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The bang-bang funnel controller: An experimental verification
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We adjust the newly developed bang-bang funnel controller such that it is more applicable for real world scenarios. The main
idea is to introduce a third “neutral” input value to account for the situation when the error is already small enough and no
control action is necessary. We present experimental results to illustrate the effectiveness of our new approach.
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1 Introduction and controller design

The recently introduced bang-bang funnel controller (BBFC)
[3] is able to achieve reference signal tracking of an uncertain
plant of which only is known that the relative degree is either
one or two. This theoretical result involves certain feasibility
assumptions and it is not clear in general whether these are
satisfiable and realistic in real world scenarios. We therefore
want to study the applicability of the BBFC to an real exper-
imental setup. We apply the BBFC to a stiffly coupled rotary
machine as shown in Figure 1 on which the continuous funnel
controller was already applied successfully [2].

Fig. 1 Experimental setup.

Applying the BBFC in its pure form would result in high
stress on the machine because of switching between applying
the maximum positive moment and the maximal negative mo-
mentum. This mechanical stress can be relaxed by introduc-
ing the third possibility of doing nothing (i.e. applying zero
momentum), hence we consider a feedback loop as illustrated
in the left of Figure 2.

ẋ = F (x, u)

y = H(x)
y

Switching
logic + -yref

FunnelU+U0U−

eq

u

e(t)

0 t

ϕ+(t)

ϕ−(t)
F

Fig. 2 Overall feedback configuration and the funnel.

This makes it necessary to define a new switching logic.
However, the new switching logic is very similar to the one in
[3]; in particular, all the theoretical results remain valid.

The control objective is keeping the error e := y − yref be-
tween the output y of the system and the reference signal yref

within the funnel

F := { (t, e) | ϕ−(t) ≤ e ≤ ϕ+(t) } (1)

where ϕ+ : R≥0 → R>0 and ϕ− : R≥0 → R<0 are pre-
specified (time-varying) error bounds, see Figure 2. This goal
should be achieved via error feedback and the application of
a bang-bang control with input values U+, U− and the neu-
tral input value U0. The decision which input value is used
at a given time t is made by a switching logic. In our setup
the switching logic depends on the error e and its derivative
ė. The output of the switching logic is the decision variable
q : R≥0 → {−1, 0, 1} and the control law is then simply

u(t) =


U−, if q(t) = −1,
U0, if q(t) = 0,

U+, if q(t) = +1.

The switching logic will be defined with the help of the fol-
lowing basic switching rule

S(e, e+, e0, e−, qold) :=
−1, if e = e+ ∨ (qold = −1 ∧ e > 0),

0, if e = 0 ∨ (qold = 0 ∧ e− < e < e+),

+1, if e = e− ∨ (qold = +1 ∧ e < 0).

Furthermore, the switching logic contains the internal logical
variable q1 defined via q1(0−) = q01 ∈ {−1, 0, 1} and

q1(t) = S
(
e(t), ϕ+(t)−ε+, 0, ϕ−(t)+ε−, q1(t−)

)
,

where ε± > 0 is the safety distance as introduced in [3]. The
definition for q1 and its interpretation is shown in Figure 3.
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Fig. 3 Switching logic for q1.

The switching logic for q itself is given in terms of the error
derivative ė together with its corresponding funnel Fd analo-
gously given as in (1) with boundaries ϕd±. This funnel must
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be feasible in the sense that ϕd+ > ϕ̇− and ϕd− < ϕ̇+ uni-
formly on R≥0. Furthermore, we need some more (time-
varying) switching triggers, namely ϕd+0, ϕd−0, ψ+ and ψ−
with ϕd+ > ϕd+0 > ϕ̇−, ϕd− < ϕd−0 < ϕ̇+ and ϕd− <

ψ− < 0 < ψ+ < ϕd+ uniformly on R≥0. Then q is given
via q(0−) = q0 ∈ {−1, 0, 1} and

q(t) = S
(
ė(t), ϕ̇+(t), ϕ

d
−0(t), ϕ

d
−(t) + εd−, q(t−)

)
,

if q1(t) = −1,
q(t) = S

(
ė(t), ψ+(t), 0, ψ−(t), q(t−)

)
,

if q1(t) = 0 and

q(t) = S
(
ė(t), ϕd+(t)− εd−, ϕd+0(t), ϕ̇−(t), q(t−)

)
,

if q1(t) = 1.

Here εd± > 0 is a safety distance which is theoretically not
necessary but advisable in practical application.

2 Experimental results

A mathematical model of the rotary machine is given by the
differential equations

ẋ(t) = [ 0 1
0 0 ]x(t) +

[
0
γ

] (
u(t) + uL(t)− (Tx2)(t)

)
,

y(t) =
[
1 0

]
x(t),

where x1 denotes the angle of the rotary machine, x2 = ẋ1
is the angular velocity, uL is the unknown load torque and
T : C(R≥0 → R) → L∞loc(Rp → R) is a friction opera-
tor, for details see [1]. As funnel boundaries we choose ex-
ponentially decaying functions and the switching triggers are
ϕd+0 = ψ+ = ϕ̇−+δ and ϕd−0 = ψ− = ϕ̇+−δ, where δ > 0.
The input values are

U+ = 22Nm, U0 = 0Nm, U− = −22Nm.

The overall experimental results on the interval [0 s, 40 s] to-
gether with the load disturbance uL is shown in Figure 4.
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Fig. 4 Overall reference tracking performance, upper part: load dis-
turbance uL; lower part: output y (red) follows reference signal yref

(black) and the error remains within the funnel (blue).

The transient response is shown Figure 5 which is a zoom
of Figure 4 to the interval [0 s, 4 s], where also the derivative
of the error and the results of the switching logic is shown.
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Fig. 5 Transient response without load disturbance.

Finally, another zoom of Figure 4 to the interval [5 s, 7 s] is
shown in Figure 6 to illustrate the effect of a non-zero distur-
bance load.
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Fig. 6 Response in the presence of load disturbance.
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