 0.

6 Stability theory

In this section only the homogeneous switched DAE (1), i.e.,

Eσ ẋ = Aσ x (7)

is considered, because stability analysis usually considers a closed loop where the
input is already replaced by a feedback. Furthermore, certain simple inputs can be
incorporated as new state variables, for example a constant input signal u can be
rewritten as the state equation u̇ = 0 and a sinusoidal input u can be rewritten as
u̇ = −ωu, u̇ = ωu, for some ω ∈ R. Hence the switched DAE (1) with constant
or sinusoidal inputs can be written as the DAE (7). Throughout this section it is
assumed that the switching signal σ is such that the switching times do not accumu-
late.

Definition 6.1 (Asymptotic stability). The switched DAE (7) is called asymptoti-
cally stable if, and only if, for all solutions x ∈ (DpwC ∞)n the following properties
hold

(S) ∀ε > 0 ∃δ > 0 : ‖x(0−)‖< δ ⇒∀t > 0 : ‖x(t±)‖< ε ,
(A) x(t±)→ 0 as t→ ∞,
(I) ∀t ≥ 0 : x[t] = 0.

The assumptions (S) (stability) and (A) (attractivity) are standard for the definition
of asymptotic stability. The assumption (I) (impulse-freeness) is motivated by the
following observation: Assume (7) has a solution x with x[t] 6= 0 for some t. By lin-
earity of (7) the scaling of x by some ε > 0 will yield also a solution, in particular,
the initial value εx(0−) can be made arbitrarily small, but the corresponding im-
pulse εx[t] does not vanish. Since an impulse can be interpreted as an infinite peak
(or the limit of an unbounded sequence of functions) this shows that the classical
stability assumption (S) can not be fulfilled in the sense that small initial values
yield a bounded and small solution. The problem whether the switched system (7)
has impulses in the solution or not, i.e. whether (I) holds or not, is also an inter-
esting question on its own. Consider for example the situation where the switched
DAE (7) models a nominal system with additional sudden faults (like a shortcut in
an circuit element). If the corresponding switch is able to produce a Dirac impulse
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in some of the variables (e.g. voltages and currents) then this impulse might destroy
other components of the system possibly leading to a cascading destruction of the
system. Therefore, the topic of impulse-freeness is studied first.

6.1 Impulse detection

Theorem 6.2 (Impulse-freeness). Consider the switched DAE (7) with reg-
ular matrix pairs (Ep,Ap), p ∈ {1, . . . ,p} and a switching from mode p ∈
{1, . . . ,p} to mode q∈ {1, . . . ,p} at some switching time ts ∈R, i.e. σ(ts−) =
p and σ(ts+) = q. Then this switch cannot produce an impulse, i.e. x[ts] =
0 for all solutions x ∈ (DpwC ∞)n of (7) if the following impulse-freeness-
condition holds:

Eq(I−Πq)Πp = 0, (8)

where Πp :=Π(Ep,Ap), Πq :=Π(Eq,Aq) are the consistency projectors as in Def-
inition 4.1. In particular, if (8) holds for all p,q∈ {1, . . . ,p} then all solutions
of (7) are impulse-free independently of the switching signal.

Proof. Let x ∈ (DpwC ∞)n be a solution of (7) with a switching signal σ such that
σ(ts−) = p and σ(ts+) = p. Since x(ts−) ∈ V ∗p , where V ∗p is the limit of the first
Wong sequence corresponding to (Ep,Ap), it follows that x(ts−) = Πpx(ts−). The
impulse formula from Theorem 5.1 now yields

x[ts] =−
n−2

∑
i=0

(E imp
q )i+1(I−Πq)x(ts−)=−

n−2

∑
i=0

(E imp
q )i

Π
imp
q Eq(I−Πq)Πp︸ ︷︷ ︸

=0

x(ts−)= 0.

