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Abstract— Necessary and sufficient conditions for switching
time and switch observability of a class of inhomogeneous
switched differential algebraic equations (DAEs) are obtained.
A characterization of initial states and inputs for which
switched DAEs are switch unobservable is also provided by
using the zeros of an augmented system obtained by combining
the output of two modes suitably.

I. INTRODUCTION

Switch observability in switched system refers to identify-
ing the switching signal from the knowledge of the input and
the output. It can be used in fault detection [1], identifying
link connections and disconnections in networked systems
[2], designing observers for switched systems [3], [4], [5],
[6], [7]. In [7] an observer design for switched differential
algebraic equations (DAEs) was considered which required
the knowledge of which mode the system is currently running
in. As a result, detecting the switching signal from the input
and output becomes essential for realizing this observer. In
this paper, we characterize the initial conditions and inputs
for which it is possible to reconstruct the switching signal.
This information can then be used for realizing the observer
in [7].

We consider two problems, namely, mode detection and
identification of the switching instants. Mode detection is
feasible, if it is possible to distinguish between outputs of
different subsystems, when subjected to the same input. In
this paper, we provide a complete characterization of initial
conditions and analytic inputs under which it is possible to
distinguish between different subsystems. Detecting switch-
ing instants require that at the switching instant, the output
will behave in a manner so that the switch is apparent.
Loss of analyticity of the output at the switching instant
for switched systems subject to analytic inputs indicates the
change of mode. We also provide a complete characterization
of initial conditions and inputs for which switching times
can be detected. We will use strong observability notions
defined in [8] for switched ordinary differential equations
(ODEs) namely, strong σ-, tS- and σ1-observability. These
notions are strong in the sense that the observability holds
for all inputs as opposed to standard notion which require
observability for “almost all” inputs (generically) [9], [10],
[11]. In [12] strong σ- and tS-observability for discrete time
ODE-system is characterized.
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In [8] the switch observability problem was studied for
switched homogeneous and inhomogeneous ODEs and then
in [13] for switched homogeneous DAEs. Here we consider
switch observability for a class of inhomogeneous switched
DAEs. Our contribution is twofold, 1) we give necessary and
sufficient conditions for switch observability of a class of
switched inhomogeneous DAEs (with modes that are strictly
proper systems1) which are generalizations of conditions
provided in [13], [8] and 2) we give a characterization
of initial conditions and inputs for which we loose switch
observability. Switched DAEs provide richer dynamics com-
pared to ODEs, in terms of appearance of jumps, Dirac
impulse and its derivatives in the output2. The conditions
derived in this paper use this additional information to give
necessary and sufficient conditions for mode detection and
switching time observability.

This paper is arranged as follows. In Section II we
formulate the problem by defining observability notions.
Further, in Section III, we introduce the notation that will
be used and assumptions under which we will be operating.
We also discuss in brief the distributional solution concept
for switched DAEs which will be used throughout the paper.
Our main results are presented in Section IV, where we
provide necessary and sufficient conditions for strong σ−,
ts− and σ1−observability. Due to space constraints we omit
the proofs.

II. PROBLEM FORMULATION

We consider switched DAEs of the form

Eσẋ = Aσx+Bσu,

y = Cσx,
(1)

where switching is governed by a switching function σ :
R → P := {1, . . . , p}, p ∈ N, which is piecewise constant
and right continuous. On each time interval where σ is
constantly p the dynamics are governed by a DAE

Σp :
Epẋ = Apx+Bpu,

y = Cpx,

with Ep, Ap ∈ Rn×n, Bp ∈ Rn×nu , Cp ∈ Rny×n. We
assume that every matrix pair (Ep, Ap), p ∈ P , is regular,
i.e. det(sEp − Ap) is not the zero polynomial. For a given
switching signal, the set of switching times is given by
Tσ := { t ∈ R | σ(t−) 6= σ(t+) } . We will assume that all
switches occur after the initial time t = 0, i.e. Tσ ⊆ R>0.

1See Assumption (A3) in Section IV-B. Relaxing this assumption is
currently under investigation.

2This is true even with Assumption (A3) in place.



Furthermore, we only consider initially consistent solutions,
i.e. x(0) = x0 ∈ Rn is contained in the consistency space of
mode σ(0), see Section III for details on consistency spaces.
Under the regularity assumption, existence and uniqueness of
distributional solutions of the switched DAE (1) is guaran-
teed [14]; we denote the solution of (1) with initial condition
x(0) = x0 by x(x0,σ,u) and the corresponding output by
y(x0,σ,u).

