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Abstract— A class of discrete plants controlled by a switching for these norms as well. Finally the extended signal space

adaptive strategy is considered, and” bounds,1 <p < oo, are Y/ js { a:N—=R | VneN: a\[o n €V } = mapN,R).
obtained for the closed loop gain relating input and output ’
disturbances to internal signals.

Il. DEFINITION OF SWITCHED CONTROL AND SYSTEM

I. INTRODUCTION
CLASS

It is well known that the gain of the closed loop operator
mapping the external input and output disturbances to the
input and output of the plant plays a key role in the study of up = Uy + ug,
robust stability [1]. Obtaining good bounds for this quanti Yo = Y1 + Yo,
is therefore of high importance in adaptive control, whéee t
study of performance and robustness of adaptive contsoller
is still in its infancy. Switched adaptive controllers ane a uy = Cys,
attractive class of controllers to consider in this context hich is illustrated in Figure 1.

In the context of continuous time systend£, bounds can
be found in the work of Morse and co-workers, see e.g. [2], U *,\ u1 B b
[3]. Related work in both the discrete and continuous sgstin Y _ =
can also be found in [4], [5], [6], [7], and related results
have also been obtained by Megretski. The recent bounds _

Consider the closed loop systeii, C|

Y1 :Pulv

obtained by Vinnicombe [6] achieve rather tight bounds @ O Yo
for pairs of discrete first order plants of the form,, = U2 Y2 +
ayr + bug. The results in this paper extend Vinnicombe's Fig. 1. The closed loop systefi, ]

results in several directions. Namely, 1. the gain bounds ar
from disturbances in both the input and output channels to aossume that the disturbancésg, yo) € V x V. Let P

the internal signals, 2. the bounds are constructed for amy a finite parameter set, eB.= {1,...,N}, N € N. For
signal spacé”, 1 < p < oo, 3. the class of plants consideredeyeryp e P the operator

is broader (to include some higher order plants) and 4. the
switching controller is defined for a finite set of plants with Py:Ve—= Ve, ur— Pplui} =y,
the given class. If the analysis is restricted to the speci
case considered by Vinnicombe, we obtain bounds whic
are asymptotically equivalent. 7. )

We remark that the results we obtain are restricted in yi(k) = Za;’yl(k — i) +bpua (k= 1), 1)
various ways, e.g. the underlying controllers are assumed t =l
be dead-beat and the class of plants considered is not very yi(-k)=0 VkeR,

described by the equations:

wide; the generalization of these preliminary results is thwherea}),ag,...,ag,bp € R are known andr € N is the

topic of current research. maximum order of all plants,, p € P. It will be assumed
We close this introduction with some notation:that

Throughout this paperV is the considered signal b, 70 VYpeP.

space, here it is the spadé for 1 < p < oo where

I? .= {aemapN,R) | 3, |a;|P < oo } and mapA, B) It is known thatP = P, for an unknowrp* € P. Taking

is the set of all functions from4 to B. The signal the disturbances into account (1) becomeskfar N

space V is equipped with the corresponding-norm, o
ie. || - || == | - |,- Note that thep-norm will be yz(k):Za;yz(k—i)+bpm(k—l)
used for vectors inR™ as well, we will write || - | i=1 )
g
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such that the internal signalg..,y2) of the closed loop whereh € N is a number depending on the specificly chosen
[P, C] fulfill, for every (up,y0) € V x V, the property estimator and the order. For a given disturbance estimation
(u2,92) € V x V. In particular the controllelC’ should procedure, the strategy chooses as actual controller,
stabilize P. Furthermore we are aiming for performancewhereq(k) is such that the corresponding disturbance esti-

results. mator is minimal, i.e.
_ _ H k
For eachp € P, defineC, : V, — V, to be the dead beat S{ua,y2} (k) = (k) = aL%rgm 51]- ®)
controller:

