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Abstract— We propose a new approach to achieve practical
synchronization for heterogeneous agents. Our approach is
based on the observation that a sufficiently large (but constant)
gain for diffusive coupling leads to practical synchronization.
In the classical setup of high-gain adaptive control, the funnel
controller gained popularity in the last decade, because it is
very simple and only structural knowledge of the underlying
dynamical system is needed. We illustrate with simulations
that “funnel synchronization” may be a promising approach
to achieve practical synchronization of heterogeneous agents
without the need to know the individual dynamics and the
algebraic connectivity of the network (i.e., the second smallest
eigenvalue of the Laplacian matrix). For a special case we
provide a proof, but the proof for the general case is ongoing
research.

I. INTRODUCTION

We consider heterogeneous agents, whose dynamics are
given by

ẋi = fi(t, xi) + ui, xi(0) = x0i i = 1, 2, . . . , N, (1)

where N ∈ N is the total number of agents, xi(t) ∈ R is
the (scalar) state-variable of agent i governed by the time-
varying nonlinear vector field fi : [0,∞) × R → R and
the input ui(t) ∈ R. We assume that the agents are coupled
with each other via a graph (G,E) with the node set G =
{1, 2, . . . , N} and the edge set E ⊆ G×G, where (j, i) ∈ E
if, and only if, there is an information flow from agent j
to agent i. We denote the adjacency matrix of (G,E) by
A ∈ {0, 1}N×N , i.e. Aij = 1 if and only if (j, i) ∈ E.
Furthermore, let 1N := (1, 1, . . . , 1)> ∈ RN and

d = (d1, d2, . . . , dN )> := A 1N , D := diag (d),

L := D −A, L := D−1L,

in which di is the (in)-degree of the i-th node and L is the
Laplacian of (G,E).

Suppose now that those agents are coupled by a propor-
tional error feedback:

ui = −kiei, i ∈ G, (2)

where ki > 0 is the coupling strength and the error ei is the
difference between the i-th agent’s own state and the average
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of its neighbours’ states, i.e.

ei := xi − xi := xi −
1

di

∑
j∈Ni

xj , (3)

where Ni := { j 6= i | (j, i) ∈ E } is the set of neighbors
of agent i; in particular

e = Lx.

Then the dynamics of the coupled agents can now be
rewritten as

ẋ = f(t, x)− kLx, x(0) = x0,

where

f(t, x) := (f1(t, x1), . . . , fN (t, xN ))>, (4)

k = diag (k1, k2, . . . , kN ) and x0 := (x01, . . . , x
0
N ).

In [6] the gain ki := kdi for some k > 0 was chosen, i.e.
(2) becomes the diffusive coupling

ui = −k
∑
j∈Ni

(xi − xj), i ∈ G, (5)

or, equivalently,
u = −kLx

and it was shown that practical synchronization can be
achieved if k is sufficiently large; in fact for any ε > 0
there exists K > 0 such that for all k ≥ K it holds that

lim sup
t→∞

|xi(t)− s(t)| < ε,

where s : [0,∞) → R is the solution of the averaged
dynamics

ṡ =
1

N

N∑
i=1

fi(t, s), s(0) =
1

N

N∑
i=1

x0i . (6)

In particular, the agents synchronize practically and the re-
sulting trajectory does neither depend on the graph topology
nor on the specific chosen coupling strength k (as long as
it is larger than a threshold), under the assumption that (6)
is asymptotically stable. A problem in the above work is
finding the threshold K because the algebraic connectivity
of the network graph (the second smallest eigenvalue, say
λ2, of L) and the growth of the nonlinear functions fi
affects K. The same difficulty arises for other consensus
and synchronization problems, which are often handled by
estimating λ2 or employing adaptive technique for tuning the
gain k; see, for example, [1], [8].