Our goal is to generalize the various observability notions
from [13] for switched ODEs to switched DAEs and provide
characterizations. For this, we need to briefly discuss the
solution formula for DAEs in the framework of piecewise
smooth distributions (see [15], [14]) and introduce some
notation for our analysis.

III. PRELIMINARIES AND NOTATION

A. DAE preliminaries

For any fixed mode p ∈ P let us consider a (nonswitched)
DAE Σp, where (Ep, Ap) is regular. A useful characteriza-
tion of regularity which goes back to Weierstrass [16] is the
following result:

Theorem 1 (Quasi-Weierstrass form): The matrix pair
(Ep, Ap) is regular if, and only if, there exist invertible
matrices Sp ∈ Rn×n and Tp ∈ Rn×n such that

(SpEpTp, SpApTp) =
([

In−rp 0

0 Np

]
,
[
Jp 0
0 Irp

])
(2)

where Np ∈ Rrp×rp , rp ∈ N, is a nilpotent matrix, Jp ∈
R(n−rp)×(n−rp) and In−rp , Irp denote the identity matrices
of corresponding size.

Following [17], we call (2) a quasi-Weierstrass form
(QWF) because we do not assume that Jp and Np are in
Jordan-canonical form; therein it was shown how to utilize
the Wong-sequences [18] to easily obtain the QWF. The
nilpotency index of Np in the QWF of a regular matrix pair
(Ep, Ap) is called the index of (Ep, Ap).

For a regular matrix pair (Ep, Ap) with QWF (2) we define
the following matrices (which are in fact independent of the
specific choices of Sp and Tp)

• consistency projector Πp := Tp

[
In−rp 0

0 0

]
T−1
p ,

• differential projector Πdiff
p := Tp

[
In−rp 0

0 0

]
Sp,

• impulse projector Πimp
p := Tp

[
0 0
0 Irp

]
Sp.

Note that only the consistency projector is a projector in the
usual sense (i.e. idempotent). Furthermore, let

Adiff
p := Πdiff

p Ap, Bdiff
p := Πdiff

p Bp,

Eimp
p := Πimp

p Ep, Bimp
p := Πimp

p Bp.

The transfer function of Σp is Gp(s) := Cp(sEp−Ap)−1Bp
and it is easily verified that

Gp(s) = Cp(sI −Adiff)−1Bdiff
p + Cp(sE

imp − I)−1Bimp
p .

We will call V∗p := im Πp the consistency space of Σp; it
holds that dimV∗p = n−rp. SetW∗p := ker Πp. Furthermore,
for l ∈ N let

O[l]
p := O[l]

(Cdiff
p ,Adiff

p )
, Oimp,[l]

p := O[l]

(C imp
p ,Eimp

p )
Eimp
p ,

where, for corresponding matrices A ∈ Rn×n and C ∈
Rny×n,

O[l]
(C,A) :=

[ C
CA
...

CAl−1

]
∈ Rl·ny×n

and
Γ[l]
p := Γ

[l]

(Adiff
p ,Bdiff

p ,Cdiff
p )
∈ Rl·ny×l·nu ,

where, for corresponding matrices A, B, C,

Γ
[l]
(A,B,C) =


0
CB 0

CAB CB
.. .

CA2B CAB
.. .

. . .
...

...
. . .

. . .

CAl−2B CAl−3B ··· ··· CB 0

 .
B. Explicit DAE solution formula

Consider the switched DAE (1) and assume that on
some time interval [tp, tq) the switching signal is constantly
p and, furthermore, assume that Bimp

p = 0. From [14,
Thms. 6.4.4&6.5.1] it then follows that the solutions of (1)
satisfy, for t ∈ [tp, tq):

x(t+) = eA
diff
p (t−tp)Πpx(t−p ) +

∫ t

tp

eA
diff
p (t−τ)Bdiff

p u(τ)dτ, (3a)

x[tp] = −
n−1∑
i=0

(Eimp
p )i+1x(t−p )δ

(i)
tp , (3b)

where x(t±) denotes the left-/right-evaluation of the
piecewise-smooth distribution x, x[tp] denotes the impulsive
part of x at tp and δ

(i)
tp denotes the i-th (distributional)

derivative of the Dirac impulse located at tp. In particular,
on the open interval (tp, tq), x solves the following ODE:

ẋ = Adiff
p x+Bdiff

p u, x(t+p ) = Πpx(t−p ). (4)

It is important to note that this is only true, because Bimp =
0, otherwise the solution x would not be a solution of a
simple ODE, because then x depends also on derivatives of
the input u, see [14] for details.