ut

Example 6.3 (Example 1.1 continued). Consider the circuit as shown in Fig. 2 and assume the
input u is constant. As mentioned above the input is reinterpreted as a state variable given by
u̇ = 0, hence one obtains the following three DAEs with x = (u, iL,vL, iC,vC)

> describing the three
different modes:

Mode 1:

[1 0 0 0 0
0 L 0 0 0
0 0 0 0 C
0 0 0 0 0
0 0 0 0 0

]
ẋ =

[ 0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
-1 0 1 0 0
0 0 0 1 0

]
x,

Mode 2:

[1 0 0 0 0
0 L 0 0 0
0 0 0 0 C
0 0 0 0 0
0 0 0 0 0

]
ẋ =

[0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 1
0 -1 0 1 0

]
x,

Mode 3:

[1 0 0 0 0
0 L 0 0 0
0 0 0 0 C
0 0 0 0 0
0 0 0 0 0

]
ẋ =

[0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0

]
x.
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It is easily seen that the corresponding consistency projectors Πp, p = 1,2,3, are given by

Πp =

[
1 0
0 Π p

]
,

where Π p is the consistency projector from Example 5.4. Hence, the condition (8) can easily be
checked for each mode change:

q = 1 q = 2 q = 3

p = 1 Eq(I−Πq)Πp = 0 Eq(I−Πq)Πp = 0 Eq(I−Πq)Πp 6= 0

p = 2 Eq(I−Πq)Πp = 0 Eq(I−Πq)Πp = 0 Eq(I−Πq)Πp 6= 0

p = 3 Eq(I−Πq)Πp = 0 Eq(I−Πq)Πp = 0 Eq(I−Πq)Πp = 0

This is in correspondence to the results obtained in Example 5.4 where it was apparent that only
a switch to mode three can produce impulses in the solution. However, the method based on The-
orem 6.2 is simpler (for example the transformation matrices Sp, p ∈ {1, . . . ,p} are not needed)
and it also takes into account which mode was active before the switch. For the considered circuit
this doesn’t make a difference, but in general the mode before the switch might prohibit certain
initial values so that the switch does not produce impulses although it might produce switches for
a general initial value. Actually, this is the case when (8) holds but Eq(I−Πq) 6= 0. For a more
complex example see also [7].

6.2 Lyapunov functions for non-switched DAEs

In order to study stability of the switched DAE (7) the stability properties of the
non-switched DAE

Eẋ = Ax (9)

with regular matrix pair (E,A) ∈ Rn×n ×Rn×n are studied first. From the quasi-
Weierstrass form (3) of the pair (E,A) it is immediately clear that (9) is asymptot-
ically stable if, and only if, the matrix J in (3) is Hurwitz. A direct method (i.e.
without calculating the full quasi-Weierstrass form first) is given by the following
result.

Theorem 6.4 (Generalized Lyapunov equation, [27]2). The DAE (9) is asymptot-
ically stable if, and only if, there exists a positive definite symmetric P = P> ∈Rn×n

and a symmetric Q = Q> ∈ Rn×n which is positive definite on V ∗ (the limit of the
first Wong sequence) such that

A>PE +E>PA =−Q. (10)

This result makes it possible to define a Lyapunov function as follows

V (x) = (Ex)>PEx, (11)

2 In [27] only the complex-valued case is studied. However, in the real-valued case it is easily seen
that the real part of the complex solutions P and Q are also solutions of the Lyapunov equation.
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because for all (classical) solutions x : R→ V ∗ ⊆ Rn of (9) it follows that

d
dt V (x(t)) = (Eẋ(t))>PEx(t)+(Ex(t))>PEẋ(t) = x(t)>(A>PE +E>PA)x(t)

=−x(t)Qx(t)< 0.

6.3 Asymptotic stability of switched DAEs

Consider the switched DAE (7)

Eσ ẋ = Aσ x.

