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Abstract— We present a new framework to describe and
study switched behaviors. We allow for jumps and impulses
in the trajectories induced either implicitly by the dynamics
after the switch or explicitly by “impacts”. With some ex-
amples from electrical circuit we motivate that the dynamical
equations before and after the switch already uniquely define
the “dynamics” at the switch, i.e. jumps and impulses. On the
other hand, we also allow for external impacts resulting in
jumps and impulses not induced by the internal dynamics. As
a first theoretical result in this new framework we present a
characterization for autonomy of a switched behavior.

I. INTRODUCTION

In this note we aim to provide a unifying approach to
handle switched and impulsive systems in the behavioral
framework [16]. Different to the previous approaches [3],
[4] and [10] our goal is a formalism which still allows us to
write

w ∈ Bσ ⇔ Rσ( d
dt )(w) = 0,

where Bσ denotes the switched behavior with switching
signal σ and the nature of the linear (time-varying) op-
erator Rσ( d

dt ) will be explained later. As a universe for
the switched behavior we consider the space of piecewise-
smooth distributions [13] which was also used (without using
this name) in [3] as a universe. Our proposed framework will
include the following special cases and combinations thereof:
Classical switched linear systems ẋ = Aσx + Bσu with

solutions in the sense of Carathéodory, see e.g. [8],
Switched DAEs Eσẋ = Aσx + Bσu with solutions in the

space of piecewise-smooth distributions, see [14],
Linear systems with impulsive inputs ẋ = Ax + Bu

where u may contain Dirac impulses or derivatives
thereof, see e.g. [5],

Impulsive systems ẋ = Ax+ Bu, x(ti+) = Jix(ti−), for
some ordered set { ti ∈ R | i ∈ Z } and jump-matrices
Ji, i ∈ Z, see e.g. [7].

In this general framework we are able to show, see
Corollary 10, that autonomy of the switched behavior for
any switching signal is characterized by autonomy of the
constituent behaviors, irrespective of possible impacts. To

Stephan Trenn is with the Technomathematics group, University of
Kaiserslautern, Germany, email: trenn@mathematik.uni-kl.de

Jan C. Willems is with the Department of Electrical Engineering, K.U.
Leuven, Belgium, email: Jan.Willems@esat.kuleuven.be

The SCD-SISTA research of the KU Leuven is supported by the projects. Research Council KUL: GOA/11/05
Ambiorics, GOA/10/09 MaNet, CoE EF/05/006 Optimization in Engineering (OPTEC) en PFV/10/002 (OPTEC), IOF-
SCORES4CHEM, several PhD, postdoc & fellowship grants. Flemish Government: FWO: PhD/postdoc grants, projects:
G0226.06 (cooperative systems and optimization), G0321.06 (Tensors), G.0302.07 (SVM/Kernel), G.0320.08 (convex
MPC), G.0558.08 (Robust MHE), G.0557.08 (Glycemia2), G.0588.09 (Brain-machine), Research communities (WOG:
ICCoS, ANMMM, MLDM); G.0377.09 (Mechatronics MPC); IWT: PhD Grants, Eureka-Flite+, SBO LeCoPro, SBO
Climaqs, SBO POM, O& O-Dsquare. Belgian Federal Science Policy Office: IUAP P6/04 (DYSCO, Dynamical systems,
control and optimization, 2007-2011), IBBT. EU: ERNSI; FP7-HD-MPC (INFSO-ICT-223854), COST intelliCIS, FP7-
EMBOCON (ICT-248940), FP7-SADCO ( MC ITN-264735), ERC HIGHWIND (259 166). Contract Research: AMINAL,
Helmholtz: viCERP, ACCM.

arrive at this main result we have to first review classical
distribution theory and recall the definition of piecewise-
smooth distributions in Section II. Our framework allows
for Dirac-impulses in the coefficient matrices; in Section III
we motivate this by showing that linear impulsive sys-
tems can equivalently be represented as a linear differential
equation containing Dirac-impulses in its coefficient matrix
(Lemma 2). After this motivation we present the formal
definition of switched behaviors with impacts in Section IV.
Within the space of piecewise-smooth distributions it can
readily verified whether jumps or impulses at the switching
times are compatible with the system description. Under a
certain regularity assumption this implies that jumps and im-
pulses induced by switches are already uniquely determined
without explicitly stating a jump rule. We illustrate and
motivate this uniqueness with examples based on electrical
circuits. Section V presents the aforementioned main result
of this note.

