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Abstract— This paper studies linear switched differential al-
gebraic equations (DAEs), i.e., systems defined by a finite family
of linear DAE subsystems and a switching signal that governs
the switching between them. We show by examples that switch-
ing between stable subsystems may lead to instability, and that
the presence of algebraic constraints leads to a larger variety of
possible instability mechanisms compared to those observed in
switched systems described by ordinary differential equations
(ODEs). We prove two sufficient conditions for stability of
switched DAEs based on the existence of suitable Lyapunov
functions. The first result states that a common Lyapunov
function guarantees stability under arbitrary switching when
an additional condition involving consistency projectors holds
(this extra condition is not needed when there are no jumps,
as in the case of switched ODEs). The second result shows that
stability is preserved under switching with sufficiently large
dwell time.

I. INTRODUCTION

We consider linear switched differential algebraic equa-
tions (switched DAEs) of the form

Eσẋ = Aσx, (1)

where σ : R → {1, 2, . . . , N}, N ∈ N, is some switching
signal, and Ep, Ap ∈ Rn×n, n ∈ N, are constant matrices
for each parameter p ∈ {1, 2, . . . , N}. The goal of this
paper is to develop sufficient conditions for stability of
such switched DAEs, based on the existence of appropriate
Lyapunov functions.

Classical linear DAEs (i.e. without switching) naturally
appear when modeling electrical circuits because Kirchhoff’s
circuit laws add algebraic equations to the differential equa-
tions stemming from capacitors and inductances. They also
occur when modeling simple (i.e. linear) mechanical systems
with (linear) constraints. For more details and further motiva-
tion for studying DAEs the reader is referred to [1]. Adding,
for example, (ideal) switches to an electrical circuit yields a
switched DAE as in (1). When studying the zero dynamics of
an ordinary differential equation (ODE) one arrives at a DAE
because of the additional algebraic constraint 0 = y = Cx.
In particular, using a switched controller to stabilize the zero
dynamics (as was done in [2]) yields a switched DAE (1)
even if one starts with an ODE.

When each matrix Ep is invertible, (1) reduces to a more
familiar switched ordinary differential equation (switched
ODE), or switched system. The stability theory of switched
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ODEs has received considerable attention in the last couple
of decades, and is now relatively mature. In particular, it
is well known that switching among stable subsystems may
lead to instability; a switched system is asymptotically stable
under arbitrary switching if (and only if) the subsystems
share a common Lyapunov function; and stability is pre-
served under sufficiently slow switching, as can be shown
using multiple Lyapunov functions (one for each subsystem).
We refer the reader to the book [3] for these and other results
on switched systems and for an extensive literature overview.

On the other hand, an investigation of stability ques-
tions for switched DAEs by similar methods has not yet
appeared in the literature. In this paper, we begin such
an investigation by establishing Lyapunov-based sufficient
conditions for stability of switched DAEs. In the special case
of switched ODEs, our results reduce to the known results
mentioned above. However, we will demonstrate by means of
examples that the presence of algebraic constraints leads to
new types of instability mechanisms. It also poses additional
technical challenges related to interpreting system solutions
and defining suitable Lyapunov functions.

It is well known that the solution of each individual DAE
Epẋ = Apx, p ∈ {1, . . . N}, evolve within a so-called
consistency space, which is a subspace of Rn. In general,
at a switching time t ∈ R there does not exist a continuous
extension of the solution into the future, because the value
x(t−) immediately before the switch need not be within
the consistency space corresponding to the DAE after the
switch. Therefore, it is necessary to allow for solutions with
jumps. However, this leads to difficulties in evaluating the
derivative of the solutions. To resolve this problem we adopt
the distributional framework introduced in [4], [5], i.e. as
solutions of the switched DAE (1) distributions (generalized
functions), in particular Dirac impulses, are considered. For
this, we have to assume that the switching signal has only
a locally finite set of switching times. Furthermore, to
ensure existence and uniqueness of solutions we have to
assume that each matrix pair (Ep, Ap) is regular, i.e. the
polynomial det(Eps − Ap) is not identically zero. Finally,
we will make one more assumption which ensures that no
impulses occur in the solutions of the switched DAE (1);
for details see Section IV and Theorem 8. A consequence of
these assumptions is that although a distributional solution
framework is necessary as a theoretical basis for treating
switched DAEs (1), the only solutions that arise in this paper
are normal (piecewise-smooth) functions.

