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Abstract— A class of discrete plants controlled by a switching
adaptive strategy is considered, andlp bounds,1 ≤ p ≤ ∞, are
obtained for the closed loop gain relating input and output
disturbances to internal signals.

I. I NTRODUCTION

It is well known that the gain of the closed loop operator
mapping the external input and output disturbances to the
input and output of the plant plays a key role in the study of
robust stability [1]. Obtaining good bounds for this quantity
is therefore of high importance in adaptive control, where the
study of performance and robustness of adaptive controllers
is still in its infancy. Switched adaptive controllers are an
attractive class of controllers to consider in this context.

In the context of continuous time systems,L2 bounds can
be found in the work of Morse and co-workers, see e.g. [2],
[3]. Related work in both the discrete and continuous settings
can also be found in [4], [5], [6], [7], and related results
have also been obtained by Megretski. The recent bounds
obtained by Vinnicombe [6] achieve rather tightl2 bounds
for pairs of discrete first order plants of the formyk+1 =
ayk + buk. The results in this paper extend Vinnicombe’s
results in several directions. Namely, 1. the gain bounds are
from disturbances in both the input and output channels to
the internal signals, 2. the bounds are constructed for any
signal spacelp, 1 ≤ p ≤ ∞, 3. the class of plants considered
is broader (to include some higher order plants) and 4. the
switching controller is defined for a finite set of plants within
the given class. If the analysis is restricted to the special
case considered by Vinnicombe, we obtain bounds which
are asymptotically equivalent.

We remark that the results we obtain are restricted in
various ways, e.g. the underlying controllers are assumed to
be dead-beat and the class of plants considered is not very
wide; the generalization of these preliminary results is the
topic of current research.

We close this introduction with some notation:
Throughout this paperV is the considered signal
space, here it is the spacelp for 1 ≤ p ≤ ∞ where
lp := { a ∈ map(N, R) | ∑i |ai|p < ∞ } and map(A,B)
is the set of all functions fromA to B. The signal
space V is equipped with the correspondingp-norm,
i.e. ‖ · ‖ := ‖ · ‖p. Note that thep-norm will be
used for vectors inR

n as well, we will write ‖ · ‖
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for these norms as well. Finally the extended signal space
Ve is

{
a : N → R

∣
∣ ∀n ∈ N : a|[0,n] ∈ V

}
= map(N, R).

II. D EFINITION OF SWITCHED CONTROL AND SYSTEM

CLASS

Consider the closed loop system[P,C]

u0 = u1 + u2,

y0 = y1 + y2,

y1 = Pu1,

u2 = Cy2,

which is illustrated in Figure 1.

P

C

u0

y0

+ u1 y1

−
+y2u2

−

Fig. 1. The closed loop system[P, C]

Assume that the disturbances(u0, y0) ∈ V × V . Let P
be a finite parameter set, e.g.P = {1, . . . , N}, N ∈ N. For
everyp ∈ P the operator

Pp : Ve → Ve, u1 7→ Pp{u1} = y1,

is described by the equations:

y1(k) =

σ∑

i=1

ai
py1(k − i) + bpu1(k − 1),

y1(−k) = 0 ∀k ∈ N,

(1)

wherea1
p, a

2
p, . . . , a

σ
p , bp ∈ R are known andσ ∈ N is the

maximum order of all plantsPp, p ∈ P. It will be assumed
that

bp 6= 0 ∀p ∈ P.

It is known thatP = Pp∗ for an unknownp∗ ∈ P. Taking
the disturbances into account (1) becomes fork ∈ N

y2(k) =

σ∑

i=1

ai
py2(k − i) + bpu2(k − 1)

+ y0(k) −
σ∑

i=1

ai
py0(k − i) − bpu0(k − 1).

(2)

The aim is to construct a causal operator

C : Ve → Ve, y2 7→ C{y2} = u2,



such that the internal signals(u2, y2) of the closed loop
[P,C] fulfill, for every (u0, y0) ∈ V × V , the property
(u2, y2) ∈ V × V . In particular the controllerC should
stabilize P . Furthermore we are aiming for performance
results.