II. PIECEWISE-SMOOTH DISTRIBUTIONS

Only some minor knowledge about the formalities of
distribution theory [11] are needed to understand the concept
of piecewise-smooth distribution. We denote the space of
distributions by D and formally the definition is as follows:

D := {D : C∞0 → R | D is linear and continous } ,

where C∞0 denotes the set of smooth (i.e. arbitrarily often
differentiable) functions with compact support (a.k.a. the
space of test-functions, equipped with a certain topology
which is not of further interest here). Distributions are
also called generalized functions because of the following
injective homomorphism

L1,loc 3 f 7→ fD ∈ D,

where L1,loc is the space of locally integrable functions and

fD : C∞0 → R : ϕ 7→
∫
R
ϕ(t)f(t)dt.

The importance of distributions is due to the capability to
differentiate distributions arbitrarily often via the following
rule, D ∈ D,

D′(ϕ) := −D(ϕ′)

which is consistent with classical differentiation of differen-
tiable functions, i.e. for any differentiable f

(fD)
′ = (f ′)D.

Note that we will use the dot above a function or distribution
as an equivalent way to denote the derivative.



The most famous distribution is the Dirac impulse δ (a.k.a.
Dirac-Delta or Delta-function) formally defined via

δ(ϕ) = ϕ(0), ϕ ∈ C∞0 .

It is easily seen that the Dirac impulse is the distributional
derivative of the Heaviside function

1[0,∞)(t) :=

{
0, t < 0,

1, t ≥ 0.

Distributions can be multiplied with smooth functions via

(αD)(ϕ) := D(αϕ), D ∈ D, α ∈ C∞, (1)

where C∞ denotes the space of smooth functions. In the
following the space of piecewise-smooth functions will play
an important role and is given by

C∞pw :=

α =
∑
i∈Z

1[ti,ti+1)αi

∣∣∣∣∣∣∣
αi ∈ C∞, i ∈ Z,
{ ti | i ∈ Z } ordered
and locally finite

 ,

where 1I denotes the characteristic function of the interval
I ⊆ R. Switched systems can be interpreted as time-varying
linear systems with piecewise-constant coefficient matrices.
The latter are of course a special case of piecewise-smooth
coefficient matrices. Hence one might aim to generalize
the multiplication (1) also to piecewise-smooth functions.
However, for general distributions this is not possible in a
consistent way [12, Thm. 2.2]. That is the reason we consider
the smaller space of piecewise-smooth distributions instead
of the whole space D. The former is defined as

DpwC∞ :=

{
fD +

∑
t∈T

Dt

∣∣∣∣∣ f ∈ C∞pw, T locally finite,

Dt ∈ span{δt, δ′t, δ′′t , . . .}

}
,

where δt denotes the Dirac-impulse at t ∈ R, i.e. δt = 1′[t,∞).
In other words, a piecewise-smooth distributions is the
sum of a piecewise-smooth function and isolated impulses
(composed of Dirac-impulses and their derivatives). It is
easily seen, that the space of piecewise-smooth distributions
is closed under differentiation and therefore recovers the
essential property of the space of distributions. Furthermore,
on each finite interval, every piecewise-smooth distribution
is the finite derivative of a piecewise-smooth function. The
space of piecewise-smooth distributions allows for an eval-
uation at a certain time t ∈ R in the following ways, where
D = fD +

∑
t∈T Dt:

Left-sided evaluation D(t−) := f(t−) = limε↘0 f(t− ε),
Right-sided evaluation D(t+) := f(t+) = f(t),
Impulsive part D[t] := Dt if t ∈ T and D[t] = 0

otherwise; D[·] :=
∑
t∈T Dt.

Although the authors of [3] also used the space of
piecewise-smooth distributions as the universe they were not
aware that this space has the nice property that a unique
multiplication with the following properties can be defined
[12]:
Associative algebra F (GH) = (FG)H and distributive

laws hold, e.g. (F + G)H = FH + GH , for all

F,G,H ∈ DpwC∞

Product rule (FG)′ = F ′G+ FG′ for all F,G ∈ DpwC∞ ,
Functions (fg)D = fDgD for all f, g ∈ C∞pw,
Causality 1[t,∞)δt = δt for all t ∈ R.