It should be noted that so called linear complementarity
problems, see [6] and the references therein, were success-



fully applied to study passive linear electrical circuits with
switches; however the results are not directly comparable
because in that framework only switches are allowed which
do not change the structure of the circuit, i.e. the underlying
equations for the dynamics do not change, which is not the
case for systems of the form (1); on the other hand [6] also
considers state-depending switching as well as inequality
constraints which are not considered here.

By rewriting a classical DAE Eẋ = Ax as ẋ ∈ E−1(Ax)
and defining a jump map with the help of the consistency
projectors (see Definition 5 and Theorem 8) it seems possible
to study switched DAEs (1) as a special hybrid system in
the framework of [7]. It is not clear yet whether this has
advantages because one loses the special structure of (1).
Furthermore, it should be highlighted that in contrast to
the hybrid systems framework the jump map must not be
given additionally for the switched DAE (1), it is an intrinsic
property of the matrix pairs (Ep, Ap), p ∈ {1, . . . , N}.

The structure of the paper is as follows. Section II
summarizes relevant results for classical DAEs (i.e. DAEs
with constant coefficients), most of which can be found in,
or follow from, [8]. In particular, Lyapunov functions for
classical DAEs are introduced. The notion of a consistency
projector, needed for studying switched DAEs, is also defined
there. Section III gives several examples which motivate the
stability problem for switched DAEs by illustrating some
stable as well as unstable behaviors that can occur. In
Section IV the stability of switched DAEs is studied. The
main result is Theorem 9, where sufficient conditions for
asymptotic stability of the switched DAE (1) under arbitrary
switching are given. Theorem 11 shows that a switching
signal is not destabilizing if it has a large enough dwell time,
which is a generalization of the same result for switched
ODEs to switched DAEs.

The following notation is used throughout the paper.
N,Z,R,C are the natural numbers, integers, real and com-
plex numbers, respectively. For a matrix M ∈ Rn×m,
n,m ∈ N, the kernel (null space) of M is kerM , the image
(range, column space) of M is imM , and the transpose
of M is M> ∈ Rm×n. For a matrix M ∈ Rn×n and
a set S ⊂ Rn, the image of S under M is MS :=
{ Mx ∈ Rn | x ∈ S } and the pre-image of S under M
is M−1S := { x ∈ Rn | ∃y ∈ S : Mx = y }. The identity
matrix is denoted by I . For a piecewise-continuous function
f : R→ R the left-sided evaluation limε↘0 f(t−ε) at t ∈ R
is denoted by f(t−).

II. LYAPUNOV FUNCTIONS FOR DIFFERENTIAL
ALGEBRAIC EQUATIONS

Consider the classical DAE

Eẋ = Ax, (2)

where the matrix pair (E,A) ∈ Rn×n × Rn×n is regular,
i.e. det(Es − A) is not the zero polynomial. A (classical)
solution of (2) is any differentiable function x : R → Rn
such that (2) is fulfilled.

Definition 1 (Consistency space): Let the consistency
space of (2) be given by

C(E,A) :=

{
x0 ∈ Rn

∣∣∣∣∣ ∃ solution x of (2)

with x(0) = x0

}
.

It is well known that for regular matrix pairs each solu-
tion of (2) is uniquely determined by any consistent initial
condition x(0) = x0 ∈ C(E,A). Since (2) is time invariant,
all solutions x evolve within the consistency space, i.e.
x(t) ∈ C(E,A) for all t ∈ R. Furthermore, if (2) is an ordinary
differential equation, i.e. E ∈ Rn×n is an invertible matrix,
then C(E,A) = Rn.

The following lemma gives a nice characterization of the
consistency space in terms of the matrices E,A.