Next we give expressions for the output together with its
derivatives and the impulsive part of the output.

1) Non-impulsive part of output at t+p : The output of the
switched DAE (1) for t ∈ [tp, tq) with Bimp

p = 0 is given by
y(t+) = Cpe

Adiff
p (t−tp)Πx(t−p )+

∫ t
tp
Cpe

Adiff
p (t−τ)Bdiff

p u(τ)dτ,
in particular, due to (4),

y[l](t+p ) = O[l]
p Πpx(t−p ) + Γ[l]

p u
[l](t+p ) ∈ Rl·ny , (5)

where y[l] and u[l] denote the vector of y and u together with
its l − 1 consecutive derivatives.

2) Impulses in output at tp: From (3b) it follows that
y[tp] = −

∑n−1
i=0 Cp(E

imp
p )i+1x(t−p )δ

(i)
tp =: −

∑n−1
i=0 yiδ

(i)
tp .

Using the notation y[tp] :=
[
y>0 , y>1 , . . . , y>n−1

]> ∈
Rny·n, we can also write

y[tp] = −Oimp,[n]x(0−). (6)

Note that for the index νp ≤ n of (Ep, Ap) we have 0 =

(Eimp
p )νp = (Eimp

p )νp+1 = . . . = (Eimp
p )n; hence if νp < n



(which is usually the case), then the last rows of y[tp] are all
zero and do not contain any information. Nevertheless, we
use the definition (6) instead of y[tp] = −Oimp,[νp]x(t−p ) in
order to have a mode-independent dimension of y[tp].

IV. OBSERVABILITY CHARACTERIZATIONS

A. Observability Definitions

For u = 0, x0 = 0 we have y(x0,σ,u) = 0 for any switching
signal σ. Hence we cannot expect to determine the switching
signal in this case. Similarly, if u = 0 and the state jumps
to zero at a switch, i.e. x(t+S ) = 0, we cannot expect to
determine the switching signal from there onwards. To get a
useful notion of switching signal observability, we thus have
to exclude such cases. In the recent works [13], [8] different
approaches were used: For homogeneous ODEs, it was
sufficient to exclude zero initial states. In the inhomogeneous
case, we could either make certain assumptions to ensure that
the solution stays nonzero or consider equivalence classes of
switching signals. For homogeneous switched DAEs, it was
also necessary to consider equivalence classes of switching
signals.

Here we follow another, more intuitive approach: We
define an interval I on which we want to determine the
switching signal. For an initial value x0, switching signal σ
and smooth input u we define the essential interval I(x0,σ,u)

as

I(x0,σ,u) =

{
t

∣∣∣∣∣ ∃i ∈ N : u(i)(t) 6= 0 ∨
x(x0,σ,u)(t

+) 6= 0 ∨ x(x0,σ,u)[t] 6= 0

}
.

In general, I(x0,σ,u) may be a union of intervals, to avoid
this we make the following assumption:
(A1) The input is real analytic.
We then have the following result.

Lemma 2: Consider a regular switched DAE (1) satisfying
(A1), then for all (consistent) initial values x0 and all
switching signals σ we have

I(x0,σ,u) = R, for u 6= 0,

I(x0,σ,u) = (−∞, T ) or (−∞, T ], for u = 0,

for some T ∈ Tσ ∪ {−∞,∞}.
Similar as in [13] we make the following assumption on

the input matrices in (1):

(A2) For any modes p, q ∈ P , p 6= q: ker

[
Bp
Bq

]
= {0}.

To see the need for (A2), assume that it does not hold,
i.e. that there exists modes p 6= q and u 6= 0 analytic
with Bpu = Bqu = 0. Then y(0,p,u) = y(0,q,u) = 0 and
I(0,p,u) = R imply that the mode of the system cannot be
observable. Assumption (A2) is needed to deal with intervals
of zero state. It is possible to avoid (A2) by introducing an
equivalence on switching signals, see [13].