In the context of adaptive control the above result is a
typical “high gain” approach: choosing the feedback gain k
sufficiently large leads to an arbitrarily accurate tracking of
a desired trajectory, c.f. the survey [3]. Typical problems of
high gain adaptive control are: 1) The necessary minimal
value for the gain k is often not known and 2) a large gain k
will in general amplify noise resulting in poor performance
or even instability. Both problems are resolved with the so-
called funnel controller, first introduced in [4]. The idea is
rather simple: define a time-varying gain k(·) such that it
is large when the error variable approaches the boundary
of the allowed (time-varying) error region (the funnel) and
small otherwise (i.e. when the error is already sufficiently
small and no control action is required).

It is therefore a canonical idea to combine both approaches
(high gain synchronization and funnel control) in order to
synchronize heterogenous agents adaptively with the funnel
controller. However, the combination is not straight-forward,
because the desired trajectory for synchronization s(·) is not
known to the individual agents (for this the agents need
to know all dynamics of the other agents as well as the
initial values), and only the local error is available for each
agent (i.e. each agent compares its state value only with the
state values of its neighbors). It should be noted that funnel
control was used already for synchronization of connected
agents in [2], but there synchronization was “enforced from
the outside” by a given common reference trajectory, which
all agents should follow and the interconnection just played
the role of a bounded disturbance. In particular, the error for
each agent was defined with respect to the externally given
reference trajectory and not with respect to its neighbors.

In this note we propose two approaches for funnel syn-
chronization (decentralized and weakly centralized) and il-
lustrate the effectiveness by simulations. So far we could
only prove a special case (weakly centralized for a suffi-
ciently connected regular graph) and relaxing these (presum-
ably too strong) assumptions is a topic of future research.

II. FUNNEL SYNCHRONIZATION

The major “ingredient” for funnel control is the desired
time-varying error bound—the funnel F—given by a scalar
function ϕ : [0,∞)→ [ϕ,ϕ] with ϕ > ϕ > 0:

F := { (t, e) | |e| ≤ ϕ(t) } ⊆ [0,∞)× R

and the goal is to design a feedback law such that the error
t 7→ e(t) evolves within F for all t ≥ 0 (see Figure 1). In
particular, the choice of the funnel boundary ϕ reflects the
desired final accuracy of the synchronization as well as the
speed of “convergence.”

As mentioned in the introduction the idea of funnel control
is to make the gain large whenever the error approaches
the funnel boundary and a typical choice (other choices are
possible, see [5]) is the reciprocal distance between the error
and the funnel boundary:

kϕ(t, e) :=
1

ϕ(t)− |e|
. (7)

t

ϕ(t)

−ϕ(t)

e(t)

F

ϕ

ϕ

Fig. 1: The funnel F .

We propose now two approaches for practical synchroniza-
tion of heterogeneous agents via funnel control.

We call the feedback law

ui(t) = −ki(t)ei(t), (8)

where
ki(t) := kϕ(t, ei(t)),

decentralized funnel synchronization, i.e. each agent uses its
own feedback gain based on the locally available error ei
given by (3). On the other hand we call the feedback law

ui(t) = −kmax(t)diei(t), (9)

where
kmax(t) := max

i∈G
kϕ(t, ei(t))

weakly centralized funnel synchronization, i.e. each agent
first calculates its own gain based on the local error and
then all agents communicate their gain to the others and
the maximal gain (scaled by the degree di of each agent) is
applied. Note that in (9) the factor di is included in order to
obtain a time-varying version of the diffusive coupling (5).

III. SIMULATIONS

Before presenting some preliminary theoretical results for
funnel synchronization, we present and discuss some simula-
tions, i.e. we “prove by example” that funnel synchronization
works. For the simulation we consider agents as given in the
simulations of [7], i.e. the i-th agent is governed by

fi(t, xi) = (−1 + δi)xi + 10 sin t

+ 10m1
i sin(0.1t+ θ1i ) + 10m2

i sin(10t+ θ2i ),

where δi, m1
i , m2

i are independent random variables of
standard normal distribution N(0, 1) and θ1i , θ2i are inde-
pendent random variables of uniform distribution on [0, 2π].
We consider N = 5 agents in a ring topology, i.e.