Note that we do not assume commutativity. With the above
properties the multiplication of general piecewise-smooth
distributions can be defined via

FG = (fg)D + F [·]gD + fDG[·],

where F = fD + F [·] and G = gD + G[·], for details see
[12]. In particular, for D ∈ DpwC∞ and t ∈ R,

δtD = D(t−)δt, Dδt = D(t+)δt, (2)

and
δtδt = 0.

Furthermore, when causality is not required then one can
show [1] that all possible multiplication have the property
that either 1[t,∞)δt = δt or 1[t,∞)δt = 0. We will call
the above multiplication (causal) Fuchssteiner multiplication
(after [1], c.f. [2]) and the following example motivates the
causality property.

Example 1: Consider the switched system given by

1[0,∞)ẋ = 1(−∞,0)x,

i.e. x = 0 on (−∞, 0) and ẋ = 0 on [0,∞). The latter
implies (also in the distributional framework) that x = c
on (0,∞) for some constant c ∈ R. Hence ẋ = cδ. With
the causal Fuchssteiner multiplication 1[0,∞)ẋ = cδ and
since 1(−∞,0)x = 0 it follows that c = 0 and the only
solution of the switched system is x = 0, i.e. the past,
x = 0 on (−∞, 0), uniquely determines the future, x = 0
on [0,∞). On the other hand, when using the anticausal
Fuchssteiner multiplication then 1[0,∞)ẋ = 0 = 1(−∞,0)x
and x = c1[0,∞) would be a solution for the switched system
for all c ∈ R. In particular, the past does not uniquely
determine the future, however the converse is true now. �

For the forthcoming definition of switched behaviors, the
ring of polynomials DpwC∞ [s] with coefficients in the ring
of piecewise-smooth distributions will play a role. Different
to classical polynomial rings the multiplication in DpwC∞

is not commutative due to the time varying nature of the
coefficients and the interpretation of the variable s as the
differential operator. As with smoothly time-varying linear
systems the commutation rule is given by

sD = Ds+D′.

III. IMPULSIVE SYSTEMS

We will now consider the impulsive system

ẋ = Ax+Bu, x(ti+) = Jix(ti−), (3)

where { ti ∈ R | i ∈ Z } is ordered and locally finite, x
is an n-dimensional vector and A, Ji, B are matrices of
appropriate size. The ODE is assumed to hold on the open



intervals (ti, ti+1), i ∈ Z, only. Now let

A := A+
∑
i∈Z

(Ji − I)δti ∈ (DpwC∞)n×n

and consider the following ODE with distributional coeffi-
cients

ẋ = Ax+Bu, (4)

which is assumed to be valid on the whole time axis R
without exceptions. Now the following result states that the
corresponding solution sets are isomorphic.

Lemma 2: Consider the impulsive system (3) and the
associated ODE with distributional coefficients (4) and any
input u ∈ C∞pw. Then x ∈ (C∞pw)

n is a solution of (3) if,
and only if, xD is a solution (within DpwC∞ ) of (4) with
input uD. Furthermore, all solution x of (4) with input uD
are impulse free, i.e. x[·] = 0; in particular, there are no
additional (distributional) solutions of (4) compared to (3).

Proof: Let x =
∑
i∈Z 1[ti,ti+1)xi ∈ C∞pw with xi ∈ C∞

then

(xD)
′ =

∑
i∈Z

1[ti,ti+1)(x
′
i)D +

∑
i∈Z

(x(ti+)− x(ti−))δti .

If x is a solution of (3) then ẋi = Axi + Bu on (ti, ti+1)
and x(ti+) = Jix(ti−), hence, invoking (2),

(xD)
′ =

∑
i∈Z

1[ti,ti+1)(AxiD+BuD)+
∑
i∈Z

(Ji−I)x(ti−)δti

= AxD +BuD +
∑
i∈Z

(Ji − I)δtixD = AxD +BuD.

On the other hand if xD is a solution of (4) then

(xD)
′ =

(
A+

∑
i∈Z

(Ji − I)δti

)
xD +BuD

=
∑
i∈Z

1[ti,ti+1)(Axi +Bu)D +
∑
i∈Z

(Ji − I)x(ti−)δti ,

which shows that x solves (3). Finally, let x ∈ (DpwC∞)n be
a solution of (4) and seeking a contradiction assume x[·] 6= 0.
Let t ∈ R and p ∈ N such that δ(p)t is the highest derivative of
a Dirac-impulse contained in x[·]. Then ẋ[·] contains δ(p+1)

t

while the right hand side Ax+BuD only contains δ(p)t , as uD
doesn’t contain any Dirac impulses. Hence we have arrived
at a contradiction and x[·] = 0 is shown.