For eachp ∈ P , defineCp : Ve → Ve to be the dead beat
controller:

y2 →
(

k 7→ u2(k) = − 1

bp

σ∑

i=1

ai
py2(k − i + 1)

)

. (3)

The desired switched controllerC uses a switching strategy,
which chooses at every time an active controllerCq, q ∈ P.
The switching strategy has to ensure that the closed loop
[P,C] remains stable. The structure ofC is illustrated in
Figure 2.
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Fig. 2. The structure of the controllerC

The switching strategyS is a causal operator of the form

S : Ve × Ve → map(N,P), (u2, y2) 7→ q,

with the property

S{u2, y2}
∣
∣
[0,k]

= S
{
u2|[0,k−1], y2|[0,k]

}∣
∣
[0,k]

.

With q(k) = S{u2, y2}(k) the controllerC can then be
described by

C{y2}(k) = Cq(k){y2}(k) ∀ k ∈ N. (4)

The structure of the switching strategyS is indicated by
Figure 3.
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Fig. 3. The structure of the switching strategyS

Forp ∈ P the estimatedk
p of the disturbance at timek ∈ N

is a vector of lengthk + 1, i.e.

dk
p =

(
dk

p(0), dk
p(1), dk

p(2), . . . , dk
p(k)

)
∈
(
R

h
)k+1

,

whereh ∈ N is a number depending on the specificly chosen
estimator and the orderσ. For a given disturbance estimation
procedure, the strategy chooses as actual controllerCq(k),
whereq(k) is such that the corresponding disturbance esti-
mator is minimal, i.e.

S{u2, y2}(k) = q(k) = argmin
p∈P

‖dk
p‖. (5)

No specific estimation procedure is required in the
statement of our final result, instead our results are
based on some required general properties of estimators.
These properties and two exemplar estimation procedures
satisfying these properties are given in the following section.

III. PROPERTIES OF THE DISTURBANCE ESTIMATIONS

The results will be based on the following assumptions on
the disturbance estimators.

Assumptions

1) For every k ∈ N and p ∈ P the estimator dk
p is

independent of y2|[k+1,∞) and u2|[k,∞).
2) There exists a constant c1 > 0 such that for all k ∈ N:

‖dk
p∗‖ ≤ c1‖u0, y0‖.

3) There exists a constant c2 > 0 such that for all k ∈ N:
|y2(k)| ≤ c2

∥
∥
∥dk

q(k−1)

∣
∣
[k−σ,k]

∥
∥
∥.

4) For all p ∈ P and for all k, k′ ∈ N with 0 ≤ k < k′:
‖dk

p‖ ≤ ‖dk′

p |[0,k]‖.

Property 1 states that the disturbance estimator only
utilizes information which is available at timek, i.e.
that the disturbance estimation is causal. Assumption 2
ensures that for the estimator of the real plant the estimated
disturbances are bounded by the real disturbances. The
third assumption is technical and the idea is that if at time
k − 1 the controllerq was chosen then the “memory” of
Pq was cancelled by the corresponding dead-beat controller
Cq. The next outputy2(k) is therefore independent of
the past history of the estimated plant and hence only
arise from the current estimated disturbances. Assumption4
reflects a kind of minimality of every disturbance estimation.

In particular consider the following two estimation
procedures:

Estimator A
Let, for p ∈ P andk ∈ N,

SA
p (k) :=

{(

u
p
0[0,k−1], y

p
0 [0,k]

)

∈ R
k × R

k+1
∣
∣
∣

Pp{up
0[0,k−1] − u2|[0,k−1]}|[0,k] = y

p
0 [0,k] − y2|[0,k]

}

,

i.e. the set of all truncated disturbance signals(

u
p
0[0,k−1], y

p
0 [0,k]

)

∈ R
k × R

k+1 which are consistent

with the signals(u2|[0,k−1], y2|[0,k]) and the plantPp. Then

dk
p := argmin

x∈SA
p (k)

{‖x‖}.



Considerdk
p as element of(R2)k+1 by writing dk

p(k) =
(

0, y
p
0 [0,k](k)

)

.
Note that although this estimation is intuitive it is not
recursively generated in the sense that in general fork′ > k

dk′

p |[0,k] 6= dk
p.