Lemma 2 ([8]): Consider the DAE (2) with regular matrix
pair (E,A). Let V0 = Rn and Vk+1 := A−1(EVk) for
k ∈ N. Then

∃k∗ ∈ N : V0 ⊃ V1 ⊃ · · · ⊃ Vk∗ = Vk∗+1 = · · ·

and C(E,A) = Vk∗ . Furthermore, kerE ∩ C(E,A) = {0}.
Definition 3 (Lyapunov function): Consider the DAE (2)

with regular matrix pair (E,A) and corresponding consis-
tency space C(E,A) ⊆ Rn. Assume there exist a positive
definite matrix P = P

> ∈ Cn×n and a matrix Q = Q
> ∈

Cn×n which is positive definite on C(E,A) such that the
generalized Lyapunov equation

A>PE + E>PA = −Q

is fulfilled. Then

V : Rn → R≥0 : x 7→ (Ex)>PEx

is called a Lyapunov function for the DAE (2).

Note that this definition ensures that V is not increasing
along solutions, i.e., for any solution x : R → Rn and all
t ∈ R,

d
dtV
(
x(t)

)
= −x(t)>Qx(t) ≤ 0

and equality only holds for x(t) = 0. Furthermore, the
property kerE ∩ C(E,A) = {0} ensures that V is positive
definite on C(E,A).

With some abuse of terminology, we call (2) asymptot-
ically stable if, and only if, x(t) → 0 as t → ∞ for all
solutions x of (2). Note that attractivity of the zero solution
already implies attractivity and stability in the sense of
Lyapunov for all solutions of (2), [9]. The following theorem
shows the equivalence between asymptotic stability of (2)
and the existence of a Lyapunov function.

Theorem 4 ([8], [9]): The DAE (2) with regular matrix
pair (E,A) is asymptotically stable if, and only if, there
exists a Lyapunov function V : Rn → R≥0 for (2).

For the switched DAE (1) so-called consistency projectors
will play an important role; these projectors describe how
an inconsistent initial value jumps to a consistent one in the
event of a switch.



Definition 5 (Consistency projector): For a regular matrix
pair (E,A) choose invertible S, T ∈ Rn×n such that

(SET, SAT ) =
([
I 0
0 N

]
,

[
J 0
0 I

])
, (3)

where J ∈ Rn1×n1 , 0 ≤ n1 ≤ n, is some matrix and N ∈
Rn2×n2 , n2 := n− n1, is a nilpotent matrix, i.e. Nn2 = 0.
The consistency projector is then defined as

Π(E,A) := T

[
I 0
0 0

]
T−1,

where I ∈ Rn2×n2 .
Remark 6: It is well known that any regular matrix pair

allows the decomposition (3) which is called Weierstrass
normal form (or Kronecker form in the non-regular case)
and it is also easy to see that the definition of Π(E,A) does
not depend on the specific choice of T . However, for the
Weierstrass form it is normally assumed that J and N are in
Jordan canonical form, but for the definition of the conistency
projectors this is not necessary. Therefore, (3) might be
called quasi-Weierstrass form. The quasi-Weierstrass form
can easily be obtained by using the Wong sequences [10],
[11] given by Rn = V0 ⊃ V1 ⊃ . . . ⊃ Vk∗ as in Lemma 2
and {0} =: W0 ⊂ W1 ⊂ . . . ⊂ Wk∗ = Wk∗+1 = . . . with
Wi+1 := E−1(AWi). Choose full rank matrices V,W such
that imV = Vk∗ and imW = Wk∗ , then T := [V,W ] and
S := [EV,AW ]−1 yield the decomposition (3), for details
see [11].

Remark 7: Note that from the decomposition (3) the struc-
ture of the (consistent) solutions of Eẋ = Ax can be read
off very easily: It is not difficult to see that the so called pure
DAE Nẇ = w only has the trivial solution w = 0, hence
all consistent solutions x of Eẋ = Ax can be expressed as
x = T [ v0 ] where v is a solution of the underlying ODE
v̇ = Jv. Although the structure of N does not play a
role when considering consistent solutions, it is important
when studying inconsistent intial values as is necessary for
switched DAEs (1).