L =

[
2 -1 0 0 -1
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
-1 0 0 -1 2

]
, (10)

see also Figure 2a.
The initial value for each agent is chosen randomly with

standard normal distribution N(0, 1).
The synchronization with diffusive coupling (5) and con-

stant gain k = 10 is illustrated in Figure 3. Note that in all
the following simulations the same (random) parameters are
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Fig. 2: Different graph topology used in the simulation for N = 5 agents.
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Fig. 3: Synchronization with constant gain k = 10 and N = 5 agents in an
undirected ring topology. The thick black line is the solution of the averaged
dynamics given by (6).

chosen (in this set of parameters, agent 2 had δ2 > 1, and
so, it was even unstable before coupling).

As funnel boundaries we choose an exponentially decay-
ing funnel boundary:

ϕ(t) = ϕ+ (ϕ− ϕ)e−λt

with ϕ = 20, ϕ = 1, λ = 1. The simulation result for the
decentralized funnel synchronization (8) is shown in Figure 4
for five agents connected via an undirected ring topology, i.e.
with Laplacian (10).
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Fig. 4: Decentralized funnel synchronization (above) and the correspond-
ing gains (below). The thick black line above is the solution of the averaged
dynamics given by (6). Funnel parameters: ϕ = 20, ϕ = 1, λ = 1; N = 5
agents in an undirected ring topology.

Clearly, the agents synchronize practically, but not to the
trajectory of the averaged dynamics. It turns out that the pic-

ture remains qualitively the same (with the same “limiting”
trajectory) when a directed graph (see Figure 2b), instead
of an undirected, is used (see Figure 5), when the funnel
shape is changed (see Figure 6), or when the underlying
graph is changed (see Figure 7) where the agents form a
fully connected graph (see Figure 2c).
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Fig. 5: Decentralized funnel synchronization (above) and the corresponding
gains (below). The thick black line above is the solution of the averaged
dynamics given by (6). Funnel parameters: ϕ = 20, ϕ = 1, λ = 1; N = 5
agents in a directed ring topology.
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Fig. 6: Decentralized funnel synchronization (above) and the corresponding
gains (below). The thick black line above is the solution of the averaged
dynamics given by (6). Funnel parameters: ϕ = 30, ϕ = 2, λ = 0.3;
N = 5 agents in ring topology.

What does however change the limiting trajectory is an
additional amplification term in the gain formula:

kϕ(t, e) =
κ

ϕ(t)− |e|
.

Increasing κ results in convergence of the limit trajectory
of the funnel controller towards the averaged trajectory, see
Figure 8 for κ = 200.

Another possibility to approach the averaged dynamics
given by (6) is to use the weakly centralized funnel synchro-
nization (9). The simulation results are shown in Figure 9.
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Fig. 7: Decentralized funnel synchronization (above) and the corresponding
gains (below). The thick black line above is the solution of the averaged
dynamics given by (6). Funnel parameters: ϕ = 20, ϕ = 1, λ = 1; N = 5
agents in fully connected topology.
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Fig. 8: Decentralized funnel synchronization (above) and the corresponding
gains (below). The thick black line above is the solution of the averaged
dynamics given by (6). Funnel parameters: ϕ = 20, ϕ = 1, λ = 1; N = 5
agents in ring topology; additional funnel amplification κ = 200.

IV. FIRST PRELIMINARY THEORETICAL RESULTS

A first step towards the proof that funnel synchronization
works is the following lemma that shows that finite escape
time cannot occur, provided the dynamics of the discon-
nected individual agents do not exhibit a certain finite escape
time property:

Assumption 1: Let f be given by (4) and for

g : R≥0 × R≥0 → R : (t, α) 7→ max
‖z‖2=

√
2α
z>f(t, z)

assume that
α̇ = g(t, α), α(0) ≥ 0, (11)

has a solution α : [0,∞)→ R≥0 for any nonnegative initial
value (in particular, finite escape time does not occur).

