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In many tracking control problems, pre-specified bounds for théugwa of the tracking error should be met. The 'funnel
controller’ addresses this requirement and guarantees transiémtnpance for a fairly large class of systems. In addition,
only structural assumptions on the underlying system are made; thekexadedge of the system parameters is not required.
This is in contrast to most classical controllers where only asymptotiofmiracan be guaranteed and the system parameters

must be known or estimated. Until now, the funnel controller was onlyietuitheoretically. We will present the results of
an analogue implementation of the funnel controller. The results showhihdtinnel controller works well in reality, i.e. it
guarantees the pre-specified error bounds. The implementation isabrga@ circuit composed of standard devices and is
therefore suitable for a broad range of applications.

1 Introduction

The funnel controller was developed to solve tracking pro
lems for a class of nonlinear systems described by fundti

differential equations such that prespecified error bowands

met.
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Fig. 1 Universal error feedback control.

The system clasks for which the funnel controller is show
to work is described in detail in [3]. The main property
systems belonging t& is that they are high-gain stabilizabl
i.e. large inputs, yields large derivatives of in the “right”

direction. The system cladsallows for bounded disturbang
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for details) there are no restrictions on the shape of thedlin

it is, for example, possible to allow for larger error bouds
bSpecific times in view of a priori known disturbances such as
PB&egular re-calibration of sensors.

Fig. 2 Performance funnef.
For a prespecified funnéet the funnel controller is given by
hthe simple proportional error feedback

of u(t) = —k(t)e(t), t>0,
Ewhere the time varying gaih(-) is defined as
e k(t) = Kr(t,e(t)).

p, and functional operatorg such as hysterises and delayghe continuous nonlinear and memoryless functigp :

Linear minimum-phase systems with relative degree one

e-— R is the “heart” of the funnel controller. If it exhibits

long toX as well as a broad class of infinite dimensional lineéwo specific properties, it is shown that the tracking cadrigro

systems [3]. It should be highlighted here, that the funoatg

solved, i.e. the error evolves within the funnel for the vehol

troller does not depend on the specific system, but is the saime [3, Thm. 2]. The first of which ensures that# e(¢))

for all systems in clas¥; the same control-law will achieveapproaches the funnel boundary, then the gain attainss/alue
the prespecified error bounds for a simple finite dimensiosaifficiently large to preclude boundary contact, and the sec
linear system, a highly nonlinear system or a infinite dimeand of which obviates the need for large gain values away

sional linear system.
The desired error bounds are given by a regioC R > x

from the funnel boundary.
The funnel controller was first introduced in [2], whekér

R™, the funnel, wherex € N is the dimension of the outputhad a very special form. A generalization of this approach
y of the system (see Figure 2). The funnel controller ensureas studied in [3]. A first step in the direction of applicaiso

that the erroe = y — yet between the system’s output and
reference signajyes fulfills (¢, e(t)) € F forall ¢ > 0.

hevas done in [4], where the funnel controller was applied to a
model of chemical reactors in the presence of input saturati

The funnelF plays two Dles: it governs the asymptotic beNevertheless only simulations were carried out. Until ntige

haviour and it describes precisely the desired transiem

no “real world implementation” of the funnel controller was

iour of the error. Besides some smoothness conditions 8¢eedone.
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2 Implementation of the funnel con-

troller with analogue circuits

We restrict ourselves to the scalar case, i.e. the oytpéithe
system is a real-valued function. The funnel is given by

Fi={(te) [t>0,p(t)e| <1},

wherey : R>9 — R>( is any bounded differentiable fun
tion with bounded derivative angd(t) > 0 for all t > 0. As
gain functionK » we consider, fo(t, e) € F,

o(t) 1
L= p)e] ~ 1/p(t) = le]’
i.e. K is the reciprocal of the “vertical” distance of the erf
to the funnel boundary.
The aim is to design a circuit which implements the con
law

K]:(t? 6) =

p(t)e(t)
1= o(t)]e(t)]
The above control law can be represented as a block diag

where the output of a blocks stands for point-wise multgsli
tion of the input with the value of the block.

u(t) = —

Fig. 3 Control law as block diagram.

Note thatp(t) is an external signal which can be chosen a
trarily by the user. Therefore the control law can be redli
by the following circuit:

o(t)

()=

3—

Fig. 4 Structure of the circuit implementation.

3 Experiments

For the implementation, we used standard circuits for
negation, the adder and the full wave rectifier (producirgy
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Fig.5 Controlled output (thick line) and reference signal.

L L L L L
0 10 12 14 16 18 20

~
"

or

/’7 L
2 4 6 8 10 12

I
18

0

trol

ram,

Fig. 7 Control input (thick line) and error.

As can be seen clearly, the funnel achieves tracking of the
reference signal with the prespecified accuracy. Due to the
circuit design it was not possible to measure the value of the
gaink(t), nevertheless the gain function can be calculated by
k(t) = —u(t)/e(t). Note that the gain was set to zero for
rigmall errors to suppress noise induced peaks. The obtained
zgain function is shown in the following figure:

I
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Fig. 8 Gain function (thick line) and error.
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Note that the final maximal value of the gain function settles
at a value of 18.
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