III. SWITCHED DAES: MOTIVATING EXAMPLES

For switched ODEs there exist several well known exam-
ples of destabilizing switching. Of course, these examples
are also examples for switched DAEs (because every ODE
is a special DAE), but in the following we will give examples
which are specific to switched DAEs. For all examples we
consider a switching signal σ : R → {1, 2} with a constant
interval ∆t > 0 between switching times, i.e. σ(t) = 1
for all t ∈ [2k∆t, (2k + 1)∆t) and σ(t) = 2 for all
t ∈ [(2k + 1)∆t, (2k + 2)∆t), k ∈ Z.

Example 1

Let

(E1, A1) =
(
[ 0 1
0 0 ] ,

[
0 −1
1 −1

])
, (E2, A2) =

(
[ 1 1
0 0 ] ,

[−1 −1
1 0

])
.

The solutions of the corresponding switched DAE (1) are
shown in Figure 1. For small enough ∆t all solutions grow

unbounded and for large enough ∆t the solutions converge
to zero. Furthermore, there exists a value of ∆t for which
all solutions are periodic.

The consistency spaces are given by

C1 := C(E1,A1) = im [ 1
1 ] , C2 := C(E2,A2) = im [ 0

1 ] .

In view of Definition 5, T1 = [ 1 1
1 0 ] , T2 =

[
0 1
1 −1

]
and the

corresponding consistency projectors are

Π1 = [ 0 1
0 1 ] , Π2 = [ 0 0

1 1 ] .

It follows that both DAEs are governed by the same un-
derlying scalar ODE ẏ = −y; in particular, both DAEs are
asymptotically stable. Furthermore, it is easy to see that

V : R2 → R≥0, x 7→ x>x

restricted to the corresponding consistency space is a Lya-
punov function for both subsystems. In spite of this, the
switched system is not stable under arbitrary switching.

Example 2

Let

(E1, A1) =
([

1 0 0
0 1 0
0 0 1

]
,

[
−1 8π 0
π/2 −1 0
0 0 −1

])
,

(E2, A2) =
([

0 4 0
1 0 0
0 0 0

]
,
[−4π −4 0
−1 4π 0
−1 −4 4

])
.

The first system is an ODE, hence C1 = R3, S1 = T1 =
Π1 = I . For the second DAE,

C2 = im
[

0 4
1 0
1 1

]
, T2 =

[
0 4 0
1 0 0
1 1 1

]
, Π2 =

[
1 0 0
0 1 0

1/4 1 0

]
.

Choosing S2 = 1
4I it follows that the underlying two

dimensional ODE of subsystem 2 is given by

ẏ =
[−1 −4π
π −1

]
y.

We select ∆t = 1/4, which ensures that the switching only
occurs at that moment when the solution is located in the
intersection of the consistency spaces (i.e. in C2). Hence
the solution of the switched DAE exhibits no jumps. The
solutions of the unswitched DAEs are shown in the left part
of Figure 2 and the unstable solutions of the switched DAE
are illustrated in the right part of Figure 2.

Example 3

Let

(E1, A1) =
([

1 0 0
0 1 0
0 0 0

]
,
[ −1 2π 0
−2π −1 0

0 0 1

])
,

(E2, A2) =
([

0 1 0
1 0 1
0 0 0

]
,
[

4π −1 4π
−1 π −1
1 0 0

])
.

The consistency spaces are

C1 = im
[

1 0
0 1
0 0

]
, C2 = im

[
0 0
1 0
0 1

]
.