Clearly, if one mode Epẋ = Apx, p ∈ {1, . . . ,p} is not asymptotically stable then
(7) cannot be asymptotically stable for arbitrary switching (just chose the constant
switching signal σ(t) = p for all t ∈R). Hence for studying asymptotic stability for
arbitrary switching signals or at least for slow switching it has to be assumed that
each mode is asymptotically stable and hence permits a Lyapunov function (11).
From the theory of switched ODEs (see e.g. [20]) it is known that switching be-
tween stable modes can lead to an unstable overall system, hence one might expect
a similar behavior for switched DAEs. This unstable behavior cannot happen in the
switched ODE case when there exists a common Lyapunov function. Surprisingly
this condition is not sufficient any more for the switched DAE case because the
possible jumps must be incorporated in the right way, too. The following example
shows that the induced jumps are important for the stability (for more examples see
[21]).

Example 6.5 (Unstable switched DAE with the same Lyapunov function for each subsystem). Con-
sider the switched DAE (7) with two subsystems given by

(E1,A1) =

([
0 0
0 1

]
,

[
1 −1
0 −1

])
, (E2,A2) =

([
0 0
1 1

]
,

[
−1 0
0 −1

])
.

The consistency projectors are given by

Π1 =

[
0 1
0 1

]
, Π2 =

[
0 0
1 1

]
.

A possible solution behavior of this switched DAE is shown in Fig. 4.
Clearly, each subsystem is asymptotically stable. Furthermore, the solutions decrease along

V (x) = x2
1 + x2

2 for both subsystems. However, when switches occur, the consistency projectors
yield jumps which can destabilize the overall system.

In general, the jumps must be “compatible” with the Lyapunov function. Fur-
thermore, impulse-freeness must be ensured additionally. Altogether, the following
result holds.
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Fig. 4 Solutions of the
switched DAE from Ex-
ample 6.5. Left: Dynamics
without switching, Right: Un-
stable solution behavior for
some switching signal; the
dashed lines denote the jumps
induced by the switching
event. x1

x2

x1

x2

Theorem 6.6 (Asymptotic stability under arbitrary switching). Consider
the switched DAE (7) with regular matrix pairs (Ep,Ap), p ∈ {1, . . . ,p}. Let
Πp := Π(Ep,Ap) be the consistency projector as given by Definition 4.1. If, for
all p ∈ {1, . . . ,p},

(Vp) Epẋ = Apx is asymptotically stable with Lyapunov function Vp,
(IC) Eq(I−Πq)Πp = 0 for all q ∈ {1, . . . ,p}, and
(JC) Vq(Πqx)≤Vp(x) for all x ∈ V ∗p = imΠp

then the switched DAE (7) is asymptotically stable for all switching signals.

Proof. Attractivity is shown in [21] and stability (as well as attractivity in a non-
linear setting) is shown in [22]. The key idea is consider the common Lyapunov
function

V : Rn→ R, x 7→

{
Vp(x), x ∈ V ∗p ,

0, otherwise,

which is well-defined because for x ∈ V ∗p ∩V ∗q it follows that Πpx = x = Πqx and
therefore

Vq(x) =Vq(Πqx)≤Vp(x) =Vp(Πpx)≤Vq(x),

hence Vp(x) =Vq(x) for all x ∈ V ∗p ∩V ∗q . It then follows that V is decreasing along
solutions and V (x(t))→ 0 as t → ∞. Finally positive definiteness of V on each Vp
implies x(t)→ 0 as t→ ∞. ut

As highlighted in the proof the jump condition (JC) is a generalization of the com-
mon Lyapunov condition for switched ODEs, in fact, if this condition is applied to a
switched ODE it reads as Vp(x)≤Vq(x) for all p,q hence Vp =Vq, i.e. it is equivalent
to the existence of a common Lyapunov function.