The previous result motivates to also allow for Dirac im-
pulses in the coefficient matrices of the systems description.
Another motivation is given by the following observation:
When aiming for a normal or simplified form it is common to
consider coordinate transformations. However, in the context
of switched systems these coordinate transformation might
also be switched (i.e. piecewise-constantly time-varying). So
carrying out the transformation x 7→ Tσz and plugging this
into a differential equations leads to the need to differen-
tiate Tσ which introduces Dirac impulses in the coefficient
matrices. In the following we will also allow for derivatives
of the Dirac-impulses within the coefficient matrices which
corresponds to jump rules invoking derivatives of the state.

In particular, the “glueing conditions” from [10] might also
be formulated via distributional entries in the coefficient
matrices.

IV. SWITCHED BEHAVIORS WITH IMPULSES

We are now ready to present our proposed new frame-
work to describe switched behaviors with possible impulsive
effects. Therefore let Rp(s), Jp(s) ∈ Rm×n[s], p ∈ P , be
two families of polynomial matrices for a parameter set
P , where R[s] denotes the ring of real polynomials. For
a switching signal σ : R → P with the locally finite
ordered set of switching times { ti | i ∈ Z } define the
corresponding switched behavioral kernel operator Rσ(s) ∈
(DpwC∞)m×n[s] as

Rσ(s) :=
∑
i∈Z

(
1[ti,ti+1)Rσ(ti+)(s)+Jσ(ti+)(

d
dt )(δti)

)
. (5)

The corresponding differential operator Rσ( d
dt ) is then given

for w ∈ (DpwC∞)n by

Rσ( d
dt )(w) =

∑
i∈Z

1[ti,ti+1)

dpi∑
j=0

Rjpiw
(j) +

νpi∑
k=0

Jkpiδ
(k)
ti w

 ,

where pi := σ(ti+), Rp(s) =
∑dp
j=0R

i
ps
i, dp ∈ N, Jp(s) =∑νp

k=0 J
k
p s
k, νp ∈ N, p ∈ P . In particular, Rσ( d

dt ) is applied
to w and Jσ(

d
dt ) is applied to the corresponding Dirac-

impulse and then multiplied with w. The overall switched
behavior is

Bσ :=
{
w ∈ (DpwC∞)n

∣∣ Rσ( d
dt )(w) = 0

}
.

The matrices polynomial Rp(s) defines the dynamics be-
tween the switches (and in the regular case also at the
switches, see our discussion later) and the corresponding
behavior Bp := kerRp(

d
dt ) can be seen as the constituent

non-switched behaviors. The polynomial matrices Jp(s) de-
fine the impacts at certain switching times resulting in jumps
and impulses not induced by the dynamics given by Rp(s).

For an illustration we again consider the above mentioned
systems descriptions and show how they are written as a
switched behavior. In all cases w = (x>, u>)>.
Switched linear systems Rp(s) = s[I 0] − [Ap Bp] and

Jp(s) = 0 for all p ∈ P ,
Switched DAEs Rp(s) = s[Ep 0] − [Ap Bp] and Jp(s) =

0 for all p ∈ P , note that here jumps and impulses
can occur at the switching instance without introducing
those explicitly via Jp(s),

Systems with impulsive inputs Rp(s) = s[I 0] − [A B]
and Jp(s) = 0 independently of p ∈ P (note that now
impulses in u are allowed due to the chosen universe),

Impulsive systems Rp(s) = s[I 0]− [A B], Jp(s) = [(Jp−
I) 0], see Lemma 2.