With T1 =
[

1 0 0
0 1 0
0 0 1

]
, T2 =

[
0 0 1
1 0 0
0 1 −1

]
the corresponding

consistency projectors are given by

Π1 =
[

1 0 0
0 1 0
0 0 0

]
, Π2 =

[
0 0 0
0 1 0
1 0 1

]
.
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Fig. 1. Solutions for Example 1 for different switching signals (dashed lines mean jumps induced by the switching), left: ∆t < 1
2

ln 2, all nontrivial
solutions grow unbounded; middle: ∆t = 1
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Fig. 2. Solutions for the Example 2. Left: Without switching, red: solution of subsystem 1, a three dimensional spiral converging to zero, blue: solution
of subsystem 2, a two dimensional spiral converging to zero, Right: with switching, the solutions grow unbounded and exhibit no jumps.

The underlying ODE for the first DAE can be read off
directly from the matrix pair (E1, A1), with S2 = I the
underlying ODE for the second DAE is given by

ẏ =
[ −1 4π
−π −1

]
y.

The solutions of the unswitched subsystems are illustrated in
the left part of Figure 3. For ∆t = 1/2 and an initial value at
t = 0 which is located on the x2 axis, the switching does not
induce jumps and all solutions converge to zero. However,
the choice ∆t = 1/4 induces jumps and destabilizes the
system, see the right part of Figure 3. Note that V (x) = x>x
is a common Lyapunov function on the intersection of the
consistency spaces.

IV. STABILITY OF SWITCHED DAES

As already mentioned and motivated in the introduction,
we will make the following assumptions for the switched
DAE (1).

A1 The switching signal σ : R→ {1, . . . , N} is piecewise
constant with a locally finite set of jump points and
right-continuous.

A2 Each matrix pair (Ep, Ap), p ∈ {1, . . . , N} is regular,
i.e. det(sEp −Ap) is not the zero polynomial.

A3 For the consistency projectors Πp := Π(Ep,Ap), p ∈
{1, . . . , N} corresponding to the regular matrix pairs

(Ep, Ap) from (1), it holds that

∀p, q ∈ {1, . . . , N} : Ep(I −Πp)Πq = 0.

Under these assumptions, the following result is known to
hold.

Theorem 8 ([5, Thms. 4.2.13&4.2.8]): Consider the
switched DAE (1) satisfying Assumptions A1, A2 and A3.
Then every distributional solution of (1) is impulse free and
is represented by a piecewise-smooth function x : R→ Rn.
Furthermore, for all solutions x : R→ Rn,

∀t ∈ R : x(t) = Πσ(t)x(t−).

In the following we call the switched DAE (1) asymp-
totically stable if, and only if, all distributional solutions are
impulse free and each solution x : R→ Rn fulfills x(t)→ 0
as t→∞.

Theorem 9: Consider the switched DAE (1) satisfying A1,
A2 and A3. Let Cp := C(Ep,Ap) ⊆ Rn, p = 1, . . . , N ,
and Πp := Π(Ep,Ap) ∈ Rn×n be the consistency spaces
and projectors corresponding to the matrix pairs (Ep, Ap).
Assume the classical DAE Epẋ = Apx is for every p =
1, . . . , N asymptotically stable with Lyapunov function Vp :
Rn → R≥0. If

∀p, q = 1, . . . , N ∀x ∈ Cq : Vp(Πpx) ≤ Vq(x) (4)
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Fig. 3. Solutions for the Example 3. Left: Solutions of the individual subsystems, Right: Solutions of the switched system (dashed lines are jumps induced
by the switches), the solutions grow unbounded.

then the switched DAE (1) is asymptotically stable for every
switching signal.

Proof: Theorem 8 already shows that all (distributional)
solutions of (1) are impulse free, hence it remains to show
the convergence to zero.

Step 1: Definition of a common Lyapunov function candidate.
If x ∈ Cp ∩Cq for some p, q ∈ {1, . . . , N} then x = Πpx =
Πqx hence (4) implies Vp(x) = Vq(x), therefore

V : Rn → R, x 7→

{
Vp(x), x ∈ Cp,

0, otherwise,
is well defined.

Step 2: V
(
x(t)

)
→ 0 as t→∞.