It is known from the switched ODEs theory that the destabilization of a switched
system can only be achieved by sufficiently fast switching. This result also holds for
switched DAEs. Slow switching is characterized here by an average dwell time [18].
Therefore, denote with Nσ (t1, t2) the number of switches of σ within the interval
[t1, t2). The class of switching signals with average dwell time τa > 0 is then given
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by

Στa :=
{

σ ∈ Σ

∣∣∣ ∃N0 > 0 ∀t ∈ R ∀∆ t > 0 : Nσ (t, t +∆ t)< N0 +
∆ t
τa

}
.

The number N0 > 0 in the definition of Στa is the so called chatter bound and is an
upper bound for the number of switches within an interval of length smaller than
τa. For each switching signal σ ∈ Στa this chatter bound is finite but its not bounded
for the whole class Στa . The class of switching signals σ ∈ Στa with chatter bound
N0 = 1 is exactly the class of switching signals with dwell time τd = τa.

Theorem 6.7 (Stability under slow switching, [22]). Consider the switched DAE
(7) satisfying conditions (Vp) and the impulse condition (IC). Then there exists τa >
0 such that (7) is asymptotically stable if σ ∈ Στa . In fact, let Pp,Qp be the solutions
of the Lyapunov equation (10) corresponding to (Ep,Ap), let Op be an orthogonal
basis matrix of V ∗p = imΠp and let

µp,q :=
λmax(O>p Π>q E>q PqEqΠqOp)

λmin(O>p E>p PpEpOp)
> 0, λp :=

λmin(O>p QpOp)

λmax(O>p E>p PpEpOp)
> 0,

where λmin(·) and λmax(·) denote the minimal and maximal eigenvalue of a symmet-
ric matrix, respectively. Then an average dwell time of

τa >
maxp,q ln µp,q

minp λp

guarantees asymptotic stability of (7).

Example 6.8 (Example 6.5 continued). Consider the switched DAE from Example 6.5. It was al-
ready highlighted there that both systems share the same Lyapunov function V (x) = x2

1 +x2
2, hence

condition (Vp) holds. Furthermore, it is not difficult to check that the impulse-freeness condition
(IC) holds. Since the jump condition (JC) does not hold, Theorem 6.6 is not applicable, but The-
orem 6.7 yields that for switching signals with sufficiently large average dwell time asymptotic
stability is guaranteed. In order to calculate a sufficient average dwell time, the Lyapunov func-
tions must be rewritten as V (x) = (Ex)>PEx, where P solves the generalized Lyapunov equation
(10). This is achieved by choosing

P1 =

[
0 0
0 2

]
, Q1 =

[
0 0
0 4

]
and

P1 =

[
0 0
0 2

]
, Q2 =

[
0 1
1 2

]
,

The associated Lyapunov functions are V1(x) = 2x2
2 and V2(x) = (x1 + x2)

2 which coincide with
V (x) = x2

1 + x2
2 on the corresponding consistency spaces. As orthonormal basis of V ∗1 and V ∗2

choose

O1 =
1
2

[√
2√
2

]
and O2 =

[
0
1

]
.

Then
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O>1 E>1 P1E1O1 = 1, O>2 E>2 P2E2O2 = 1,

O>1 Π
>
2 E>2 P>2 E2Π2O1 = 2, O>2 Π

>
1 E>1 P>1 E1Π1O2 = 2,

O>1 Q1O1 = 2, O>2 Q2O2 = 2,

hence µ := maxp,q µp,q = 2 and λ := minp λp = 2. Therefore the corresponding switched DAE is
asymptotically stable for all switching signals σ ∈ Στ with τa > ln2

2 . For this case the bound is
actually sharp because it is easily seen that for a periodic switching signal with periodicity ln2

2 the
corresponding solution is also periodic (cf. [21]).