Remark 1: Assumption 1 is stronger than the simple as-
sumption that ẋ = f(t, x) does not exhibit finite escape time.
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Fig. 9: Weakly centralized funnel synchronization (above) and the
corresponding gain (below). The thick black line above is the solution of
the averaged dynamics given by (6). Funnel parameters: ϕ = 20, ϕ = 1,
λ = 1; N = 5 agents in an undirected ring topology.

As a “counter example” consider f1(t, x1) = (1 + sinx1)x21
and f2(t, x2) = (1 − sinx2)x22. Clearly, ẋ = f(t, x) does
not exhibit finite escape time (because each of x1(t) and
x2(t) will get stuck in some interval (kπ, (k + 1)π) for
some integer k). On the other hand, their averaged dynamics
(6) is ṡ = s2 whose solution with positive initial value
exhibits finite escape time. Hence any feedback law which
shows practical convergence towards the average dynamics
(e.g. weakly centralized funnel control) also exhibits finite
escape time, which of course is not desired. It is noted that
Assumption 1 is not satisfied for this example.

Lemma 2 (No finite escape time): Consider a nonlinear
system

ẋ = f(t, x)−M(t, x)x, x(0) = x0 ∈ Rn (12)

with f given by (4) satisfying Assumption 1 and some matrix
function M : R × Rn → Rn×n for which M(t, x) is
positive semidefinite for any pair (t, x). Then any solution
x : [0, ω)→ Rn of (12) with ω > 0 is bounded.

Proof: Let x : [0, ω) → Rn be a solution of (12), let
α : [0,∞) → R be a solution of (11) with initial condition
α(0) = 1

2‖x
0‖22 and let Cω := supt∈[0,ω) α(t) <∞ (because

ω <∞ and α is continuous). Then
d
dt (

1
2‖x(t)‖22) = x(t)>ẋ(t)

= x(t)>f(t, x(t))−

≥0︷ ︸︸ ︷
x(t)>M(t, x(t))x(t)

≤ max
‖z‖2=‖x(t)‖2

z>f(t, z) = g
(
t, 12‖x(t)‖22

)
.

Hence, for all t ∈ [0, ω)

1
2‖x(t)‖22 ≤ α(t),

in particular,
‖x(t)‖2 ≤

√
2Cω.



Assumption 2: The coupling graph (G,E) is undirected,
connected and contains no self loops, i.e. A is symmetric,
rank A = N − 1 and Aii = 0 for all i ∈ G.

Corollary 3: Consider agents given by (1) whose dy-
namics satisfy Assumption 1 and whose network topology
satisfies Assumption 2. Then under using weakly centralized
funnel synchronization (9) the state variable cannot exhibit
finite escape time.

Proof: Recall that the Laplacian of undirected graph is
positive semidefinite. Then the claim follows from Lemma 2
as in the feedback loop the dynamics are given by

ẋ = f(t, x)− kmax(t)DLx

and M(t, x(t)) := kmax(t)DL = kmax(t)L is positive
semidefinite as a time-varying scalar multiple of the positive
semidefinite Laplacian1.

In the following we will prove that the weakly central-
ized funnel synchronization works provided the following
assumptions hold.

Assumption 3: The funnel boundary ϕ : [0,∞) → [ϕ,ϕ]
is continuously differentiable and non-increasing, and the
initial values x0 ∈ Rn of the agents satisfy:∣∣∣∣∣∣x0i − 1

di

∑
j∈Ni

x0j

∣∣∣∣∣∣ < ϕ(0), ∀i = 1, 2, . . . , N.