For u = 0, the solution might go to zero and stay zero,
making further switches undetectable. In [8] we have seen
that this leads to an extra condition (cf. the forthcoming
condition (11) in Theorem 5) and an additional termMi,j,p,q

in the characterization of strong σ1-observability (cf. the

forthcoming Theorem 9). For u 6= 0, however, such problems
do not occur which simplifies the subsequent analysis.

We will now formally define the observability notions
studied in this paper:

Definition 3: The switched DAE (1) is called
- strongly σ-observable if, and only if, for all (σ, σ̃), all

x0 ∈ V∗σ(0), x̃0 ∈ V∗σ̃(0)

σ 6= σ̃ on I(x0,σ,u) =⇒ y(x0,σ,u) 6= y(x̃0,σ̃,u) (7)

holds for all analytic u, i.e. the switching signal can be
determined (on the essential interval) from the knowledge
of the output and the input (for all possible inputs and all
initial states);

- strongly (x, σ)-observable if, and only if, for all (σ, σ̃),
all x0 ∈ V∗σ(0), x̃0 ∈ V∗σ̃(0)(

σ 6= σ̃ on I(x0,σ,u)

∨ x0 6= x̃0

)
=⇒ y(x0,σ,u) 6= y(x̃0,σ̃,u) (8)

holds for all analytic u, i.e. the switching signal and the
state can be determined (on the essential interval) from the
knowledge of the output and the input (for all possible inputs
and initial states);

- strongly σ1-observable if and only if for all x0 ∈ V∗σ(0),
x̃0 ∈ V∗σ̃(0), all analytic u and all (σ, σ̃) with σ having at least
one switch in I(x0,σ,u) the implication (7) holds. This means
the switching signal can be determined from the knowledge
of the input and the output provided at least one essential
switch has occurred;

- strongly (x, σ1)-observable if and only if for all x0 ∈
V∗σ(0), x̃0 ∈ V∗σ̃(0), all analytic u and all (σ, σ̃) with σ having
at least one switch in I(x0,σ,u) the implication (8) holds. This
means the switching signal and the state can be determined
from the knowledge of the input and the output provided at
least one essential switch has occurred;

- strongly tS-observable if and only if for all (σ, σ̃), all
x0 ∈ V∗σ(0), x̃0 ∈ V∗σ̃(0) and all analytic u it holds

Tσ 6= Tσ̃ on I(x0,σ,u) =⇒ y(x0,σ,u) 6= y(x̃0,σ̃,u),

i.e. the essential switching times can be determined from the
knowledge of the input and the output. We want to detect
the switching times in the closure of the essential interval,
because at the boundary of the essential interval the non-zero
state jumps to zero and this jump should be detectable in
the output (independently of the possible presence of Dirac
impulses).

Note that we consider strong observability notions and
not a generic (or weak) notion where observability is only
required for almost all (or one) input signal.

With the same arguments as in [13, Lem. 2] the (sur-
prising) equivalence between strong σ- and strong (x, σ)-
observability and between strong σ1- and strong (x, σ1)-
observability can be shown, hence we will focus in the
following on σ- and σ1-observability. Furthermore, it is
clear that strong σ-observability is sufficient for strong σ1-
observability which in turn is sufficient for tS-observability,
however the converse is not true in general.



B. σ-observability

For the switched DAE (1) and two modes i, j ∈ P
consider first the following augmented system

Σ(i,j) :
[
Ei 0
0 Ej

]
ξ̇ =

[
Ai 0
0 Aj

]
ξ +

[
Bi

Bj

]
u,

χ = [Ci −Cj ] ξ,

(9)

where ξ = ( xx̃ ). The role of the augmented systems for σ-
observability is expressed by the following Lemma.

Lemma 4: For the switched system (1) the two constant
switching signals σ ≡ i and σ̃ ≡ j can be distinguished for
any initial values and common input on the essential interval
if, and only if, the augmented system Σ(i,j) is unknown-
input-(ui-)observable (see Appendix).

In order to characterize ui-observability of the augmented
system Σ(i,j) we make the following assumption:
(A3) The transfer matrix from u to x for each DAE Σp given

by (sEp −Ap)−1Bp is strictly proper, or, equivalently,
Bimp
p = 0 for all p ∈ P .