- No specific estimation procedure is required in the
Yo — (k,_”@(k) = _1Za;y2(k_i+1)>' (3) statement of our final result, instead our results are
b =1 based on some required general properties of estimators.
The desired switched controllé? uses a switching strategy, 1heS€ properties and two exemplar estimation procedures
which chooses at every time an active controllgt ¢ € P. satisfying these properties are given in the following isect
The switching strategy has to ensure that the closed loop

[P, C] remains stable. The structure 6f is illustrated in IIl. PROPERTIES OF THE DISTURBANCE ESTIMATIONS

Figure 2.
g The results will be based on the following assumptions on
C the disturbance estimators.
|-~ T T T To oo .
I : Assumptions
: switching I 1) For every k € N and p € P the estimator d is
| strategys L independent of | (11,00) aNd w2k o0)-
: [ 2) There exists a constant ¢; > 0 such that for all £ € N:
! : [dE. || < eilluo, yoll-
I 4 I 3) There exists a constant ¢ > 0 such that for all k£ € N:
|
| . 200) < 2 |
Us | Cy : 4) Forall pe P andfor all kK, e Nwith0 <k < k":
, | Iyl < lldy ljou -
|
| [

Property 1 states that the disturbance estimator only
Fig. 2. The structure of the controll&? utilizes information which is available at timé;, i.e.

that the disturbance estimation is causal. Assumption 2

The switching strategy is a causal operator of the form ensures that for the estimator of the real plant the estinate

SV, xV, —» mapgN,P), (uz,ys) — 4, di_sturbances are bounde_zd by the re_al d_isturbar_wes._ The
_ third assumption is technical and the idea is that if at time
with the property k — 1 the controllerq was chosen then the “memory” of
S{“%y?}‘[o,k] - 5{u2|[07k71],y2|[07k]}’[07k]. P, was cancelled by the corresponding dead-beat controller

] C,. The next outputys(k) is therefore independent of
With q(k) = S{uz,y2}(k) the controllerC’ can then be the past history of the estimated plant and hence only
described by arise from the current estimated disturbances. Assumgtion

Clya} (k) = Cyuy{y2} (k) Yk €N, (4) reflects a kind of minimality of every disturbance estimatio

The structure of the switching strated@yis indicated by In particular consider the following two estimation

Figure 3. procedures:
__________Lg __________ | Estimator A
: dy [ Let, for p € P andk € N,
2 | disturbance !
: . d . | Ay . { ( P P ) k k+1 ‘
yz_e_, estimator | : 2 switch : q Sp (k) : Uo[o,k—1]> Yo[o,k] ) € R* xR
o d f _________ : Pp{ug[o,kfl] - UQ‘[O,kfl]H[O,k] = ySM - y2|[0,k] },

i.e. the set of all truncated disturbance signals
(11’5[07k_1],y§[07k]) € RF x R*! which are consistent

Forp € P the estimatei’; of the disturbance attimee N with the signals(ua|jo,x—1], ¥2|[0,k)) @nd the plant?,. Then
is a vector of lengthk + 1, i.e.

Fig. 3. The structure of the switching strate§y

) , , d® .= argmin{||z||}.
dE = (d5(0),dE(1),d5(2), ..., dE (k) € (RM)", P resa)



Considerd as element of R?)**! by writing d (k)
,yg[mk](k) :

0
rgote that although this estimation is intuitive it is not

recursively generated in the sense that in generak‘for k

dl; ljo,5] 7 d’;~

Estimator B
Let, forp € P andk € N,

Sf(k}) = { (ug[k 1) yg[k UJC]) €R x R"-‘rl‘

)+ Zapy? 1) =
Z%yo k—o k]

i.e. the set of all disturbance valuéag[k_l],yé’[k_g,k]) €

+b ’ILQ(]{J—

0 kot (K — 1) + bpug },

R x R+, which are consistent with the current signals

(uz(k — 1), y2]jk—0,k)) and plantp,, i.e. fulfill (2). Then

k .
dy (k) := argmin||z||.
z€SP (k)

and dy (i) =
therefore an element c(i[Ri x Ro+1

di(i) for all 0 < i < k. The vectordf is
)k‘+1

Proposition 1: Both estimators A and B fulfill Assump-
tions 1-4.