For p = {1, . . . , N} let Pp, Qp ∈ Cn×n be the matrices as
in Definition 3 corresponding to the DAE Epẋ = Apx. Let
furthermore

λp := min
x∈Cp\{0}

xTQpx
Vp(x) = min

x∈Cp
Vp(x)=1

x>Qpx > 0,

where positivity follows from positive definiteness of Vp and
Qp on Cp. Consider a solution x : R→ Rn of (1), then from
[5, Lemma 4.2.6] it follows that on each open interval (s, t)
which does not contain a switching time of σ the function
x is smooth and a local solution of Epẋ = Apx, where
p = σ(τ), τ ∈ (s, t). From x(τ) ∈ Cp for all τ ∈ (s, t) it
follows that V (x(τ)) = Vp(x(τ)) for all τ ∈ (s, t) and

d
dtVp

(
x(τ)

)
= x(τ)>Qpx(τ) ≤ −λpVp

(
x(τ)

)
.

Let t ∈ R be a jump of σ, then x(t) = Πσ(t)x(t−) and
x(t−) ∈ Cσ(t−), hence, by (4),

V (x(t)) = Vσ(t)

(
x(t)

)
= Vσ(t)

(
Πσ(t)x(t−)

)
≤ Vσ(t−)

(
x(t−)

)
= V

(
x(t−)

)
For λ := minp λp and any t0 ∈ R it therefore follows

∀t ∈ R : V
(
x(t)

)
≤ e−λ(t−t0)V

(
x(t0)

)
,

which implies that V
(
x(t)

)
→ 0 for all solutions x of (1).

Step 3: Solutions tend to zero.
Seeking a contradiction, assume x(t) 6→ 0. Then there

exists ε > 0 and a sequence (si)i∈N ∈ RN with si →
∞ as i → ∞ such that ‖x(si)‖ > ε for all i ∈ N.
There is at least one p ∈ {1, . . . , N} such that the set
{ i ∈ N | σ(si) = p } has infinitely many elements, there-
fore assume that σ(si) = p for some p and all i ∈ N. Then
x(si) ∈ Cp \ { ξ ∈ Cp | ‖ξ‖ < ε } for all i ∈ N and since
Vp is positive definite on Cp there exists δ > 0 such that
V
(
x(si)

)
> δ for all i ∈ N. This is a contradiction to

V
(
x(t)

)
→ 0 as t→∞. Therefore x(t)→ 0 as t→∞.

Condition (4) implies that any two Lyapunov functions Vp
and Vq coincide on the intersection Cp∩Cq , hence Theorem 9
is a generalization of the switched ODE case where the exis-
tence of a common Lyapunov function is sufficient to ensure
stability under arbitrary switching. However, the existence
of a common Lyapunov function is not enough in the DAE
case, as becomes clear from Example 1 in Section III. Under
arbitrary switching, solutions will in general exhibit jumps;
these jumps are described by the consistency projectors,
and these projectors must “fit together” with the Lyapunov
functions in the sense of (4) to ensure stability of the
switched DAE under arbitrary switching. If one assumes that
the switching signal is chosen in such a way that no jumps
occur, then the conditions on the consistency projectors are
not needed and we get the following corollary.

Corollary 10: Consider the switched DAE (1) satisfying
A1, A2, A3 and assume each DAE Epẋ = Apx, p =
1, . . . , N is asymptotically stable with Lyapunov function
Vp. Let

Σx0 :=

 σ : R→ {1, . . . , N}

∣∣∣∣∣∣∣∣∣
σ fulfills A1 and
∃ solution x of (1)

with x(0) = x0 and
x has no jumps

 .

If

∀p, q = 1, . . . , N ∀x ∈ Cp ∩ Cq : Vp(x) = Vq(x) (5)

then all solutions x of (1) with x(0) = x0 ∈ Rn and σ ∈ Σx0

converge to zero as t→∞.
Example 3 from Section III fulfills the assumptions of

Corollary 10, hence if no jumps occur all solutions tend to



zero. In contrast to this, in Example 1 only the constant
switching signals yield non-jumping non-trivial solutions,
hence Corollary 10 is not very useful in this case. For
Example 2 it is not possible to find Lyapunov functions for
both subsystems such that condition (5) is fulfilled.