In the previous approaches [3], [10], it was necessary
to define the property of a trajectory w belonging to the
switched behavior Bσ piecewise via the individual intervals
between the switching times and, additionally, how the pieces
are connected. With our new approach this is not the case
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Fig. 1: Disconnecting a coil from a voltage source: two
different interpretations as electrical circuits

as the (global) condition

Rσ( d
dt )(w) = 0

is already well defined in the space of piecewise-smooth
distributions because the multiplication of a (distributional)
trajectory w with piecewise-constant coefficients and with
Dirac-impulses (and their derivatives) is already established.
We do not deny that there are useful physical models of
switched systems where the “dynamics” at the switch or im-
pact (i.e. jumps and impulses) are modeled (mathematically)
independently from the dynamics before and after the switch.
However, the following examples (inspired by [15]) shows
that jumps and impulses might already be induced by the
dynamics before and after the switch.

Example 3 (Disconnecting a coil from a voltage source):
Consider the simple electrical circuit as shown in Figure 1a
composed of a coil, a voltage source and a switch. For
simplicity we assume that the voltage source supplies a
constant (but possibly unknown) voltage u which can be
modeled via the differential equation u̇ = 0. Independently
of the switch the inductivity rule holds:

L d
dt iL = vL.

If the switch is closed the algebraic relation vL = u holds,
otherwise iL = 0. Altogether this can be modeled via a
switched behavior with w = (u, iL, vL) and

Rcl(s) =

s 0 0
0 Ls −1
1 0 −1

 , Rop(s) =

s 0 0
0 Ls −1
0 1 0


and, as we do not have modeled any external resetting of the
variables, Jcl(s) = Jop(s) = 0. What would we expect as
solutions? Consider therefore the situation where the switch
is closed for t < 0 and at t = 0 the switch is opened and
remains open. Then all solutions before the switch, i.e. t < 0,
are given by

u(t) = c1, vL(t) = u(t) = c1,

iL(t) =

∫ t 1

L
vL(τ)dτ =

c1t

L
+ c2,

where c1, c2 ∈ R are arbitrary. What is happening now at

a switch for some given past trajectory w? First of all, the
switch does not effect the voltage source, i.e. the defining
equation u̇ = 0 remains valid and u(t) = c1 also for t ≥
0. Furthermore, the new algebraic constraint iL = 0 gets
active, which forces the current iL to jump from its value
iL(0−) = c2 just before the switch to zero. Note that the
defining equation leaves no other choice, any additional jump
rule would not be consistent with the equations. Furthermore,
independently of the switch the inductivity rule holds, in
particular

vL = L d
dt iL = 1(−∞,0)c1 − c2δ0,

when the distributional derivative is used. Additionally to
the jump in vL also a Dirac-impulse occurs (if c2 6= 0),
which can actually be observed in reality as a spark when
opening the switch. Again these “dynamics” at the switch
are already uniquely defined by the physical model. With
the piecewise-smooth distributional solution framework as
defined above we will get exactly this solution which we
obtained by analyzing the circuit by hand. �

The above example showed that, once one has decided
how to model a physical phenomena, the behavior is uniquely
specified at the switching instance including possible Dirac-
impulses. However, a different model might produce different
results as the following example shows.

Example 4 (Example 3, alternative model): Consider the
two circuits from Figure 1b where the switched systems
results from removing the coil from the upper circuit leading
to the lower circuit with an open connection. Different to
the analysis in the previous example the inductivity rule
is now not invariant under switching, but the voltage loop
rule u = vL remains invariant. This results in the switched
behavior with

Rcl(s) =

s 0 0
0 Ls −1
1 0 −1

 , Rop(s) =

s 0 0
0 1 0
1 0 −1

 ,
and, as before, Jcl(s) = Jop(s) = 0. Assume the coil is
removed at t = 0. Carrying out a similar analysis as above
we conclude that all solution are given by

u(t) = c1, vL(t) = c1, iL(t) =

{
c1t
L + c2, t < 0,

0, t ≥ 0.

Now no Dirac impulse occurs in the solution. Nevertheless,
the mathematics again dictate a unique solution behavior at
the switching instance. In conclusion: the physics need to
tell us whether a disconnection of a coil should be modeled
via a switch (as in Figure 1a) or via a complete removal of
the coil from the circuit (as in Figure 1b), the mathematics
will then tell us whether we will see a Dirac impulse or not
in the solution. �

Finally, the solution theory within the space of piecewise-
smooth distribution might also help us to define the “right”
impacts even without invoking physical arguments.