Proof: By definition the setsS:'(k) and S (k) does
not depend oMz [, o0) @NAY2|[k+1,00) Which yields Assump-
tion 1 for both estimations.

Note that for any disturbance signals,yo € V

(wolo,6—11>Yolo.4]) € Sﬁ* (k) VkeN
and
(uo(k = 1), 90l k—ok)) € 5;73* (k) VkeN.
Therefore, for estimator A,

’p*

For estimator B observe that

| < luo, yol| VEk €N.

—-1]> Yo

dy (k) < |luo(k — 1), yol—ony|| VR EN

and hence

” p*

0.(0),d}.(1),....,d5 (k)|

p

() (@)

(= 1)

<|| vo(1-0), y(2-0), ..., v(k+1-0)
0(0), yo(1), ce Yo (k)
<51, 1o, yoll-
o+1

This shows that Assumption 2 holds for both estimators

with ¢; = 1 ande; = ||1,1,...,1]|, resp. To show that

Assumption 3 holds for estimators A and B, fixc N and
let ¢ := q(k — 1). Since

1 & ,
= —b—Zaf]yg(k:—z)
9 =1

it follows from (2) that, for any disturbance estimation
(ug Y5),

ya(k) = bgug(k —

Z agyg (k

Note thatq depends ork. Hence

ly2(k)| <
C2 ||Ug(k - 1)7 yg(k)7 yg(k - 1)7 ey yg(k - U)” ’ (6)
where
co = (0 +2) Izr)lea?g( (max{|bp\, \a1| |a [, . \ag\}) .
Observe that
lug(k — 1), y5(k), y5 (k= 1), ..., yS(k — ol
<) Gl =) Gle=2)|
~\ws(k) ) \yg(k —1) )"
and therefore Assumption 3 holds for estimator A.
Estimator B fulfills
([ (F) || Nl (R Yo(k), yo(k —1),..., yg(k —o)||
and it is by (6) obvious that
[ya(k)| < ez || dg (k)|
<co||di(k), di(k—1),....di(k—0o)||.

Assumption 4 is clear, because for &l k¥’ andp € P
the definition of estimator A yields

df (0.0 € S (k)
and the definition of estimator B yields

dy ok = dp.

IV. MAIN RESULT

Theorem2: Let V. = " for r € [l,00] and let
{P,:Ve— V. | peP } be the set of given plants which
are defined by (1) and wher® is a finite parameter set.
Let the controllerC : V., — V. be defined as in (4) with
a switching strategy defined by (5) and let the disturbance
estimators fulfill Assumptions 1-4. Then for af € P the
closed-loop systemP,-, C| has the following properties:

1) (’LLQ,yo)GVXV = (’LLQ,yQ)GVXV
2) There exists = v(p*) > 0 such that, for al(ug, o) €
V xV,

(w2, y2) Il < 7vllwo, yoll-



Before we give the proof we would like to highlight thatIf for any n € N the differencek,, .1 — k,, is smaller then
the proof is constructive; explicit upper bounds for thengais+-1 then the last entry would b~ instead oﬂZg“*””.
~ can be obtained by following the steps in the proof.

] S Introduce the notation
Proof: It is clear that the second assertion implies the
first one and therefore only the existenceyaf 0 such that
[[(ua, y2)|| < v|lwo,yoll for all (ug,yo) € V x V will be dgli—e) == dglla—b,a) fOrg€ P, a,beN.
shown.

o . . Starting withn = 0 observe that by Assumption 3
The definition (3) and (4), yields that there exists> 0

such that
lua (k)| < collyallk—os1.- @) lysll = llya(ko + 1), y2(ko +2), .., ya (k1 — 1)
Hence <c ’ o] H
[uall < coll L, L, -, LI [lyzll;
—— <dk0+1 dko+a+2‘ 3 )
o q0 [—o]? 70 [—o]?
and therefore it is sufficient to show existencejof 0 such (dko+2 , dhotots] )
that for all (ug,yo) € V x V = ¢y 2 I[-o]’ "0 [~o]
Y2l < Alluo, yoll- s N
(dqg ’ ![70'] ) dqc[)) ? ’[70] [ )