Assumption (A3) means that in the QWF (2) the input is
not affecting the nilpotent part. In other words there is no
feedthrough from u (or its derivatives) to x. Lemma 11 in
the Appendix together with (A3) now shows that

rk
[
O[2n]
i O[2n]

j Γ
[2n]
i − Γ

[2n]
j

]
= dimV∗i + dimV∗j + rk

(
Γ

[2n]
i − Γ

[2n]
j

)
(10)

characterizes ui-observability. Hence we already have
derived a necessary condition for σ-observability. In
contrast to switched ODEs condition (10) is however not
sufficient. This can already be seen in the homogeneous
case, see e.g. [8, Ex. 7]. In fact, only for u = 0 the condition
(10) is not sufficient for σ-observability, because u 6= 0
already implies that the essential interval is the whole real
axis and ui-observability of the augmented systems Σ(i,j)

for all i, j ∈ P with i 6= j implies the ability to determine
the active mode on all open intervals between the switching
times, which implies that σ can be determined. Hence by
recalling the condition

V∗i ∩W∗j ∩W∗k ∩ ker
(
Oimp
i −Oimp

j

)
⊆ ker

[
Eimp
j

Eimp
k

]
(11)

derived in [8] for homogeneous switched DAEs we have our
first main result:

Theorem 5: The switched DAE (1) satisfying (A1), (A2)
and (A3) is strongly σ-observable, or equivalently, strongly
(x, σ)-observable if, and only if, (10) and (11) hold for all
pairwise different i, j, k ∈ P .

In case the switched DAE is not strongly σ-observable,
we now want to investigate the (nontrivial) inputs and initial
conditions which lead to σ-unobservability.

Lemma 6: Consider λ ∈ C for which there exists x̂0 ∈
Cn, ̂̄x0 ∈ Cn, u0 ∈ Cm such that[

λEi−Ai 0 −Bi

0 λEi−Aj −Bj

Ci −Cj 0

](
x̂0̂̄x0
u0

)
= 0. (12)

Let u(t) = eReλt(cos(Imλt) Reu0 − sin(Imλt) Imu0).
Then y(x0,p,u)(t) = y(x̃0,q,u)(t) for all t ≥ 0 for initial
conditions x0 = Re x̂0 and x̃0 = Re ̂̄x0.

Lemma 6 gives us a way to compute the initial conditions
and inputs which lead to σ-unobservability. Consider a
matrix pencil

P(i,j)(λ) =

[
λEi−Ai 0 −Bi

0 λEj−Aj −Bj

Ci −Cj 0

]
Then its generalized eigenstructure gives us inputs and state-
trajectory for which we loose σ-observability for σ = i and
σ̃ = j. The generalized eigenstructure of P(i,j)(λ) can be
computed by using quasi-Kronecker form (see [15] and [14]).

Example 1: Consider the switched DAE (1) with P =
{1, 2, 3} and

E1 =
[

1 0 0
0 0 1
0 0 0

]
, A1 =

[
0 0 0
0 1 0
0 0 1

]
, B1 =

[
1
0
0

]
, C1 =[ -1 0 0 ]

E2 =
[

1 0 0
0 1 0
0 0 0

]
, A2 =

[
0 1 0
-1 0 0
0 0 1

]
, B2 =

[
1
1
0

]
, C2 =

[
- 1
2 - 1

2 0
]

E3 = E2, A3 =
[

0 1 0
0 0 0
0 0 1

]
, B3 = B2, C3 =[ 1 -2 0 ]

This system is not σ-observable because (10) is not satisfied
for mode pairs (1, 3) and (2, 3). In Table I, we list all
the initial conditions and inputs for which the considered
switched DAE is not σ-observable. These initial conditions
and inputs are computed by using matrix pencils P(1,2)(λ),
P(2,3)(λ), and P(1,3)(λ) created for the pairs (1, 2), (2, 3)
and (1, 3) respectively.

C. tS-observability

Note that, by definition, tS-observability is equivalent to
the ability to determine the switching time tS from the
output. Assume that at time tS , the mode changes from i
to j for some i, j ∈ P i.e.,

σ =

{
i, t < tS ,

j, t ≥ tS .