For switched ODEs it is well known that switching
between stable subsystems always yields a stable system
provided the so-called dwell time (i.e. the minimal time
between any two switches) is large enough. Denote by Στd
the set of all switching times having a dell time not smaller
than τd > 0.

Theorem 11: Consider the switched DAE (1) satisfying
A1, A2, A3 and assume that each DAE Epẋ = Apx, p =
1, . . . , N , is asymptotically stable with Lyapunov functions
Vp and corresponding matrices Qp ∈ Cn×n. Let

λ := min
p

min
x∈Cp\{0}

xTQpx
Vp(x) .

Let µ ≥ 1 be such that

∀p, q = 1, . . . , N ∀x ∈ Cq : Vp(Πpx) ≤ µVq(x). (6)

Then the switched DAE (1) with σ ∈ Στd is asymptotically
stable whenever

τd >
lnµ
λ .

Proof: First note that all solutions of (1) by Theorem 8
are impulse free. Fix a solution x ∈ R → Rn of (1) with
a fixed switching signal σ ∈ Στd . If σ has only finitely
many switching times then asymptotic stability of (1) is
obvious, therefore assume that the set of switching times
{ ti ∈ R | i ∈ Z } of σ is infinite. Let v : R → R≥0,
t 7→ Vσ(t)

(
x(t)

)
and 0 < ε := τd − lnµ

λ . Then as in the
proof of Theorem 9 it follows that

v(ti+1−) ≤ e−λ(ti+1−ti)v(ti) ≤ e−λε

µ v(ti).

Furthermore, condition (6) yields

v(ti) = Vσ(ti)

(
Πσ(ti)x(ti−)

)
≤ µVσ(ti−)

(
x(ti−)

)
= µv(ti−).

All together this yields for all i ∈ Z,

v(ti+1−) ≤ e−λεv(ti−),

hence v(ti−)→ 0 as i→∞. Since v(t) ≤ e−λ(t−ti)v(ti) ≤
µv(ti−) for all t ∈ [ti, ti+1), i ∈ Z, it also follows that
v(t) → 0 as t → ∞. As in the proof of Theorem 9 it now
follows that x(t)→ 0 as t→ 0.

Remark 12: Since each Lyapunov function Vq , q ∈
{1, . . . , N}, is a quadratic function which is positive definite
on Cq if follows that for all p, q ∈ {1, . . . , N}

µq,p := min
x∈Cq\{0}

Vp

(
Πpx
)

Vq(x) = min
x∈Cq :Vq(x)=1

Vp
(
Πpx

)
> 0,

hence (6) is always fulfilled for µ ≥ maxq,p µq,p. Therefore,
Theorem 11 states that switching between asymptotically
stable subsystems yields asymptotic stability provided the
dwell time of the switching signal is large enough.

For Example 1 from Section III condition (6) is fulfilled
for the (common) Lyapunov function x 7→ V (x) = x>x
with λ = 2 and µ = 2. Hence for dwell times larger than
1
2 ln 2 the switched system (1) is asymptotically stable, see
also Figure 1.

V. CONCLUSIONS

This paper studied linear switched differential algebraic
equations (DAEs). We constructed several examples show-
ing that switching between stable subsystems may lead
to instability, and illustrating a large variety of possible
instability mechanisms caused by the presence of algebraic
constraints. We presented two sufficient conditions for sta-
bility of switched DAEs based on the existence of suitable
Lyapunov functions. The first result (Theorem 9) says that
a common Lyapunov function guarantees stability under
arbitrary switching when an additional condition involving
consistency projectors holds; this extra condition is not
needed when the switching signal is chosen in such a way
that no jumps occur (Corollary 10). The second result (The-
orem 11) shows that stability is preserved under switching
with sufficiently large dwell time.

The work reported here is just an initial step in the
investigation of stability of switched DAEs by Lyapunov-
based methods. Some avenues for future research include:
stability under average dwell-time and other useful classes
of switching signals; converse Lyapunov theorems; and
switched DAEs with inputs and/or outputs.
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