Let (uo,y0) € V x V. Since the plantP,- is strictly
causal and the controll€r is causal by Assumption 1 and by Note that every row is finite and the last entries are
causality ofC,, there exist a unique solutiorias, y2) € V.2
of the closed-loop systemiP, C]. There exists therefore
unique disturbance estimatiods for p € P and fork € N.
Write q(k) = S{y2,us}(k) for the switching-signal and let
Q = {ko =0, k1, ka2, ...} be the set of switching times with but not necessarily in this order. Using now successively
ki < k;1q forall i e N, ie. Assumption 4 and the simple general fact that for any

G = qlks) = qlks +1) # qkigr) 0 <1< kisr — ks. sequence anda; < a < b < by

If @ is a finite set then defing ;| = oo and ignore in the
following all ;s with i > |Q|. Write fori € N sl a.erl] < [[5]gas pal

ki—1 k1—2 k 1
dqé | o]7d1 |—o‘]a~~7dq; (o+1) ‘—0]7

ki+1,kip1—1 .
[ 11l one arrives at

and observe that

92l gt
= [l93, 93,95, - s lly2(ko), ya (K1), y2 (ka), - - Il ra
ILWi” be shown that there exisy; > 0 and~2 > 0 such s < %
that :
||yg7y%7y%7” Sryl“anyOH déﬁi(odrl)
and
1y2(ko), y2 (K1), y2(k2), - . - || < y2lluo, voll- Thereforen = 0 is shown.

) For n > 0 observe first that
The proof of the theaorem would then with= ||~1, 2| be

complete. B B
A Idg; =
STEP 1: It will be shown that d’;n 2 ||d§§ 2|
371>0: Hyg»y%aygan S’Vl”u()vy()”' . B .
It is first shown inductively that for every € N dl;,r(aﬂ) Hdigr o+1)”
n—1 n—1
knt1—1
dg, " gz dgr
Eg1—2 - _
an’ G g dfn =1

99, v3. - 5 || < e _ . 8) ® an

n 1 o — (041 L
drti=o+D) Idgr =D dn=o



Now

ly2.ya, - w1l = |[ll92, yzs - w5~ I w5
kn kn+1
g, dk *21[ .
— +
d](;: ! d‘]n ![ o)
S C2 ’
: ”. 1
e | | di)
(dkﬂ G’dlgn+1|[_a]7”')
kn kn
(d(In+1 U’ dfln+2|[_o-]7 o ')
= C2
kn Jkn 1
(7> dgz o)

and as in the case = 0 it can be concluded (8).

Since, by Assumption 4,

b=t < ||diee | Vie{L,...,0+1}
inequality (8) yields for alln € N
n n 1
98,9, 5| < el 11, 1] lldgn Y|
A,_/
o+1
(5) _
< oLl ldyE
Ass. 2
< e|1, 1, e [Juo, yoll-
="
Hence Step 1 is finished.
STEP 2: It will be shown that
Fy2 >0 [ly2(ko), y2(k1), y2(k2), ... || < v2lluo, yoll-

For ¢ € P consider the subs&p? C @ of all times where

the switching strategy has switched from controligy to
another one, i.ek € Q1 < q(k —1) = ¢. Writing Q7 =

(K.
v4 > 0 such that

Hy2 y2(k2

For

Step 2 would then be shown.

Let n € N such thatkd € Q9, Assumption 3 then yields

forie{1,2,...,n}

‘yz

Using successively Assumption 4 similar as in Step 1 one

arrives at

y2(k2) . al/2(k )

Hyz

kd g
di' (ki —0),...,

|| = e, oll.