Estimator B
Let, for p ∈ P andk ∈ N,

SB
p (k) :=

{(

u
p
0[k−1], y

p
0 [k−σ,k]

)

∈ R × R
σ+1
∣
∣
∣

y2(k) +

σ∑

i=1

ai
py2(k − i) + bpu2(k − 1) =

y
p
0 [k−σ,k](k) −

σ∑

i=1

ai
py

p
0 [k−σ,k](k − i) + bpu

p
0[k−1]

}

,

i.e. the set of all disturbance values
(

u
p
0[k−1], y

p
0 [k−σ,k]

)

∈
R × R

σ+1, which are consistent with the current signals
(
u2(k − 1), y2|[k−σ,k]

)
and plantPp, i.e. fulfill (2). Then

dk
p(k) := argmin

x∈SB
p (k)

‖x‖.

and dk
p(i) = di

p(i) for all 0 ≤ i < k. The vectordk
p is

therefore an element of
(
R × R

σ+1
)k+1

.

Proposition 1: Both estimators A and B fulfill Assump-
tions 1-4.

Proof: By definition the setsSA
p (k) and SB

p (k) does
not depend onu2|[k,∞) andy2|[k+1,∞) which yields Assump-
tion 1 for both estimations.

Note that for any disturbance signalsu0, y0 ∈ V
(
u0|[0,k−1], y0|[0,k]

)
∈ SA

p∗(k) ∀k ∈ N

and
(
u0(k − 1), y0|[k−σ,k]

)
∈ SB

p∗(k) ∀k ∈ N.

Therefore, for estimator A,
∥
∥dk

p∗

∥
∥ ≤

∥
∥u0|[0,k−1], y0|[0,k]

∥
∥ ≤ ‖u0, y0‖ ∀k ∈ N.

For estimator B observe that

dk
p∗(k) ≤

∥
∥u0(k − 1), y0|[k−σ,k]

∥
∥ ∀k ∈ N

and hence
∥
∥dk

p∗

∥
∥ =

∥
∥d0

p∗(0), d1
p∗(1), . . . , dk

p∗(k)
∥
∥

≤

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(
u0(−1)
y0(−σ)

)

,

(
u0(0)

y0(1 − σ)

)

, . . . ,

(
u0(k − 1)
y0(k − σ)

)

y0(1 − σ), y0(2 − σ), . . . , y0(k + 1 − σ)
...

y0(0), y0(1), . . . , y0(k)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

≤ ‖ 1, 1, . . . , 1
︸ ︷︷ ︸

σ+1

‖‖u0, y0‖.

This shows that Assumption 2 holds for both estimators
with c1 = 1 and c1 = ‖1, 1, . . . , 1‖, resp. To show that

Assumption 3 holds for estimators A and B, fixk ∈ N and
let q := q(k − 1). Since

u2(k − 1) = − 1

bq

σ∑

i=1

ai
qy2(k − i)

it follows from (2) that, for any disturbance estimation
(uq

0, y
q
0),

y2(k) = bqu
q
0(k − 1) + y

q
0(k) −

σ∑

i=1

ai
qy

q
0(k − i).

Note thatq depends onk. Hence

|y2(k)| ≤
c2 ‖uq

0(k − 1), y
q
0(k), y

q
0(k − 1), . . . , y

q
0(k − σ)‖ , (6)

where

c2 := (σ + 2)max
p∈P

(
max{|bp|, 1, |a1

p|, |a2
p|, . . . , |aσ

p |}
)
.

Observe that

‖uq
0(k − 1), y

q
0(k), y

q
0(k − 1), . . . , y

q
0(k − σ)‖

≤
∥
∥
∥
∥

(
0

y
q
0(k)

)

,

(
u

q
0(k − 1)

y
q
0(k − 1)

)

, . . . ,

(
u

q
0(k − σ)

y
q
0(k − σ)

)∥
∥
∥
∥

and therefore Assumption 3 holds for estimator A.