6.4 Commutativity and asymptotic stability

For switched ODEs with asymptotically stable subsystems it is well known [26] that
commuting A-matrices imply asymptotic stability for arbitrary switching signal and
also guarantee a common quadratic Lyapunov function. The aim of this section is
to generalize this result to switched DAEs (1). Example 6.5 shows that commuta-
tivity of the A-matrix is not the right condition to guarantee asymptotic stability for
arbitrary switching. In particular, for switched DAEs instability can be induced by
the jumps, hence one would expect that the consistency projectors play a prominent
role again. Surprisingly, this is not the case as the following result shows.

Theorem 6.9 (Commutativity of Adiff-matrices implies stability, [23]). Consider
a switched DAE (7) with corresponding matrices Adiff

p as defined in Theorem 4.4.
Assume asymptotic stability of each subsystem, i.e. (Vp), and impulse-freeness, i.e.
(IC), then

[Adiff
p ,Adiff

q ] := Adiff
p Adiff

q −Adiff
q Adiff

p = 0 ∀p,q ∈ {1,2, . . . ,p}

implies asymptotic stability of the switched DAE (7) for arbitrary switching signals.

Proof. The key observation is that [Adiff
p ,Adiff

q ] = 0 implies commutativity also with
the consistency projectors:

[Πp,Adiff
p ] = 0, [Πp,Adiff

q ] = 0, [Πp,Πq] = 0.

Hence the flow commutes and asymptotic stability easily follows, see [23] for de-
tails. There it is also shown that a common quadratic Lyapunov function exists
which is compatible with the jumps. ut

7 Bibliographical notes

The theory of DAEs gained popularity in the 80s see e.g. the textbooks [3, 4, 16, 6]
and was already discussed by Gantmacher in the 50s [12]. That DAEs are espe-
cially suitable to model electrical circuits was highlighted by Verghese et al. [35].
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There impulsive behavior was also discussed and motivated, however the underly-
ing distributional solution space was not formalized which is also true for the above
mentioned textbooks. Later on, the focus of research was on numerics of DAEs and
(smoothly) time-varying DAEs, see e.g. the textbook [19] and the references therein.

The existence of impulsive solutions was a reoccurring topic in the literature, see
e.g. [5, 30]; for a more detailed overview see the introduction of [34]. Apart from the
authors own work (presented in this chapter) there is not much work on switched
DAEs available [14, 15, 24, 25, 38] and none of these works resolve or even dis-
cuss the problem of multiplying a piecewise-constant function with a distribution
which naturally occurs when studying switched differential algebraic equations of
the form (1). Another approach to model electrical circuits with switches uses the
complementarity framework and is discussed in the next chapter. Combining both
approaches seems fruitful and is ongoing research.
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List of symbols and abbreviations

1[0,∞) The Heaviside step function, page 5
(A) the attractivity property for switched DAEs, page 17
Adiff := Π diff

(E,A)A, page 11
C ∞ the space of smooth (i.e. arbitrarily often differentiable) functions

α : R→ R
C ∞

0 the space of smooth functions with compact support, also called test
functions, page 4

C ∞
pw the space of piecewise-smooth functions, page 7

D space of distributions, page 5
DpwC ∞ the space of piecewise-smooth distributions, page 7
Dpwreg the space of piecewise-regular distributions, page 7
DAE = differential algebraic equation
δ the Dirac impulse at the origin, page 5
δt the Dirac impulse at t ∈ R, δ0 = δ , page 5
D(t−),D(t+) the left/right evaluation of a piecewise-smooth distribution at t ∈ R,

page 8
D[t] the impulsive part of a piecewise-smooth distribution at t ∈R, page 8
E imp := Π

imp
(E,A)E, page 11

fD the (regular) distribution induced by the locally integrable function
f : R→ R, page 5