Then, the switching time tS can be detected from the output
in two ways namely, 1) detecting an impulse in output at tS

TABLE I
EXAMPLE 1: LIST OF INITIAL CONDITIONS AND INPUTS THAT LEAD TO σ-UNOBSERVABILITY

Pencil P(1,2)(λ) P(2,3)(λ) P(1,3)(λ)

Singular for no λ ∈ C λ = 1
2 ± i

√
3

2 λ = 0

Initial Conditions none
x0 = (−u0, 0),

x̃0 = (− 1
2u0,− 1

2u0, 0)
x0 = (c, 0, 0)
x̃0 = (−c, 0, 0)

Input none u(t) = e
t
2

(
− 1

2 cos
(√

3t
2

)
−
√

3
6 sin

(√
3t
2

))
u0 u(t) ≡ 0



i.e., y[tS ] 6= 0 or 2) the output is not smooth at tS i.e., there
exists l ∈ N such that y[l](t−S ) 6= y[l](t+S ).

For characterizing strong tS-observability, we need a no-
tion of the set of controllable weakly unobservable states of
system Σ (see (16)) denoted as R(Σ) (see [19]).

R(Σ) :=

{
x0 ∈ V∗

∣∣∣∣ ∃u(·), T > 0 : y(x0,u) ≡ 0
and x(x0,u)(T ) = 0

}
.

This notion enables us to characterize strong tS-
observability as follows:

Lemma 7: A switched DAE (1) satisfying (A1), (A2) and
(A3) is strongly tS-observable if and only if it holds

R (Σi,j) = {0} (13)

and

rank

[
O[2n]
i −O[2n]

j Πi Γ
[2n]
i − Γ

[2n]
j

Oimp
j Πi 0

]
= dimV∗i + rank

(
Γ

[2n]
i − Γ

[2n]
j

)
,

(14)

hold for all i 6= j.
We relate the conditions to those obtained in [13] and

[8]. (13) generalizes a corresponding condition for inhomo-
geneous switched ODEs. As apparent from the definition
of R(Σ), it is not required in the homogeneous case. (14)
generalizes both the conditions for inhomogeneous switched
ODEs and homogeneous switched DAEs. The terms Oimp

j

and Πi in (14) correspond to an impulse and state jump,
respectively. Hence they do not appear for ODEs. In the
homogeneous DAE case, the second column block (as well
as the term rank

(
Γ

[2n]
i − Γ

[2n]
j

)
) will not appear.

Remark 8: By defining the set of weakly unobservable
states as

W(Σ) :=
{
x0 ∈ V∗

∣∣ ∃u(·) : y(x0,u) ≡ 0
}
.

we see that condition (14) is in fact equivalent to

W(Σ(i,j)) ∩
[
I

Πi

]
kerOimp

j Πi = {0}.

In particular, the initial value pairs
( x0
x̃0

)
leading to ts-

unobservability are exactly those which are in the set(
W(Σ(i,j)) ∩ im

[
I

Πi

]
kerOimp

j Πi

)
∪R(Σi,j).

D. σ1-observability

The notion of σ1-observability is a weaker version of σ-
observability. For σ-observability, the information obtained at
the switching instants is not utilized, since we are comparing
the output of systems for two distinct but constant switching
signals. Instead of comparing two constant switching signals,
two distinct switching signals with one of them having at
least one switch are compared for σ1-observability. Note that
by definition strong tS-observability is necessary for strong
σ1-observability.

To obtain a characterization for σ1-observability, we com-
pare two switching signals

σ(t) =

{
i, t < Tij ,

j, t ≥ Tij .
and σ̃(t) =

{
p, t < Tpq,

q, t ≥ Tpq.

Due to strong tS-observability, it turns out that we only
need to consider the case Tij = Tpq = tS . The subsequent
necessary and sufficient condition for σ1-observability has
to be satisfied for all i, j, p, q ∈ P given that σ 6= σ̃. As
a result, we end up comparing augmented systems Σ(i,p)

and Σ(j,q) for strong σ-observability. Thus, to examine the
σ1-observability, we consider ui-observability of the bigger
augmented system Σi,j,p,q formed by combining Σ(i,p) and
Σ(j,q) which is defined as follows[

Ei 0 0 0
0 Ej 0 0
0 0 Ep 0
0 0 0 Eq

]
ξ̇ =

[
Ai 0 0 0
0 Aj 0 0
0 0 Ap 0
0 0 0 Aq

]
ξ +

[
Bi

Bj

Bp

Bq

]
u,

χ =
[
Ci 0 −Cp 0
0 Cj 0 −Cq

]
ξ +

[
Di−Dp

Dj−Dq

]
u.