: ‘

q
Y3

ka6
dql (k;l)

<ol 1,1,...,1| Hd’;ﬁr

o+1

.} it will be shown that for allj € P there exists

©)

If k4 is not the last element in the ordered €@t then
there must existg > k4 such that the switching strategy is
switching again to the controllef’; at time k& (otherwise it
could not switch away frong later). In particular

a

<||dt|| < yoll
and hence, withy; > 0 as in Step 1,
2 (kD) 2k o ()| < 3 llwo,woll-— (20)

Therefore ifQ? is infinite the existence ofxg > 0 such that
(9) holds has been shown.
It remains to consider the cases whéleis finite. Define
F={qeP | Qis finite }
and let
KF::{k‘EN ’k;:maXQ‘j, qgerF }

be the set of all times at which the switching strategy
switches away from a controllef; the last time. Writing

Kr = {kF KL, ..., |F‘} it will for i € {1,...,|F|} be
shown that there exﬂ& > 0 and4; > 0 such that
ly2 (k)| < 10 luo, yol| (11)

The proof is inductive and starts with= 1. By Step 1
and (10) it is already known that

ly2 (k)| < 71 lluo, vol Yk < KT
With ¢q > 0 from (7) it follows, for all & < kF,

luz (k)| < collyelk—ot1,1l
Y1

<coll 1,1, 1y [Juo, yoll-

——

o

It can be assumed thgt > ~;. Now (1) yields

lya (k1 |<Z|a

(k —i)| + |bp~

Za ~yo(k

yoll + 711bp- [[|uo; yoll

p*) l|uo, yoll
where

a::2|a;* +~1<1+Z|a;* )
i=1 1 i=1

It can be assumed that > 1. For the caseé > 1 it is then
inductively assumed that, for all < k7,

ug(k —1)|

—b uo(k—l)

<m Z |a.
=1

+ (1 + Z |a;*
=1

< ﬁ/la ||U07Z/O||7

+ |b}

ly2(k)| < A1a" o, vol|



and Example 5. Consider the three plant®_,, P, and P,

|’LL2(I€)| < ﬁlai_lHUo,y()H. described by
The same calculation as in the case 0 yields then P, : yi(k) =payr(k —1) +ui(k—1), fora>0.
ly2(kF)| < Aree &g, yoll = 10 [|uo, vol- The proof of Theorem 2 can be used directly to calculate, for
For ¢ € P let iz such that{k!' } = K N Q7 if Q7 is finite SXamPle for estimator B, that we hayg, > < 3, [uo, yoll2
andi, = —oco otherwise. Then (10) and (11) together yield$Vith
(9) with 511 = 1/16a® + 12847 + 400aS + 576a5 + 320a* + 3242

7s = [, et = O(a*)

Fo = V117a* + 32a2 = O(a?).

Observe that the gain depends crucially on the underlying

Remark 3: The proof of the theorem is constructive, it isreal plant.

possible to obtain an explicit expression for an upper bound
for the gain~. Here we highlight some salient features.
Consider for examplé/ = I, and either estimator A or V. CONCLUSIONS

B given in Section Ill. Then, foug, yo) € V' x V, We have shown that a switched controller achieves a finite
|P|—1

y2llos < Boo el " [luo, olloos [P gain for_a certain_ class of systems. In addition, the proof
of the main result is constructive; an upper bound for the
luzlloo < foolly2 gain can be calculated. The results obtained for some specifi
where 3, > 0 depends only on the distribution of the examples compare favourable to already known results.
parameters and not explicitly on the number of plants and Nevertheless, in the given examples the distribution of
a,- > 1 only depends on the parameters of the real plaffarameters is well matched to the inequalities used witten t

|OO7

Pp. proof. There are certainly other examples of plant paramete
For the casd’ = I, we obtain: distributions in which the inequalities utilized within 1ou
|P|—1 proof are conservative and the technique would need to be
lell: < V/IPI B 0y fluo, ol considerably refined to produce tight bounds.
[uzll2 < Ballyall2, We consider the treatment of these issues, together with
where again3; > 0 only depends on the parameterthe construction of the tightest achievable bounds, to be a
distribution. serious topic for further study.

Observe that within the proof of Theorem 2 the worst
case bounds arise when the controller switches sequgntiall
through all the candidate plants. This gives rise to theofact
a/”1=in the above bounds. REFERENCES
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