Estimator B fulfills
∥
∥dk

q (k)
∥
∥=‖uq

0(k − 1), y
q
0(k), y

q
0(k − 1), . . . , y

q
0(k − σ)‖

and it is by (6) obvious that

|y2(k)| ≤ c2

∥
∥dk

q (k)
∥
∥

≤ c2

∥
∥dk

q (k), dk
q (k − 1), . . . , dk

q (k − σ)
∥
∥ .

Assumption 4 is clear, because for allk < k′ andp ∈ P
the definition of estimator A yields

dk′

p |[0,k] ∈ SA
p (k)

and the definition of estimator B yields

dk′

p |[0,k] = dk
p.

qed

IV. M AIN RESULT

Theorem 2: Let V = lr for r ∈ [1,∞] and let
{ Pp : Ve → Ve | p ∈ P } be the set of given plants which
are defined by (1) and whereP is a finite parameter set.
Let the controllerC : Ve → Ve be defined as in (4) with
a switching strategy defined by (5) and let the disturbance
estimators fulfill Assumptions 1-4. Then for allp∗ ∈ P the
closed-loop system[Pp∗ , C] has the following properties:

1) (u0, y0) ∈ V × V ⇒ (u2, y2) ∈ V × V

2) There existsγ = γ(p∗) > 0 such that, for all(u0, y0) ∈
V × V ,

‖(u2, y2)‖ ≤ γ‖u0, y0‖.



Before we give the proof we would like to highlight that
the proof is constructive; explicit upper bounds for the gain
γ can be obtained by following the steps in the proof.

Proof: It is clear that the second assertion implies the
first one and therefore only the existence ofγ > 0 such that
‖(u2, y2)‖ ≤ γ‖u0, y0‖ for all (u0, y0) ∈ V × V will be
shown.

The definition (3) and (4), yields that there existsc0 > 0
such that

|u2(k)| ≤ c0‖y2‖[k−σ+1,k]. (7)

Hence
‖u2‖ ≤ c0‖ 1, 1, . . . , 1

︸ ︷︷ ︸

σ

‖ ‖y2‖,

and therefore it is sufficient to show existence ofγ̃ > 0 such
that for all (u0, y0) ∈ V × V

‖y2‖ ≤ γ̃‖u0, y0‖.

Let (u0, y0) ∈ V × V . Since the plantPp∗ is strictly
causal and the controllerC is causal by Assumption 1 and by
causality ofCq, there exist a unique solutions(u2, y2) ∈ V 2

e

of the closed-loop system[P,C]. There exists therefore
unique disturbance estimationsdk

p for p ∈ P and fork ∈ N.
Write q(k) = S{y2, u2}(k) for the switching-signal and let
Q = {k0 = 0, k1, k2, . . .} be the set of switching times with
ki < ki+1 for all i ∈ N , i.e.

qi := q(ki) = q(ki + l) 6= q(ki+1) 0 ≤ l < ki+1 − ki.

If Q is a finite set then definek|Q| = ∞ and ignore in the
following all kis with i > |Q|. Write for i ∈ N

yi
2 := y2|[ki+1,ki+1−1]

and observe that
‖y2‖
=
∥
∥‖y0

2 , y1
2 , y2

2 , . . . ‖, ‖y2(k0), y2(k1), y2(k2), . . . ‖
∥
∥.

It will be shown that there existγ1 > 0 and γ2 > 0 such
that

∥
∥y0

2 , y1
2 , y2

2 , . . .
∥
∥ ≤ γ1‖u0, y0‖

and

‖y2(k0), y2(k1), y2(k2), . . . ‖ ≤ γ2‖u0, y0‖.
The proof of the theorem would then with̃γ = ‖γ1, γ2‖ be
complete.

STEP 1: It will be shown that

∃γ1 > 0 :
∥
∥y0

2 , y1
2 , y2

2 , . . .
∥
∥ ≤ γ1‖u0, y0‖.

It is first shown inductively that for everyn ∈ N

∥
∥y0

2 , y1
2 , . . . , yn

2

∥
∥ ≤ c2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

d
kn+1−1
qn

d
kn+1−2
qn

...

d
kn+1−(σ+1)
qn

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

. (8)

If for any n ∈ N the differencekn+1 − kn is smaller then
σ+1 then the last entry would bedkn

qn
instead ofdkn+1−(σ+1)

qn .