Example 5 (Instantanious resetting): Consider the elec-
trical circuit from Figure 1a and we want to model a “double



switch”, i.e. the opening of the switch for an infinitesimal
short amount of time, resulting in a resetting of the current.
This implies that the dynamics before and after the double
switch are identical and do not yield any jumps or impulses
in the state. However, if we introduce a small time delay
between the opening and closing of the switch, we obtain
jumps and impulses which converge to a well defined jump
and impulse if we let the time delay going to zero. In fact, we
have the following jumps and impulses where the switching
time is at t = 0 and the time delay is ε > 0, using the
notation from Example 3:

w(0+) =

1 0 0
0 0 0
0 0 0

w(0−),
w[0] =

0 0 0
0 0 0
0 −L 0

w(0−)δ0,
w(0 + ε+) =

1 0 0
0 1 0
1 0 0

w(0 + ε−),

w[0 + ε] = 0.

Letting ε go to zero and invoking u = uL if the switch is
closed we obtain for the “double switch”:

w(0+) =

1 0 0
0 0 0
0 0 1

w(0−),
w[0] =

0 0 0
0 0 0
0 −L 0

w(0−)δ0,
i.e. the current is reset to zero and this jump induces a Dirac-
impulse. This solution behavior can now be described by

Rσ(s) =

s 0 0
0 Ls −1
1 0 −1

+

0 0 0
0 0 0
0 −L 0

 δ0,
where the switching signal σ is such that the impact happens
at t = 0. �

Remark 6 (Distributional behaviors): The class of
switched behavior given by (5) is a special case of the more
general distributional behavior

B = kerR( d
dt ) ⊆ (DpwC∞)n,

where R(s) ∈ (DpwC∞)m×n[s] is a polynomial matrix whose
coefficients are general piecewise-smooth distribution. This
generalization encompasses smoothly time varying system as
e.g. studied in [6] or distributional DAEs as studied in [12],
[13]. However, general results for this class of behaviors are
more difficult to obtain and are a topic for future research.�

V. AUTONOMY OF SWITCHED BEHAVIORS

In this section we will study autonomy of switched be-
haviors which is defined by the property

(w1)(−∞,t) = (w2)(−∞,t) ⇒ w1 = w2

which has to hold for all w1, w2 ∈ Bσ and all t ∈ R. It
is well known [9] that autonomy for classical behaviors in
kernel representation, i.e. B = kerR( d

dt ) for some polyno-
mial matrix R(s) ∈ Rm×n[s], is equivalent to “regularity”
of R(s):

R(s) is regular ⇔ R(s) is square and detR(s) 6≡ 0.

It will turn out that autonomy of the individual non-switched
behaviors of a switched behavior is necessary and sufficient
for autonomy of the switched behavior for all switching
signals. We first consider the case without impacts.

Theorem 7: Consider a family of polynomial matrices
Rp(s) ∈ Rm×n[s], p ∈ P , and assume that there is an upper
bound d ∈ N for the polynomial degrees of all Rp(s). Then
the corresponding switched behavior Bσ without impacts
(i.e. with Jp(s) = 0 for all p ∈ P) is autonomous for all
switching signals σ if, and only if, each classical behavior
Bp := kerRp(

d
dt ) is autonomous.

Proof: Necessity is clear, because if one single behavior
is not autonomous then choosing the corresponding constant
switching signals yields a switched behavior which is iden-
tical to the non-autonomous behavior. Hence it remains to
show sufficiency. To this end, we first transform the high
order description to a first order description via the standard
trick to also include derivatives of the original variable into
the description. The first order behavioral matrices are then
given by

R̂p =


sI −I

. . . . . .
sI −I

R0
p · · · Rd−2p Rd−1p + sRdp

 ,
where Rp(s) =

∑d
i=0R

i
ps
i. Then it is easily seen that

each behavior Bp is isomorphic to the first order behav-
ior B̂p := ker R̂p(

d
dt ) via the isomorphism w 7→ ŵ =

(w, ẇ, ẅ, . . . , w(d−1)) and the same is true for the cor-
responding switched behaviors Bσ and B̂σ (because the
conditions d

dt ŵi = ŵi+1, i = 0, 1, . . . , d − 2, are switch
independent). In particular Bσ is autonomous if, and only
if, B̂σ is autonomous. As R̂p(s) is of degree one, the
corresponding behavior can be written as

B̂p =
{
x ∈ (DpwC∞)nd

∣∣ Epẋ = Apx
}

with suitable Ep, Ap ∈ Rnd×nd. In particular, the switched
behavior B̂σ is in fact a switched DAE as studied in [12]:

B̂σ =
{
x ∈ (DpwC∞)nd

∣∣ Eσẋ = Aσx
}
.