For ui-observability of Σi,j,p,q it suffices to consider the
matrices O[4n]

i,j,p,q and Γ
[4n]
i,j,p,q . Note that these matrices are

given by

O[ν]
i,j,p,q = T

[
O[ν]
i −O[ν]

p 0 0

0 0 O[ν]
j −O[ν]

q

]
,

Γ
[ν]
i,j,p,q = T

[
Γ

[ν]
i − Γ

[ν]
j

Γ
[ν]
p − Γ

[ν]
q

]
for some permutation matrix T .

Theorem 9: A switched DAE (1) satisfying (A1), (A2)
and (A3) is strongly σ1-observable if and only if it is strongly
tS-observable and satisfies

rank

 O
[4n]
i O[4n]

p Γ
[4n]
i − Γ

[4n]
p

O[4n]
j Πi O[4n]

q Πp Γ
[4n]
j − Γ

[4n]
q

Oimp
j Πi Oimp

q Πp 0


= dimV∗i + dimV∗p + rank

[
Γ

[4n]
i − Γ

[4n]
p

Γ
[4n]
j − Γ

[4n]
q

]
− dimMi,j,p,q

(15)

for all i, j, p, q ∈ P with i 6= j, p 6= q and (i, j) 6= (p, q).
Here Mi,j,p,q is given by

Mi,j,p,q =

{
V∗i ∩ kerEj ∩ kerEq, for i = p,

{0}, else.
V. CONCLUSION

We have characterized σ-observability (or, equivalently,
mode detectability) via rank conditions in terms of certain
Kalman and Hankel matrices. This characterization utilizes a
rank condition for ui-observability of an augmented system.
We also introduced the weaker notion of σ1-observability
(switch observability) which does not require individual
modes to be observable and also provide a characterization
based on rank criteria of certain matrices. For the weakest ob-
servability notion, ts-observability (relevant for fault detec-
tion), we also provide a matrix-rank-based characterization.



Additionally, if the switched system is not σ-observable, we
have given the precise set of initial values and inputs which
produce indistinguishable outputs.

Under the strict properness assumption (A3), our result is
a nice combination of the recent results on inhomogeneous
switched ODEs [13] and homogeneous switched DAEs [8];
avoiding this assumption is a topic of ongoing research.
Another line of research is the construction of an observer
for switch observable inhomogeneous switched DAEs; we
expect that the observer designs from [20] and [8] can be
combined; at least with Assumption (A3) in place.

APPENDIX

Unknown-input-observability, weakly unobservable states

Unknown-input-observability for unswitched DAEs is a
straightforward generalization from the ODE-case [19], [21].

Definition 10: A linear DAE

Σ : Eẋ = Ax+Bu, y = Cx (16)

is called unknown-input-observable (ui-observable) if and
only if y ≡ 0 implies x ≡ 0 (independently of u).

Note that in [19], [21] ui-observability is actually called
strong observability; however, in the context of DAEs the
notion of strong observability is used for a different concept,
see e.g. the survey [22]. Therefore we use the less ambiguous
notion ui-observability as, e.g., in [23].

Lemma 11: The regular system (16) with Bimp = 0 is
ui-observable if, and only if,

rk
[
O[n]

(Adiff,Cdiff)
Γ

[n]

(Adiff,Bdiff,cdiff)

]
= dimV∗ + rk(Γ[n]).

Another characterization of ui-observability is given by the
absence of zeros of (16), where λ ∈ C is called a zero of
(16) if, and only if,

rk
[
λE−A −B
C 0

]
< n+ rk

[−B
0

]
. (17)

Lemma 12 (cf. [24] for ODE case): Consider the regular
DAE (16) with Bimp = 0 and let Z(Σ) be the set of its zeros.
Then (16) is ui-observable if, and only if, Z(Σ) = ∅.

For a DAE which is not ui-observable, the input and initial
conditions that lead to outputs being zero are characterized
by the following result.

Lemma 13 (cf. [19] for ODE case): Consider the regular
DAE (16) with Bimp = 0 and for λ ∈ C let x̂0 ∈ Cn and
u0 ∈ Cm be such that[

λE−A −B
C 0

] (
x̂0
u0

)
= 0.

Then, for initial condition x(0) = Re x̂0, the output of (16) is
identically zero for input u(t) = eReλt(cos(Imλt) Reu0 −
sin(Imλt) Imu0).
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