(I) the impulse-freeness property for switched DAEs, page 17
(IC) the impulse-freeness condition for Lyapunov functions, page 21
ITP = initial trajectory problem, page 13
(JC) the jump condition for Lyapunov functions, page 21
MD Drazin inverse of a matrix M, page 11
M> the transpose of a matrix M
ODE = ordinary differential equation
p the number of different subsystems of the switched DAE, page 2
Π(E,A),Πp the consistency project corresponding to (E,A) or to the p-th sub-

system, resp., page 10
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Π diff
(E,A),Π

diff
p the differential projector corresponding to (E,A) or the p-th subsys-

tem, resp., page 10
Π

imp
(E,A),Π

imp
p the impulse projector corresponding to (E,A) or the p-th subsystem,

resp., page 11
(S) the stability property for switched DAEs, page 17
σ switching signal R→{1,2, . . . ,p}
V ∗,W ∗ the limits of the Wong sequences of a regular matrix pair (E,A),

page 10
(Vp) the asymptotic stability condition of each subsystem of a switched

DAE, page 21
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arbitrary switching 21
asymptotic stability

condition (Vp) for each subsystem of a
switched DAE 21

for commuting Adiff-matrices 23
under arbitrary switching 21
under slow switching 22

asymptotic stability of switched DAEs 17
attractivity property (A) of switched DAEs

17
average dwell time 22

C

common Lyapunov function 20, 22
commuting A-matrices 23
commuting Adiff-matrices 23
consistency projector 10

introduction 3
consistent initial value 13
continuity, of linear functionals on C ∞

0 4

D

DAE
classical solution 9
explicit solution formula 11
non-switched 10, 11, 19
regularity 9
switched 1, 3, 15, 17, 18, 20–22

DAE description of circuit 3
derivative, distributional 5
descriptor system see DAE
differential projector 10
Dirac impulse

formal definition 5
introduction 3
restriction to interval 6

distributions
general restriction not possible 6
impulsive part of piecewise-smooth- 8
impulsive smooth- 7
left/right evaluation for piecewise-smooth-

8
multiplication with smooth functions 5
piecewise-regular- 7
piecewise-smooth- 7
piecewise-smooth-, introduction 4
regular 5
restriction of piecewise-regular- 7
Schwartz 5
solution framework 3

Drazin inverse 11
dwell time 22

E

evaluation (left/right) of a piecewise-smooth
distribution 8

existency and uniqueness of solutions of
switched DAEs 15

F

fault tolerant systems 4
faults, modeling of 2
Fuchssteiner multiplication 8

G

generalized functions see distributions
generalized Lyapunov equation 20
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H

Heaviside step function 5

I

impulse projector 11
impulse-freeness condition 18
impulse-freeness condition (IC) for switched

DAEs 21
impulse-freeness property (I) of switched

DAEs 17
impulsive part of a piecewise-smooth

distribution 8
impulsive-smooth distributions 7
inconsistent initial value 13
initial trajectory problem 13

for switched DAE 16
inputs (constant or sinusoidal) as states 17

J

jump condition (JC) for Lyapunov functions
21

jump maps 3

K

Kirchhoff’s law 3

L

locally integrable functions 5
Lyapunov equation for DAEs 20
Lyapunov function 20
Lyapunov stability of a DAE 17

M

multiplication
Fuchssteiner- 8
piecewise-smooth function with piecewise-

smooth distribution 8

N

non-switched DAE 10, 11, 19

O

ODE description of circuit 2

P

piecewise-regular distributions 7
piecewise-smooth distributions 7
piecewise-smooth functions 7
projector

consistency- 10
differential- 10
impulse- 11

Q

quasi-Weierstrass form 9

R

regular distributions 5
regular matrix pair 9
regularity

introduction 4
restrictions to intervals 6

S

singular system see DAE
slow switching 22
solution formula for non-switched DAE 11
stability property (S) of a switched DAE 17
switched circuit 3
switched DAE 1, 3, 15

asymptotic stability 17
existence and uniqueness of solutions 15
homogeneous- 17, 18, 20–22

switched ODE 20, 22
switching signal 15

T

test functions 4
time-varying system 2

U

uniqueness of solutions, backward in time
16

W

Weierstrass form 9
Wong sequences 10
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