In [12] it was shown that B̂σ is autonomous for all switching
signals if, and only if, the matrix pairs (Ep, Ap) are regular.
It therefore remains to show that

det(sEp −Ap) ≡ 0 ⇔ detRp(s) ≡ 0.

Now det(sEp −Ap) ≡ 0 is equivalent to the property

∀λ ∈ C ∃v̂ = (v̂0, v̂1, . . . , v̂d−1) ∈ Cnd : (λEp−Ap)v̂ = 0,



Due to the definition of Ep, Ap the condition (λEp−Ap)v̂ =
0 is equivalent to

v̂i = λiv̂0, i = 0, . . . , d− 1, and
d∑
i=0

Ripλ
iv̂0 = 0.

Hence singularity of (Ep, Ap) is equivalent to

∀λ ∈ C ∃v ∈ Cn : R(λ)v = 0

which is a characterization of detR(s) ≡ 0 and the proof is
complete.

Remark 8: Autonomy of the switched behavior Bσ in
particular implies that jumps and impulses at the switching
instances are already uniquely defined by the “continuous”
dynamics of each constituent behavior. This is a remarkable
feature of our proposed framework but which is well moti-
vated by physical examples, see e.g. Example 3.

We will now show that autonomy of the switched behavior
is independent of the impacts (c.f. [12, Prop. 3.2.2(iv)]).

Theorem 9: Consider a switched behavior Bσ =
kerRσ( d

dt ) with Rσ(s) as in (5) and the corresponding
impact-free behavior Bif

σ = kerRif
σ(s) with Rif

σ(s) =∑
i∈Z 1[ti,ti+1)Rσ(ti+)(s). Then Bσ is autonomous if and

only if Bif
σ is autonomous.

Proof: Consider two solutions w1, w2 ∈ (DpwC∞)n

within the switched behavior Bσ . Then due to linearity
w := w1 − w2 ∈ Bσ . Assume w1 = w2 on (−∞, t) for
some t ∈ R, i.e., w = 0 on (−∞, t). Without restricting
generality we can assume that t is a switching time of σ.
Now, with { ti ∈ R | i ∈ Z } the switching times of σ and
t+1 the next switching time after t,

Rσ( d
dt )(w)(−∞,t+1)

=

(∑
i∈Z

(
1[ti,ti+1)Rσ(ti+)(

d
dt )(w)

+ Jσ(ti+)(
d
dt )(δti)w

))
(−∞,t+1)

= 1[t,t+1)Rσ(t+)(
d
dt )(w) + Jσ(t+)(

d
dt )(δt)w.

Invoking (2) and the product rule one obtains (c.f. [13,
Rem. 6])

δ
(i)
t w =

i∑
j=0

(−1)j
(
i
j

)
w(j)(t−)︸ ︷︷ ︸

=0

δ
(i−j)
t = 0,

hence Jσ(t+)(
d
dt )(δt)w = 0 and

Rσ( d
dt )(w)(−∞,t+1) = 1[t,t+1)Rσ(t+)(

d
dt )(w).

Together with an inductive argument this shows that Bσ is
autonomous if, and only if Bif

σ is autonomous.
We can now combine our two main results to obtain a

complete characterization of autonomy of general switched
behaviors.

Corollary 10: Consider the switched behavior Bσ given
by Rσ(s) as in (5) and denote with Bp the classical
behaviors induced by Rp(s) and assume that the polynomial

degree is upper bounded independently of p ∈ P . Then Bσ

is autonomous for all switching signals σ if, and only if, Bp

is autonomous for all p. �

VI. CONCLUSIONS

We have presented a new framework for switched behav-
iors, whose major advantage compared to previous frame-
work is the capability to write the behavior (globally) as
the kernel of a polynomial matrix. For this the space of
piecewise-smooth distributions is utilized. Within this new
framework we were able to characterize autonomy of the
switched behavior in terms of the constituent non-switched
behaviors.

Future work on switched behaviors will concentrate on
generalizing classical systems theoretical results like stabil-
ity, controllability or normal forms. Due to the presence of
jumps and impulses in the trajectories it is expected that
these generalizations have to involve new arguments and are
not always straightforward.
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