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Analogue Implementation of the Funnel Controller
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In many tracking control problems, pre-specified bounds for the evolution of the tracking error should be met. The ’funnel
controller’ addresses this requirement and guarantees transient performance for a fairly large class of systems. In addition,
only structural assumptions on the underlying system are made; the exact knowledge of the system parameters is not required.
This is in contrast to most classical controllers where only asymptotic behaviour can be guaranteed and the system parameters
must be known or estimated. Until now, the funnel controller was only studied theoretically. We will present the results of
an analogue implementation of the funnel controller. The results show thatthe funnel controller works well in reality, i.e. it
guarantees the pre-specified error bounds. The implementation is an analogue circuit composed of standard devices and is
therefore suitable for a broad range of applications.
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1 Introduction

The funnel controller was developed to solve tracking prob-
lems for a class of nonlinear systems described by functional
differential equations such that prespecified error boundsare
met.
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Fig. 1 Universal error feedback control.

The system classΣ for which the funnel controller is shown
to work is described in detail in [3]. The main property of
systems belonging toΣ is that they are high-gain stabilizable,
i.e. large inputsu yields large derivatives ofy in the “right”
direction. The system classΣ allows for bounded disturbance
p, and functional operatorsT such as hysterises and delays.
Linear minimum-phase systems with relative degree one be-
long toΣ as well as a broad class of infinite dimensional linear
systems [3]. It should be highlighted here, that the funnel con-
troller does not depend on the specific system, but is the same
for all systems in classΣ; the same control-law will achieve
the prespecified error bounds for a simple finite dimensional
linear system, a highly nonlinear system or a infinite dimen-
sional linear system.
The desired error bounds are given by a regionF ⊂ R≥0 ×
R

n, the funnel, wheren ∈ N is the dimension of the output
y of the system (see Figure 2). The funnel controller ensures
that the errore = y−yref between the system’s output and the
reference signalyref fulfills (t, e(t)) ∈ F for all t ≥ 0.
The funnelF plays two r̂oles: it governs the asymptotic be-
haviour and it describes precisely the desired transient behav-
iour of the error. Besides some smoothness conditions (see [3]

for details) there are no restrictions on the shape of the funnel,
it is, for example, possible to allow for larger error boundsat
specific times in view of a priori known disturbances such as
a regular re-calibration of sensors.
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Fig. 2 Performance funnelF .
For a prespecified funnelF the funnel controller is given by
the simple proportional error feedback

u(t) = −k(t) e(t), t ≥ 0,

where the time varying gaink(·) is defined as

k(t) = KF

(

t, e(t)
)

.

The continuous nonlinear and memoryless functionKF :
F → R is the “heart” of the funnel controller. If it exhibits
two specific properties, it is shown that the tracking control is
solved, i.e. the error evolves within the funnel for the whole
time [3, Thm. 2]. The first of which ensures that, if(t, e(t))
approaches the funnel boundary, then the gain attains values
sufficiently large to preclude boundary contact, and the sec-
ond of which obviates the need for large gain values away
from the funnel boundary.
The funnel controller was first introduced in [2], whereKF

had a very special form. A generalization of this approach
was studied in [3]. A first step in the direction of applications
was done in [4], where the funnel controller was applied to a
model of chemical reactors in the presence of input saturation.
Nevertheless only simulations were carried out. Until recently
no “real world implementation” of the funnel controller was
done.
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2 Implementation of the funnel con-
troller with analogue circuits

We restrict ourselves to the scalar case, i.e. the outputy of the
system is a real-valued function. The funnel is given by

F := { (t, e) | t ≥ 0, ϕ(t)|e| < 1 } ,

whereϕ : R≥0 → R≥0 is any bounded differentiable func-
tion with bounded derivative andϕ(t) > 0 for all t > 0. As
gain functionKF we consider, for(t, e) ∈ F ,

KF (t, e) =
ϕ(t)

1 − ϕ(t)|e|
=

1

1/ϕ(t) − |e|
,

i.e.KF is the reciprocal of the “vertical” distance of the error
to the funnel boundary.
The aim is to design a circuit which implements the control
law

u(t) = −
ϕ(t)e(t)

1 − ϕ(t)
∣

∣e(t)
∣

∣

.

The above control law can be represented as a block diagram,
where the output of a blocks stands for point-wise multiplica-
tion of the input with the value of the block.

×ϕ(t) −1

∣

∣e(t)
∣

∣×

e(t) u(t)
ũ(t)

Fig. 3 Control law as block diagram.

Note thatϕ(t) is an external signal which can be chosen arbi-
trarily by the user. Therefore the control law can be realized
by the following circuit:

× −1

×

e(t) u(t)

| · |

ϕ(t)

Fig. 4 Structure of the circuit implementation.

3 Experiments

For the implementation, we used standard circuits for the
negation, the adder and the full wave rectifier (producing the
absolute value) as can be found in [1]. In particular, we used
the multiplierMPY634 and the operational amplifiersµA741
andLM324A, each with a supply voltage of15V. As reference
system we considered a circuit which has the ideal transfer-
function

G(s) =
c1

s + c2

, s ∈ C,

wherec1, c2 are positive. The following figures show the re-
sults of the experiment. In all figures the time axis is in sec-
onds and the values are given in volts. For the funnel bound-
ary we chose an increasing functionϕ(·) which settles at a
value of approximately2.3V.
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Fig. 5 Controlled output (thick line) and reference signal.
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Fig. 6 Error (thick line) and funnel boundary1/ϕ(t).
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Fig. 7 Control input (thick line) and error.

As can be seen clearly, the funnel achieves tracking of the
reference signal with the prespecified accuracy. Due to the
circuit design it was not possible to measure the value of the
gaink(t), nevertheless the gain function can be calculated by
k(t) = −u(t)/e(t). Note that the gain was set to zero for
small errors to suppress noise induced peaks. The obtained
gain function is shown in the following figure:
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Fig. 8 Gain function (thick line) and error.

Note that the final maximal value of the gain function settles
at a value of 18.
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