Assumption 4: The graph (G,E) is d-regular (i.e. di = d
for all i ∈ G) with

d >
N

2
− 1.

Assumption 5: Assume that (t, x) 7→ f(t, x) given by (4)
is locally Lipschitz in x and measurable in t.

Theorem 4 (Weakly centralized funnel synchronization):
Consider the multi-agent system (1) satisfying Assumptions
1-5. Then weakly centralized funnel synchronization (9)
works, i.e. there exists a global solution x : [0,∞) → Rn
and each agent’s error evolves within the funnel, i.e. for all
i ∈ G

|xi(t)− xi(t)| ≤ ϕ(t), ∀t ≥ 0, (13)

where xi is given by (3). In particular, there exists C > 0
only depending on the graph topology such that for all i, j ∈
G

|xi(t)− xj(t)| ≤ Cϕ(t), ∀t ≥ 0, (14)

i.e. practical synchronization is achieved because ϕ(t) can
be chosen as small as desired for large t.

Proof: Let

Ωϕ :=
{

(t, x) ∈ R≥0 × Rn
∣∣ ‖e‖∞ = ‖Lx‖∞ < ϕ(t)

}
.

Since f(t, x) − kmax(t)DLx is locally Lipschitz in x and
measurable in t on Ωϕ, standard theory of ODEs (e.g.
[11, Thm. 10.XX]) yields existence and uniqueness of a
maximally extended solution x : [0, ω) → Rn such that

1Note that in general KL is not necessarily positive semidefinite for
some positive semidefinite matrix L and some positive diagonal matrix K,
hence Lemma 2 cannot be used in the decentralized case where K is not a
positive multiple of the identity matrix.

(t, x(t)) belongs to Ωϕ. If ω = ∞, then (13) follows. We
will now show that ω <∞ leads to a contradiction.

Towards this end we show that the set

Ωϕ,ε :=
{

(t, x)
∣∣ t ∈ [0, ω), ‖Lx‖∞ ≤ ϕ(t)− ε

}
is positively invariant for sufficiently small positive ε such
that

ε < min

{
ϕ

2
,

ϕ

2(Cf̃ + Cϕ̇)
,
ϕ(0)−maxi∈G |ei(0)|

2

}
(15)

where Cϕ̇ := supt∈[0,ω) |ϕ̇(t)| and

Cf̃ := max
i∈G

sup
t∈[0,ω)

∣∣∣∣∣∣fi(t, xi(t))− 1

di

∑
j∈Ni

fj(t, xj(t))

∣∣∣∣∣∣ <∞
which is well-defined since x is bounded in a finite time
interval due to Corollary 3. Suppose that there exist tε ∈
(0, ω) and i ∈ {1, . . . , N} such that ϕ(tε) − |ei(tε)| = ε
and ϕ(tε)− |ej(tε)| ≥ ε for all j 6= i. Without restriction of
generality we may further assume that i = 1. This implies
that kmax(tε) = 1/ε. Then

ė1 = f1(t, x1)− kmax(t)d1e1 − ẋ1

= f̃1(t, x)− kmax(t)d1e1 +
1

d1

∑
j∈N1

kmax(t)djej ,

where f̃1(t, x) := f1(t, x1) − f1(t, x) := f1(t, x1) −
1
d1

∑
j∈N1

fj(t, xj). Since (G,E) is assumed to be d-regular,
the expression for ė1 simplifies to

ė1 = f̃1(t, x)− kmax(t)

de1 − ∑
j∈N1

ej

 .

For any undirected graph (G,E) we have that

(d1, d2, . . . , dN )L = 1>NL = 0,

in particular,

(d1, d2, . . . , dN )e = (d1, d2, . . . , dN )Lx = 0.

For the d-regular case this implies that∑
j∈N1

ej = −e1 −
∑

j /∈N1∪{1}

ej

and we arrive at

ė1 = f̃1(t, x)− kmax(t)

(d+ 1)e1 +
∑

j /∈N1∪{1}

ej

 .