Introduce the notation

da
q |[−b] := da

q |[a−b,a] for q ∈ P, a, b ∈ N.

Starting withn = 0 observe that by Assumption 3

‖y0
2‖ = ‖y2(k0 + 1), y2(k0 + 2), . . . , y2(k1 − 1)‖

≤ c2

∥
∥
∥

∥
∥
∥dk0+1

q0

∣
∣
[−σ]

∥
∥
∥ , , . . . ,

∥
∥
∥dk1−1

q0

∣
∣
[−σ]

∥
∥
∥

∥
∥
∥

= c2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(

dk0+1
q0

∣
∣
[−σ]

, dk0+σ+2
q0

∣
∣
[−σ]

, . . .
)

(

dk0+2
q0

∣
∣
[−σ]

, dk0+σ+3
q0

∣
∣
[−σ]

, . . .
)

...
(

dk0+σ+1
q0

∣
∣
[−σ]

, dk0+2σ+2
q0

∣
∣
[−σ]

, . . .
)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

.

Note that every row is finite and the last entries are

dk1−1
q0

|[−σ], d
k1−2
q0

|[−σ], . . . , d
k1−(σ+1)
q0

|[−σ],

but not necessarily in this order. Using now successively
Assumption 4 and the simple general fact that for any
sequences anda1 < a < b < b1

∥
∥s|[a,b]

∥
∥ ≤

∥
∥s|[a1,b2]

∥
∥

one arrives at

‖y0
2‖ ≤

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

dk1−1
q0

dk1−2
q0

...

d
k1−(σ+1)
q0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

.

Thereforen = 0 is shown.
For n > 0 observe first that

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

dkn−1
qn−1

dkn−2
qn−1

...

d
kn−(σ+1)
qn−1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

‖dkn−1
qn−1

‖
‖dkn−2

qn−1
‖

...

‖dkn−(σ+1)
qn−1

‖

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(5)
≤

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

‖dkn−1
qn

‖
‖dkn−2

qn
‖

...

‖dkn−(σ+1)
qn ‖

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

≤

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

dkn
qn

dkn−1
qn

...
dkn−σ

qn

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

.



Now

‖y0
2 , y1

2 , . . . yn
2 ‖ =

∥
∥‖y0

2 , y1
2 , . . . , yn−1

2 ‖, yn
2

∥
∥

≤ c2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

dkn
qn

dkn−1
qn

...
dkn−σ

qn

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

dkn+1
qn

∣
∣
[−σ]

dkn+2
qn

∣
∣
[−σ]

...
d

kn+1−1
qn

∣
∣
[−σ]

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

= c2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(
dkn−σ

qn
, dkn+1

qn
|[−σ], . . .

)

(
dkn+1−σ

qn
, dkn+2

qn
|[−σ], . . .

)

...
(
dkn

qn
, dkn+σ+1

qn
|[−σ], . . .

)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

and as in the casen = 0 it can be concluded (8).

Since, by Assumption 4,
∥
∥dkn+1−i

qn

∥
∥ ≤

∥
∥dkn+1−1

qn

∥
∥ ∀ i ∈ {1, . . . , σ + 1}

inequality (8) yields for alln ∈ N

∥
∥y0

2 , y1
2 , . . . , yn

2

∥
∥ ≤ c2‖ 1, 1, . . . , 1

︸ ︷︷ ︸

σ+1

‖‖dkn+1−1
qn ‖

(5)
≤ c2‖1, 1, . . . , 1‖‖dkn+1−1

p∗ ‖
Ass. 2
≤ c2‖1, 1, . . . , 1‖c1

︸ ︷︷ ︸

=:γ1

‖u0, y0‖.

Hence Step 1 is finished.

STEP 2: It will be shown that

∃γ2 > 0 : ‖y2(k0), y2(k1), y2(k2), . . . ‖ ≤ γ2‖u0, y0‖.

For q̂ ∈ P consider the subsetQq̂ ⊆ Q of all times where
the switching strategy has switched from controllerCq̂ to
another one, i.e.,k ∈ Qq̂ ⇔ q(k − 1) = q̂. Writing Qq̂ =
{kq̂

1, k
q̂
2, . . .} it will be shown that for allq̂ ∈ P there exists

γ
q̂
2 > 0 such that

∥
∥
∥y2(k

q̂
1), y2(k

q̂
2), . . .

∥
∥
∥ ≤ γ

q̂
2‖u0, y0‖. (9)

For
γ2 :=

∥
∥
∥γ

q̂1

2 , γ
q̂2

2 , . . . , γ
q̂N

2

∥
∥
∥

Step 2 would then be shown.

Let n ∈ N such thatkq̂
n ∈ Qq̂, Assumption 3 then yields

for i ∈ {1, 2, . . . , n}
∣
∣
∣y2(k

q̂
i )
∣
∣
∣ ≤ c2

∥
∥
∥
∥
d

k
q̂
i

q̂ (kq̂
i − σ), . . . , d

k
q̂
i

q̂ (kq̂
i )

∥
∥
∥
∥

.

Using successively Assumption 4 similar as in Step 1 one
arrives at
∥
∥
∥y2(k

q̂
1), y2(k

q̂
2), . . . , y2(k

q̂
n)
∥
∥
∥ ≤ c2‖ 1, 1, . . . , 1

︸ ︷︷ ︸

σ+1

‖
∥
∥
∥d

kq̂
n

q̂

∥
∥
∥ .

If kq̂
n is not the last element in the ordered setQq̂ then

there must existsk > kq̂
n such that the switching strategy is

switching again to the controllerCq̂ at timek (otherwise it
could not switch away from̂q later). In particular

∥
∥
∥d

kq̂
n

q̂

∥
∥
∥ ≤

∥
∥dk

q̂

∥
∥ ≤

∥
∥dk

p∗

∥
∥ ≤ c1‖u0, y0‖

and hence, withγ1 > 0 as in Step 1,
∥
∥
∥y2(k

q̂
1), y2(k

q̂
2), . . . , y2(k

q̂
n)
∥
∥
∥ ≤ γ1‖u0, y0‖. (10)

Therefore ifQq̂ is infinite the existence ofγq̂
2 > 0 such that

(9) holds has been shown.

It remains to consider the cases whereQq̂ is finite. Define

F :=
{

q̂ ∈ P
∣
∣ Qq̂ is finite

}

and let

KF :=
{

k ∈ N
∣
∣ k = max Qq̂, q̂ ∈ F

}

be the set of all times at which the switching strategy
switches away from a controllerCq̂ the last time. Writing
KF = {kF

1 , kF
2 , . . . , kF

|F |} it will for i ∈ {1, . . . , |F |} be
shown that there exitsα > 0 and γ̃1 > 0 such that

|y2(k
F
i )| < γ̃1α

i‖u0, y0‖ (11)

The proof is inductive and starts withi = 1. By Step 1
and (10) it is already known that

|y2(k)| ≤ γ1‖u0, y0‖ ∀k < kF
1 .

With c0 > 0 from (7) it follows, for all k < kF
1 ,

|u2(k)| ≤ c0‖y2|[k−σ+1,k]‖

≤
γ̃1

︷ ︸︸ ︷

c0‖ 1, 1, . . . , 1
︸ ︷︷ ︸

σ

‖γ1 ‖u0, y0‖.

It can be assumed that̃γ1 ≥ γ1. Now (1) yields

|y2(k
F
1 )| ≤

σ∑

i=1

∣
∣ai

p∗

∣
∣ |y2(k − i)| + |bp∗ | |u2(k − 1)|

+

∣
∣
∣
∣
∣
y0(k) −

σ∑

i=1

ai
p∗y0(k − i) − bp∗u0(k − 1)

∣
∣
∣
∣
∣

≤ γ1

σ∑

i=1

|ai
p∗ |‖u0, y0‖ + γ̃1|bp∗ |‖u0, y0‖

+

(

1 +
σ∑

i=1

∣
∣ai

p∗

∣
∣+ |bp∗ |

)

‖u0, y0‖

≤ γ̃1α ‖u0, y0‖,
where

α :=

σ∑

i=1

∣
∣ai

p∗

∣
∣+ |bp∗ | + 1

γ̃1

(

1 +

σ∑

i=1

∣
∣ai

p∗

∣
∣+
∣
∣bi

p∗

∣
∣

)

.