Assume that e1(tε) ≥ 0 (the case e1(tε) ≤ 0 can be treated
completely analogously). Then, invoking e1(tε) ≥ |ej(tε)|
for all j,

ė1(tε) ≤ Cf̃ −
1

ε
(d+ 1)e1(tε) +

1

ε
(N − d− 1)e1(tε)



because the cardinality of N1 ∪ {1} is d + 1. This in turn
implies that, by Assumption 4 with the fact that N and d
are integers,

ė1 ≤ Cf̃ −
1

ε
(2d− (N − 2))e1(tε)

≤ Cf̃ −
1

ε
e1(tε).

Since ϕ/2 > ε = ϕ(tε) − e1(tε) ≥ ϕ − e1(tε) we can
conclude, by (15), that

ė1(tε) ≤ Cf̃ −
ϕ

2ε
< −Cϕ̇ ≤ ϕ̇(tε).

So, the distance ϕ(t)− e(t) between the funnel boundary ϕ
and the error e1 has a positive derivative at t = tε, i.e. it
increases at tε, which shows that the set Ωϕ,ε is positively
invariant. In particular, the solution x has a positive distance
from the boundary of Ωϕ, and thus, ω =∞ and (13) follows.

In order to obtain (14) from (13), let R be a N × (N −1)
matrix such that [1N , R] becomes nonsingular, and, for each
x, there are ξ0 ∈ R and ξ̄ ∈ RN−1 such that x = 1Nξ0+Rξ̄.
Since the graph is connected, 0 is the simple eigenvalue of L
and nullity of L is 1 with a basis of {1N}, so that LR =: A
has full column rank. Let δi,j be a row vector whose i-th
element is 1, j-th element is −1, and other elements are 0.
Then, since e = Lx = L(1Nξ0+Rξ̄) = Aξ̄ and ‖e‖ ≤

√
Nϕ

by (13),

|xi−xj |= |δi,jx| = |δi,j1Nξ0 + δi,jRξ̄| = |δi,jRξ̄|
≤max
i,j∈G

‖δi,jR‖‖ξ̄‖= max
i,j∈G

‖δi,jR‖‖(ATA)−1AT e‖

≤max
i,j∈G

‖δi,jR‖‖(ATA)−1AT ‖
√
Nϕ =: Cϕ

which shows (14).
Since the ring topology with N = 5 agents is d-regular

with d = 2 > N
2 −1 = 1.5, our Theorem 4 shows that weakly

centralized funnel synchronization works for the example
also studied in [7], i.e. Figure 9 is not a coincidence. In fact,
our result generalizes the stability result of [7] significantly,
because we do neither need to assume that the averaged
dynamics (6) are bounded nor that ∂fi(t,xi)

∂xi
is bounded;

however, in that case we cannot guarantee boundedness of
the gain k(·).

We expect that also the other simulation results shown
in Figures 4–8 are not a coincidence, i.e. in particular
we should be able to relax Assumption 4 and also allow
for a decentralized control. A possible approach to handle
the more general case might be contraction analysis [9],
which was already successfully applied in the context of
synchronization [10].

V. CONCLUSION

A preliminary result is obtained that utilizes funnel control
to the problem of practical consensus for heterogeneous
agents. This approach (which we call funnel synchronization)
can provide some required amount of high gain automati-
cally, one need not know the required threshold of the gain
for consensus. Moreover, the high gain effect applies only
when it is necessary; that is, if all the trajectories are already
close to each other then the coupling gain becomes small,
which is another benefit of funnel synchronization.

Our repeated simulation study shows that the aforemen-
tioned benefits of funnel synchronization apply for most
cases of decentralized synchronization schemes under gen-
eral connected network graphs. In this paper, however, we
have presented rigorous arguments just for weakly central-
ized funnel synchronization under a regular graph.
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