It can be assumed thatα ≥ 1. For the casei > 1 it is then
inductively assumed that, for allk < kF

i ,

|y2(k)| ≤ γ̃1α
i−1‖u0, y0‖



and
|u2(k)| ≤ γ̃1α

i−1‖u0, y0‖.
The same calculation as in the casei = 0 yields then

|y2(k
F
i )| ≤ γ̃1α αi−1‖u0, y0‖ = γ̃1α

i‖u0, y0‖.
For q̂ ∈ P let iq̂ such that{kF

iq̂
} = KF ∩ Qq̂ if Qq̂ is finite

andiq̂ = −∞ otherwise. Then (10) and (11) together yields
(9) with

γ
q̂
2 = ‖γ1, γ̃1α

iq̂‖.
qed

Remark 3: The proof of the theorem is constructive, it is
possible to obtain an explicit expression for an upper bound
for the gain γ. Here we highlight some salient features.
Consider for exampleV = l∞ and either estimator A or
B given in Section III. Then, for(u0, y0) ∈ V × V ,

‖y2‖∞ ≤ β∞ α
|P|−1
p∗ ‖u0, y0‖∞,

‖u2‖∞ ≤ β∞‖y2‖∞,

where β∞ > 0 depends only on the distribution of the
parameters and not explicitly on the number of plants and
αp∗ > 1 only depends on the parameters of the real plant
Pp∗ .
For the caseV = l2 we obtain:

‖y2‖2 ≤
√

|P| β2 α
|P|−1
p∗ ‖u0, y0‖2,

‖u2‖2 ≤ β2‖y2‖2,

where againβ2 > 0 only depends on the parameter
distribution.

Observe that within the proof of Theorem 2 the worst
case bounds arise when the controller switches sequentially
through all the candidate plants. This gives rise to the factor
α
|P|−1
p∗ in the above bounds.

Example 4: Consider the two plantsP1 andP2 described
by

y1(k) = ay1(k − 1) ± u1(k − 1),

i.e., in the notation of this paper,a1 = a2 = a > 0,
b1 = 1 and b2 = −1. In [6] this setup with the additional
condition y0 ≡ 0 was considered, and it was shown that
‖y2‖2 ≤ γ‖u0‖2 for γ > a +

√
1 + a2 ≈ 2a. A slightly

weaker bound is obtained by following similar steps to
the proof of Theorem 2 withy0 ≡ 0, namely thatγ >
√

1 + (2a + 1)2 ≈ 2a.
However, in the general case, wherey0 6≡ 0, the proof of
Theorem 2 can be used directly to calculate, for example for
estimator B, that fora > 1 we have‖y2‖2 ≤ γ̃‖u0, y0‖2, if

γ̃ =
√

16a6 + 64a5 + 64a4 + 32a2 = O(a3).

Example 5: Consider the three plantsP−1, P0 and P1

described by

Pp : y1(k) = pay1(k − 1) + u1(k − 1), for a > 0.

The proof of Theorem 2 can be used directly to calculate, for
example for estimator B, that we have‖y2‖2 ≤ γ̃p∗‖u0, y0‖2

with

γ̃±1 =
√

16a8 + 128a7 + 400a6 + 576a5 + 320a4 + 32a2

= O(a4)

γ̃0 =
√

117a4 + 32a2 = O(a2).

Observe that the gain depends crucially on the underlying
real plant.

V. CONCLUSIONS

We have shown that a switched controller achieves a finite
lp gain for a certain class of systems. In addition, the proof
of the main result is constructive; an upper bound for the
gain can be calculated. The results obtained for some specific
examples compare favourable to already known results.

Nevertheless, in the given examples the distribution of
parameters is well matched to the inequalities used within the
proof. There are certainly other examples of plant parameter
distributions in which the inequalities utilized within our
proof are conservative and the technique would need to be
considerably refined to produce tight bounds.

We consider the treatment of these issues, together with
the construction of the tightest achievable bounds, to be a
serious topic for further study.
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